首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poul  Lahsen 《Physiologia plantarum》1966,19(3):780-784
The method by Larsen and Klungsöyr (1964) for the quantitative determination of indole-3-acetaldehyde (IAAld) was modified for the purpose of eliminating the need for filtration after oxidation of the IAAld to indole-3-acetic acid (IAA). The essentials of the modified method are as follows: Samples of IAAld or IAA containing 0.015 to 0.15 μmol (ca. 2.5 to 25 μg) dissolved in peroxide-free ether are evaporated to dryness and redissolved in 1.5 ml 0.02 M Ag2SO4. The oxidation is carried out in dim light by adding 0.5 ml 0.12 N NaOH. After 1.5 min, 2 ml of a modified Salkowski reagent are added. The optical density at 525 nm is read on a spectrophotometer after 75 min. The modified Salkowski reagent consists of 100 ml 0.05 M Fe2(SO4)3 in 1.5 N H2SO4; 240 ml H2O; and 160 ml cone. H2SO4 (sp. gr. 1.84). O.D. readings are identical for equal samples of IAAld and IAA (the latter used as a standard) up to 0.08 μmol (O.D. = 0.32). Larger quantities of IAAld may be determined when using pure IAAld as a standard, but at 0.20 μmol the O.D. for IAAld is lower than for IAA (0.69 as against 0.72). Indole-3-acetonitrile, tryptophol, indole-3-carboxylic acid, and indole-3-aldehyde all give O.D. values lower than 0.1 when tested at 0.20 μmol under the same conditions as described for IAAld and IAA.  相似文献   

2.
Five-mm sections of elongation zones of Zea mesocotyls wereincubated for designated periods with various concentrationsof IAA. In vitro protein phosphorylation in the soluble fraction(85,000 x g supernatant) prepared from the sections was analyzedby sodium dodecyl sulfate-polyacrylamide gel electrophoresis.The phosphorylation of proteins in the soluble fraction thathad been prepared from sections incubated for 20 min in thepresence of 10{small tilde}s M IAA was greater than that inthe sections incubated for 20 min without IAA. The amount ofphosphorylation of proteins per protein became higher when higherconcentrations increased (10{small tilde}8—10{small tilde}5M).The growth of sections incubated in the presence of 10{smalltilde}8 M IAA or higher concentrations was greater than thatof sections incubated in the absence of IAA. The promotion ofgrowth by IAA was greater at higher concentrations of IAA. Proteinsin the soluble fraction, prepared from sections incubated for20 min in the presence of 10{small tilde}5 M IAA, were phosphorylatedin the presence of either 10 fM cAMP, 10 µM cGMP, 100µM W-7, 100 µM W-5, 20 µM H-7 or 20 µMHA1004. The calmodulin antagonist, W-7, and the inhibitor ofprotein kinase C, H-7, inhibited the phosphorylation of proteinsstimulated by incubation with IAA. These results suggest thatIAA promotes cell elongation via protein phosphorylation thatdepends on calmodulin-dependent protein kinase and protein kinaseC. (Received November 29, 1995; Accepted May 20, 1996)  相似文献   

