首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 482 毫秒
1.
Forest management often results in changes in the soil and its microbial communities. In the present study, differences in the soil bacterial community caused by forest management practices were characterized using small subunit (SSU) ribosomal RNA (rRNA) gene clone libraries. The communities were from a native hardwood forest (HWD) and two adjacent conifer plantations in a low-elevation montane, subtropical experimental forest at the Lienhuachi Experimental Forest (LHCEF) in central Taiwan. At this locality, the elevation ranges from 600 to 950 m, the mean annual precipitation is 2,200 mm, the mean annual temperature is 20.8°C, and the soil pH is 4. The conifer forests included a Cunninghamia konishii Hay (CNH) plantation of 40 years and an old growth Calocedrus formosana (Florin) Florin (CLC) forest of 80 years. A total of 476 clones were sequenced and assigned into 12 phylogenetic groups. Proteobacteria-affiliated clones (53%) predominated in the library from HWD soils. In contrast, Acidobacteria was the most abundant phylum and comprised 39% and 57% in the CLC and CNH libraries, respectively. Similarly, the most abundant OTUs in HWD soils were greatly reduced or absent in the CLC and CNH soils. Based on several diversity indices, the numbers of abundant OTUs and singletons, and rarefaction curves, the diversity of the HWD community (0.95 in evenness and Shannon diversity indices) was somewhat less than that in the CNH soils (0.97 in evenness and Shannon diversity indices). The diversity of the community in CLC soils was intermediate. The differences in diversity among the three communities may also reflect changes in abundances of a few OTUs. The CNH forest soil community may be still in a successional phase that is only partially stabilized after 40 years. Analysis of molecular variance also revealed that the bacterial community composition of HWD soils was significantly different from CLC and CNH soils (p = 0.001). These results suggest that the disturbance of forest conversion and tree species composition are important factors influencing the soil bacterial community among three forest ecosystems in the same climate.  相似文献   

2.
The subalpine forest and grassland ecosystems at Tatajia in Yushan National Park, Taiwan, at an elevation of 2,700 m, mean annual precipitation of 4,100 mm, mean annual temperature of 9.5°C, and soil pH near 3.5, represent land types whose bacterial communities have not been previously characterized. To this end, small subunit (SSU) rRNA libraries were prepared from environmental DNA, and 319 clones were sequenced and characterized. Despite differences in vegetation, Acidobacteria, Proteobacteria and Firmicutes were the most abundant phyla in soil communities from the forest and grassland. Although not significantly different, on the basis of Chao1, Shannon and other indices and rarefaction analyses, the diversity of the bacterial community of grassland appeared higher than that of the forest. The composition of the most abundant operational taxonomic units (OTUs) also differed between the grassland and forest communities. Because the grassland was formed by fire 30 years ago from forest, these results indicated a different bacterial community could form within that time. Moreover, most of the OTUs abundant in Tatajia soils had been previously detected in other studies, but in lower numbers. Therefore, the bacterial communities in Tatajia differed in relative abundance but not in types of bacteria present. However, one acidobacterial OTU abundant in Tatajia had previously been found to be abundant in soils from around the world. Thus, this OTU may represent a particularly abundant and cosmopolitan bacterial phylotype.  相似文献   

3.
The Southern Andean Yungas in Northwest Argentina constitute one of the main biodiversity hotspots in the world. Considerable changes in land use have taken place in this ecoregion, predominantly related to forest conversion to croplands, inducing losses in above-ground biodiversity and with potential impact on soil microbial communities. In this study, we used high-throughput pyrosequencing of the 16S ribosomal RNA gene to assess whether land-use change and time under agriculture affect the composition and diversity of soil bacterial communities. We selected two areas dedicated to sugarcane and soybean production, comprising both short- and long-term agricultural sites, and used the adjacent native forest soils as a reference. Land-use change altered the composition of bacterial communities, with differences between productive areas despite the similarities between both forests. At the phylum level, only Verrucomicrobia and Firmicutes changed in abundance after deforestation for sugarcane and soybean cropping, respectively. In cultivated soils, Verrucomicrobia decreased sharply (~80%), while Firmicutes were more abundant. Despite the fact that local diversity was increased in sugarcane systems and was not altered by soybean cropping, phylogenetic beta diversity declined along both chronosequences, evidencing a homogenization of soil bacterial communities over time. In spite of the detected alteration in composition and diversity, we found a core microbiome resistant to the disturbances caused by the conversion of forests to cultivated lands and few or none exclusive OTUs for each land-use type. The overall changes in the relative abundance of copiotrophic and oligotrophic taxa may have an impact in soil ecosystem functionality. However, communities with many taxa in common may also share many functional attributes, allowing to maintain at least some soil ecosystem services after forest conversion to croplands.  相似文献   

4.
It is important to estimate the true microbial diversities accurately for a comparative microbial diversity analysis among various ecological settings in ecological models. Despite drastically increasing amounts of 16S rRNA gene targeting pyrosequencing data, sampling and data interpretation for comparative analysis have not yet been standardized. For more accurate bacterial diversity analyses, the influences of soil heterogeneity and sequence resolution on bacterial diversity estimates were investigated using pyrosequencing data of oak and pine forest soils with focus on the bacterial 16SrRNA gene. Soil bacterial community sets were phylogenetically clustered into two separate groups by forest type. Rarefaction curves showed that bacterial communities sequenced from the DNA mixtures and the DNAs of the soil mixtures hadmidsize richness compared with other samples. Richness and diversity estimates were highly variable depending on the sequence read numbers. Bacterial richness estimates (ACE, Chao 1 and Jack) of the forest soils had positive linear relationships with the sequence read number. Bacterial diversity estimates (NPShannon, Shannon and the inverse Simpson) of the forest soils were also positively correlated with the sequence read number. One-way ANOVA shows that sequence resolution significantly affected the a-diversity indices (P<0.05), but the soil heterogeneity did not (P>0.05). For an unbiased evaluation, richness and diversity estimates should be calculated and compared from subsets of the same size.  相似文献   

5.
We described the bacterial diversity of walnut grove soils under organic and conventional farming. The bacterial communities of rhizospheric and nonrhizospheric soils of pecan tree (Carya illinoensis K. Koch) were compared considering two phenological stages (sprouting and ripening). Sixteen operational taxonomic units (OTUs) were identified significantly more abundant according to the plant development, only one according to the farming condition, and none according to the soil origin. The OTUs specificaly abundant according to plant development included Actinobateria (2) and Betaproteobacteria (1) related OTUs more abundant at the sprouting stage, while at the fruit ripening (FR) stage the more abundant OTUs were related to Actinobacteria (6), Alphaproteobacteria (6), and unclassified Bacteria (1). The Gaiellaceae OTU18 (Actinobacteria) was more abundant under conventional farming. Thus, our study revealed that the plant development stage was the main factor shaping the bacterial community structure, while less influence was noticed for the farming condition. The bacterial communities exhibited specific metabolic capacities, a large range of carbon sources being used at the FR stage. The identified OTUs specifically more abundant represent indicators providing useful information on soil condition, potential tools for the management of soil bacterial communities.  相似文献   

6.
基于16S rDNA测序对茶园土壤细菌群落多样性的研究   总被引:2,自引:0,他引:2  
杨广容  马燕  蒋宾  马会杰  谢瑾  吕才有  李永梅 《生态学报》2019,39(22):8452-8461
土壤细菌群落组成和多样性,对茶园土壤生态系统健康和肥力可持续性具有的重要理论意义。利用Illumina高通量测序技术测定分析16S rDNA,研究云南景迈山、布朗山和南糯山的现代茶园、古茶园(林)和森林土壤的细菌群落结构与多样性。结果表明:古茶园土壤细菌的丰度和多样性高于现代茶园及森林;研究土壤样本细菌共分属47个菌门、89个目,其中变形菌门、酸杆菌门、放线菌门、厚壁菌门与拟杆菌门是优势类群,它们在森林、现代茶园和古茶园土壤中的相对丰度累计分别达91.86%、82.48%和77.08%;伯克霍尔德氏菌目、根瘤菌目是优势菌群,其平均丰度分别达13.91%和8.17%,黄单胞菌目、红螺菌目、芽孢杆菌目、放线菌目和拟杆菌目等12个目的丰度较高,达2%以上;PCA分析表明:森林、现代茶园和古茶园土壤的细菌群落结构差异明显,除景迈山外,主要优势细菌丰度依次为:古茶园现代茶园森林,古茶园土壤细菌多样性有增强趋势。  相似文献   