3.
Infiltration of indolcacelaldehyde (IAAId) into living tissues of sonic lower and higher plants gives rise simultaneously to both indoleacetic acid (IAA) and Iryptophol (T-ol). But on a molar basis, there is no correlation between the products indicating a disimitation. Expressed juice of Avena coleoptiles by itself, exhibits only IAA forming activity. Approximately two moles of IAAld are consumed for each mole of IAA formed at pH 4.5, but only if necessary corrections are made for losses of substrate and products. Addition of reduced NAD or NADP readily induces tryptophol formation. But even at pH 4.5, adding reduced NADP causes greater tryptophol formation, leading to a marked divergence in the acid-alcohol ratio. Varying the pH in the presence of reduced coenzymes also alters the ratio, with alcohol formation predominating. NAD and NADP have no influence on the formation of IAA from IAAld by the whole cytoplasm of Avena coleoptiles. Whole cytoplasm of Asparagus shoots forms both IAA and tryptophol from IAAld, but in widely varying amounts, devoid of any suggestive stoichiometry between the products. With the acetone powder of Avena coleoptiles including the first leaf, data indicating an apparent disimitation of IAAld are obtainable only at pH 4.5. On altering the pH however, unequal amounts of the two products, namely IAA and tryptophol, are formed and hence a different ratio results. Acetone powders of wheat coleoptiles and Asparagus shoots do not yield data supporting disimitation either at pH 4.5 or 7.2. IAA formation in Avena is aerobic while tryptophol formation is seemingly independent of oxygen supply. The former activity is selectively abolished by 10?3M dithionite while the latter activity suffers a similar suppression in the presence of 10?3M manganese sulphate. Varying the IAAld concentration results in unequal amounts of the two products, revealing the dissimilar affinity of the two activities for the common substrate Saturation to a level of 30 percent with ammonium sulphate throws out most of the acid-forming activity whereas the alcohol-forming system appears mostly in the protein fraction precipitated between 30 and 40 percent saturation. The enzyme system of Avena coleoptiles oxidizing IAAld to IAA can also be easily separated by Sephadex gel filtration and its independent activity demonstrated in the total absence of tryptophol formation. Based on the heterogeneous properties of the two activities, metabolism of IAAld in Avena coleoptiles is believed to be mediated by two independent enzyme systems without the intervention of a mutase or a dismutation mechanism.  相似文献   

4.
Indole-3-acetaldehyde (IAAId) was detected in the culture supernatantof Bradyrhizobium elkanii. Deuteriumlabelled L-tryptophan (Trp)was incorporated into IAAId and indole-3-acetic acid (IAA),suggesting that B. elkanii produces IAA via IAAId from Trp.In B. elkanii cell suspension, indole-3-pyruvic acid (IPyA)was converted to IAAId, and exogenously added IAAId was rapidlyconverted to IAA. Furthermore, the activity of indolepyruvatedecarboxylase (IPDC), which catalyzes the decarboxylation ofIPyA to produce IAAId and is a key enzyme for IPyA pathway,was detected in B. elkanii cell-free extract. The IPDC activitydepended on Mg2+ and thiamine pyrophosphate, cofactors of decarboxylation.This mounting evidence strongly suggests that IAA synthesisoccurs via IPyA pathway (Trp IPyA p IAAId IAA) in B. elkanii. (Received December 11, 1995; Accepted March 4, 1996)  相似文献   

5.
6.
A concentration of 10–5 M tomatine had no effect on leakagefrom, or elongation of, wheat coleoptile segments, but consistentlyreduced IAA-enhanced extension growth by c. 50 per cent. Therewas no evidence of chemical interaction between the alkaloidand the auxin in solution, and IAA action was not affected bypre-treatment for up to 3 h with 10–5 M tomatine. Studieswith [2-14C]IAA revealed that 10–5 M tomatine did notinhibit uptake of auxin into segments. The effect of pre-treatingsegments for up to 3 h with IAA could be virtually nullifiedby 10–5 M tomatine, as could also IAA-induced changesin properties of coleoptile cell walls. Results are discussedin relation to the ability of tomatine to disrupt membrane functionand to current hypotheses implicating membranes in the primaryaction of auxin.  相似文献   

7.
Isolation of Indole-3-ethanol Oxidase from Cucumber Seedlings   总被引:5,自引:5,他引:0       下载免费PDF全文
Previous work in this laboratory has shown that cucumber (Cucumis sativus L.) seedlings contain large amounts, relative to other indolic compounds, of extractable indole-3-ethanol (IEt); tracer studies have established that IEt is metabolized to IAA. We have now succeeded in isolating an enzyme from these seedlings which catalyzes the oxidation of IEt to indole-3-acetaldehyde (IAAld). The identification of the product as IAAld was based on solvent partitioning of the free aldehyde and its bisulfite adduct and radiochromatography following incubation of enzyme with 14C-IEt. A novel, quantitative colorimetric test for IAAld was also developed utilizing the Salkowski reagent. Partial purification of the enzyme was achieved by salt gradient chromatography on Bio-Rex 70, heating the preparation to 70 C, and chromatography on Sephadex G-150. This purification procedure yielded an enzyme activity purified in excess of 3000-fold, and studies on a standardized Sephadex column suggest a molecular weight of the enzyme of approximately 105,000. The reaction was found to proceed only aerobically; and, in the absence of other electron acceptors, O2 appears to be reduced to H2O2. The enzyme has nearly maximum activity from pH 8 to 11.  相似文献   

8.
The metabolism of indolebutyric acid (IBA) in hardwood cuttingsof grapevine (Vitis vinifera cv. Perlette) and green cuttingsof olive (Olea europea cvs. Manzanillo, Kalamata and Koroneiki)was investigated. Radioactive IBA which was synthesized in ourlaboratory was used in these studies. Cuttings of both oliveand grapevine converted IBA to IAA. The identity of IAA wasconfirmed by high performance liquid chromatography and gas-liquidchromatography. The stability of IBA, its slow transport from the site of applicationat the base of the cutting and its conversion to IAA in thecutting are probably the factors which make this compound agood root promoter. 1Contribution from the Agricultural Research Organization, theVolcani Center, Bet Dagan, Israel. No. 619-E, 1982 series. (Received April 28, 1983; Accepted April 12, 1984)  相似文献   

9.
Indole-3-acetaldehyde (IAAId) was identified as a natural compound in Chinese cabbage ( Brassica campestris L. ssp. pekinensis cv. Granat) seedlings by chemical conversion to indole-3-acetaldoxime (1AOX) followed by mass spectroscopy. The lAAId reductase (EC 1.2. 3.1), an enzyme with a molecular mass of 32 kDa, was extracted, purified 5-fold and characterized. The enzymatic IAAld reduction showed a pH optimum at 6–7 and a marked preference for NADPH as cofactor The Km value for IAAld was 125 μ M , for NADPH 36 μ M . The enzyme reaction was inhibited at high NADPH concentrations (>200 μ M ) and modulated by IAA and indole-3-ethanol (IEt). Sulfhydryl reagents inhibited IEt formation, suggesting the participation of SH-groups in the reaction. Phenylacetaldehyde and benzaldehyde were competitive substrates, while acetaldehyde acted partly as an inhibitor, and partly as an activator on the IAAld reduction. IAAld reductase activity was also detected in other Brassica species. The importance of this enzyme is discussed with respect to the possibilities of IAA biosynthesis in the Brassicaceae.  相似文献   

10.
Experiments were done to determine if the spontaneous recoveryof non-growing segments of corn root (Zea mays L.) from excisioninjury is dependent on auxin. Washing the segments with 5 runindoleacetic acid (IAA) for 2 to 4 hours gave a small but significantincrease in K+ (86Rb) influx, used here as a parameter reflectingrecovery of electrogenie H+-efflux pumping. This promotive effectwas obtained only after an hour of washing, and was sustainedby 100 nm gibberellic acid (GA3). Any early responses to auxinwere obscured by an adverse reaction of the root cells to externalIAA which resulted in a transitory inhibition of H+ pumpingand K+ influx. Pretreatment of excised root tips with 10 µM IAA in thegrinding medium protected a plasmalemma-enriched fraction ofthe microsomes during isolation, giving increased uncoupler-sensitiveATPase activity. Non-growing root tissue thus shows three responses to auxin:an adverse reaction at the outer surface of the plasmalemmawhich blocks H+ pumping; a protective or restorative effecton the H+-ATPase; an increased capacity for K+ influx duringthe developmental phase of washing, which is augmented by thepresence of GA3. (Received March 31, 1986; Accepted September 8, 1986)  相似文献   

11.
Indole-3-ethanol oxidase (IEt oxidase) from Phycomyces blakesleeanus Bgff.(P.b.) is a 56 kD polypeptide as determined by gel filtration. The reaction products are indole-3-acetaldehyde (IAAld) and, possibly, H2O2. Enzyme activity (33-45% ammonium sulfate fraction) shows a broad pH optimum and simple Michaelis-Menten kinetics (Km 7 micromolar, Hill coefficient 0.95). Flavin adenine dinucleotide increases enzyme activity particularly under anaerobic conditions. Iodoacetate and HgCl2 drastically inhibit the enzyme. With IAAld, product inhibition is observed at micromolar concentrations. IAA and some other acidic substituted indoles reduce enzyme activity but only at higher concentrations.  相似文献   

12.
Coleoptile tips (about 2.5 mm in length) were excised from 3-day-olddark-adapted maize (Zea mays L.) seedlings and incubated indarkness in potassium phosphate buffer that contained 14C-L-tryptophan(Trp). Subsequent analysis by gas chromatography-mass spectrometryindicated that a significant portion of endogenous indole-3-aceticacid (IAA) had been labeled with 14C. About 8% of the IAA thatdiffused from the tissue into the medium during incubation from0.5 to 2 h was labeled, and 12% of the IAA extracted from thetissue after a 2-h incubation was labeled. On the other hand,30% of the Trp extracted from the tissue after a 2-h incubationwas 14C-Trp, which was more than those determined for IAA. Sincethe experiments were carried out under the non-steady-stateconditions in which the tissue content of 14C-Trp increasedwith time, and since the extracted Trp included the 14C-Trpin the apoplastic space, it seemed that synthesis de novo fromTrp was the major means by which IAA was produced in the coleoptiletip. The conversion of Trp to IAA was not detected in sub-apicalsegments (5–7.5 mm from the top) that were incubated similarly,an indication that synthesis of IAA occurs specifically in thetip region. When intact seedlings were irradiated with a pulseof red light 2 h before excision of tips and the applicationof 14C-Trp, the amounts of extractable and diffusible IAA werereduced by 40–60% without a change in the rate of 14Cincorporation. This result indicated that the production ofIAA from Trp is controlled by a red-light signal. (Received May 15, 1995; Accepted September 1, 1995)  相似文献   

13.
The uptake and metabolism of tritiated indolebutyric acid (IBA)and indoleacetic acid (IAA) were related to root regenerationon stem bases of apple (Malus cv "Jork") shootlets culturedin vitro. The major part of the auxins taken up from the mediumwas located in the bottom 1 mm of the stem basis, the locationwhere the roots emerge. In this part of the shoot about 4% ofthe accumulated IBA-3H remained in the free acid. Analysis onnormal phase TLC followed by reversed phase HPLC revealed thatabout 1% of the IBA-metabolites co-chromatographed with standardIAA. Incubation of shoots on medium with IAA led also to anIAAint content of about 1% of the amount absorbed. IAA was notconverted into IBA. A medium concentration of 3.2 µM IAAor IBA induced maximum root formation of 9 and 13 roots pershoot, respectively. The IAAint content in the stem base was0.5 µmol per kg FW after 5 days regardless of the auxinsource. Incubation on medium with IBA led to an IBAint concentrationof 3.4 µmol per kg FW. IBA may exert its action partlyvia conversion into IAA. However, the fact that IBA inducedmore roots than IAA suggests that IBA itself is also active,or modulates the activity of IAA. The partition of absorbed auxin over active free auxin acidand individual conjugates was not directly related to root formation.At inductive and non-inductive auxin concentrations no shiftin the ratio of free auxin acids to total absorbed auxin wasobserved during root formation. (Received March 4, 1992; Accepted May 25, 1992)  相似文献   

14.
We used coleoptile sections of Avena sativa, Sorghum bicolor,and Zea mays seedlings to examine interactions between epidermalgrowth factor (EGF) and indole-3-acetic acid (IAA) that mayaffect plant growth and development. Our 24-h bioassays employedthree controls ranging in dilution from 10–4 to 10–8g ml–1: (1) 50 mM potassium-phosphate buffer solution(pH=6.0), (2) bovine serum albumin, a nonspecific protein; and(3) IAA; plus two treatments: (1) mouse epidermal growth factor(EGF) ranging from 10–6 to 10–10gml–1, and(2) EGF + IAA. In all three species growth in IAA, EGF, andEGF + IAA treatments showed significant increases over controls;EGF+IAA showed significant increases in growth over IAA alone.As the concentrations of IAA decreased, the EGF and IAA interactionbecame more pronounced. At the highest IAA concentrations, EGF+ IAA increased growth rates ca. 2% to 39%, whereas at lowerIAA concentrations EGF + IAA promoted growth as much as 121%,thereby lowering the normal IAA physiological set point up tothree or four orders of magnitude. Our data suggest that aninteraction between EGF and IAA may allow plants to recognizeand respond to animal biochemical messengers, resulting in changesin plant cell elongation that ultimately may alter plant growthpatterns. (Received April 27, 1994; Accepted September 5, 1994)  相似文献   

15.
The concentration of endogenous IAA was higher in an apoplasticsolution (2.3xl0–7M) than in a symplastic solution (0.5x 10–7 M) obtained from segments of etiolated squash (Cucurbitamaxima Duch.) hypocotyls. Exogenously applied IAA (10–5M) increased the level of IAA in both the apoplastic and thesymplastic solution. The concentration of IAA in the apoplasticsolution increased to 75% of the concentration of exogenousIAA in 4 h, but that in the symplastic solution increased onlyto 23% of the concentration of exogenous IAA. These resultsdemonstrate that the concentration of endogenous IAA is higherin the apoplast than in the symplast of squash hypocotyls, andthey suggest that IAA exerts its physiological effects, at leastto some extent, from the outside of cells. (Received September 20, 1996; Accepted January 10, 1997)  相似文献   

16.
Koshiba T  Matsuyama H 《Plant physiology》1993,102(4):1319-1324
The formation of a product from tryptophan that had the same retention time as that of authentic indole-3-acetic acid (IAA) on high performance liquid chromatography was detected in crude extracts of maize (Zea mays) coleoptiles. The product was identified as IAA by mass spectrometry. The IAA-forming activity was co-purified with an indole-3-acetaldehyde (IAAld) oxidase activity by chromatography on hydrophobic and gel filtration (GPC-100) columns. During purification, the IAA-forming activity, rather than that of IAAld oxidase, decreased; but when hemoprotein obtained from the same tissue was added, activity recovered to the same level as that of IAAld oxidase. The promotive activity of the hemoprotein was confirmed by the result that the activity coincided with amounts of the hemoprotein after GPC-100 column chromatography. The hemoprotein was characterized and identified as a cytosolic ascorbate peroxidase (T. Koshiba [1993] Plant Cell Physiol [in press]). The reaction of the IAA-forming activity was apparently one step from tryptophan. The activity was inhibited by 2-mercaptoethanol. The optimum temperature for the IAA-forming system as well as for the IAAld oxidase was 50 to 60[deg]C, and the acitivity at 30[deg]C was one-third to one-half of that at 60[deg]C. The system did not discriminate the L- and D-enantiomers of tryptophan.  相似文献   

17.
HESTNES  A. 《Annals of botany》1979,44(5):567-573
The distribution of exogenously-supplied radioactive labelledindol-3-yl-acetic acid (IAA) and gibberellin A1 (GA1) in geotropicallystimulated roots of Norway spruce (Picea abies (L.) Karst.)has been demonstrated. Seedlings were positioned with theirroot tips in 2.1 x 10–6 M [14C]IAA or 1.3 x 10–8m 3H-GA1 for 4 and 20 h, respectively. After geotropic stimulationfor 90 min in the horizontal position the root tips were cutlongitudinally in 50 µm thick sections, using a freeze-microtome.The radioactivity in the 14C-IAA treated roots occurred in higherconcentration in the lower than in the upper halves (ratio 1.25:1). A similar trend was observed in the [3H]GA1-treated rootswhere the ratio lower: upper halves was 2.04: 1. The ratio ofradioactivity in right and left halves of vertical roots wasapproximately the same in roots supplied with [14C]IAA and [3H]GA1(1.09: 1). The supplied radioactive compounds were analysed chromatographicallyafter extraction in methanol of 6 mm apical root segments. Onlya small fraction (7–8 per cent) of the supplied [14C]IAAwas revealed unchanged in the segments. The major part of thechromatographed, labelled compound has not been identified,but on basis of its RF value it is suggested that it may beindol-3-acetyl-aspartic acid (IAAasp). The chromatographic analysis of the [3H]GA,-treated segmentsshowed that only small fractions of this gibberellin has beenconverted to other compounds. These results have been discussed and correlated with knowledgeof plant growth regulators and their participation in root geotropism. Picea abies, spruce, geotropism, gibberellin A1, indol-3-yl-acetic acid, growth regulators, redistribution in roots  相似文献   

18.
When indole-3-acetic acid (IAA) is applied to the cotyledonsof broad bean seedlings (Vicia faba L. cv Chukyo), the majormetabolites found in the roots are 3-(O-ß-glucosyl)-2-indoIone-3-acetylaspartic acid (Glc-DIA-Asp) and 3-hydroxy-2-indolone-3-acetylasparticacid (DIA-Asp). In this report, the metabolic pathway from IAAto the two dioxindole-3-acetic acid (DIA) conjugates was investigatedby using [14C]IAA, [14C]DIA, [14C]indole-3-acetylaspartic acid(IAA-Asp), and [14C]IAA-[3H]Asp. The precursor of DIA-Asp wasfound to be IAA-Asp but not DIA. Incorporation of the doublelabeled IAA-Asp into the DIA conjugates demonstrated that hydrolysisof IAA-Asp was not involved in the formation of the DIA conjugates.DIA-Asp was further metabolized to Glc-DIA-Asp in the cotyledons,while formation of Glc-DIA-Asp in the roots was very low. Glc-DIA-Aspformed in the cotyledons was transported to the roots. (Received April 21, 1986; Accepted September 10, 1986)  相似文献   

19.
Nonhcbcl, H. M. 1986. Measurement of the rates of oxindole-3-aceticacid turnover and indole-3-acetic acid oxidation in Zea maysseedlings.—J. exp. Bat. 37: 1691–1697. Oxindole-3-acetic acid is the pnncipal catabolite of indole-3-aceticacid in Zea mays seedlings. In this paper measurements of theturnover of oxindole-3-acetic acid are presented and used tocalculate the rate of indole-3-acetic acid oxidation. [3H]Oxindolc-3-acetic acid was applied to the endosperm of Zeamays seedlings and allowed to equilibrate for 24 h before thestart of the experiment. The subsequent decrease in its specificactivity was used to calculate the turnover rate. The averagehalf-life of oxindole-3-acetic acid in the shoots was foundto be 30 h while that in the kernels had an average half-lifeof 35 h. Using previously published values of the pool sizesof oxindole-3-acetic acid in shoots and kernels from seedlingsof the same age and variety, and grown under the same conditions,the rate of indole-3-acetic acid oxidation was calculated tobe I-I pmol plant–1 h–1 in the shoots and 7·1pmol plant–1 h–1 in the kernels. Key words: Oxindole-3-acetic acid, indole-3-acetic acid, turnover, Zea mays  相似文献   

20.
Elongation of coleoptile segments, having or not having a tip,excised from rice (Oryza sativa L. cv. Sasanishiki) seedlingswas promoted by exogenous ethylene above 0.3 µl l–1as well as by IAA above 0.1 µM. Ethylene production ofdecapitated segments was stimulated by IAA above 1.0µM,and this was strongly inhibited by 1.0 µM AVG. AVG inhibitedthe IAA-stimulated elongation of the decapitated segment witha 4 h lag period, and this was completely recovered by ethyleneapplied at the concentration of 0.03 µl l–1, whichhad no effect on elongation without exogenous IAA. The effectsof IAA and ethylene on elongation were additive. These factsshow that ethylene produced in response to IAA promotes ricecoleoptile elongation in concert with IAA, probably by prolongingthe possible duration of the IAA-stimulated elongation, butthat they act independently of each other. Moreover, AVG stronglyinhibited the endogenous growth of coleoptile segments withtips and this effect was nullified by the exogenous applicationof 0.03 µl l–1 ethylene. These data imply that theelongation of intact rice coleoptiles may be regulated cooperativelyby endogenous ethylene and auxin in the same manner as foundin the IAA-stimulated elongation of the decapitated coleoptilesegments. Key words: oryza sativa, Ethylene, Auxin, Coleoptile growth  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号