7.
The growing concern about the effectiveness of reclamation strategies has motivated the evaluation of soil properties following reclamation. Recovery of belowground microbial community is important for reclamation success, however, the response of soil bacterial communities to reclamation has not been well understood. In this study, PCR-based 454 pyrosequencing was applied to compare bacterial communities in undisturbed soils with those in reclaimed soils using chronosequences ranging in time following reclamation from 1 to 20 year. Bacteria from the Proteobacteria, Chloroflexi, Actinobacteria, Acidobacteria, Planctomycetes and Bacteroidetes were abundant in all soils, while the composition of predominant phyla differed greatly across all sites. Long-term reclamation strongly affected microbial community structure and diversity. Initial effects of reclamation resulted in significant declines in bacterial diversity indices in younger reclaimed sites (1, 8-year-old) compared to the undisturbed site. However, bacterial diversity indices tended to be higher in older reclaimed sites (15, 20-year-old) as recovery time increased, and were more similar to predisturbance levels nearly 20 years after reclamation. Bacterial communities are highly responsive to soil physicochemical properties (pH, soil organic matter, Total N and P), in terms of both their diversity and community composition. Our results suggest that the response of soil microorganisms to reclamation is likely governed by soil characteristics and, indirectly, by the effects of vegetation restoration. Mixture sowing of gramineae and leguminosae herbage largely promoted soil geochemical conditions and bacterial diversity that recovered to those of undisturbed soil, representing an adequate solution for soil remediation and sustainable utilization for agriculture. These results confirm the positive impacts of reclamation and vegetation restoration on soil microbial diversity and suggest that the most important phase of microbial community recovery occurs between 15 and 20 years after reclamation.  相似文献   

8.
Bacteria and fungi are ecologically important contributors to various functioning of forest ecosystems. In this study, we examined simultaneously the bacterial and fungal distributions in response to elevation changes of a forest. By using clone library analysis from genomic DNA extracted from forest humic clay soils, the composition and diversity of bacterial and fungal communities were determined across an elevation gradient from low via medium to high, in a subtropical forest in the Mountain Lushan, China. Our results showed that soil water content and nutrient availability, specifically total carbon, differed significantly with elevation changes. Although the soil acidity did not differ significantly among the three sites, low pH (around 4) could be an important selection factor selecting for acidophilic Acidobacteria and Alphaproteobacteria, which were the most abundant bacterial clones. As the majority of the fungi recovered, both Basidiomycota and Ascomycota, and their relative abundance were most closely associated with the total carbon. Based on the Shannon–Weaver diversity index and ∫-libshuff analysis, the soil at medium elevation contained the highest diversity of bacteria compared with those at high and low elevations. However, it is difficult to predict overall fungal diversity along elevation. The extreme high soil moisture content which may lead to the formation of anaerobic microhabitats in the forest soils potentially reduces the overall bacterial and fungal diversity.  相似文献   

9.
The integrated biomass beneath the surface horizon in unsaturated soils is large and potentially important in nutrient and carbon cycling. Compared to surface soils, the ecology of these subsurface soils is weakly understood, particularly in terms of the composition of bacterial communities. We compared soil bacterial communities along two vertical transects by terminal restriction fragment length polymorphisms (TRFLPs) of PCR-amplified 16S rRNA genes to determine how surface and deep bacterial communities differ. DNA yield from soils collected from two Mediterranean grassland transects decreased exponentially from the surface to 4 m deep. Richness, as assessed by the number of peaks obtained after restriction with HhaI, MspI, RsaI, or HaeIII, and diversity, as assessed by the Shannon diversity indices, were lowest in the deepest sample. Lower diversity at depth is consistent with species-energy theory, which would predict relatively low diversity in the low organic matter horizons. Principal components analysis suggested that, in terms of HhaI and HaeIII generated TRFLPs, bacterial communities differed between depths. The most abundant amplicons cloned from the deepest sample contained sequences with restriction sites consistent with the largest peaks observed in TRFLPs generated from deep samples. These more abundant operational taxonomic units (OTUs) appeared related to Pseudomonas and Variovorax. Several OTUs were more related to each other than any previously described ribotypes. These OTUs showed similarity to bacteria from the divisions Actinobacteria and Firmicutes.  相似文献   

10.
To expand investigations and insights into the phylogenetic diversity of bacteria inhibiting seafloor biosphere, six Arctic Ocean sediments neighboring the Bering Strait were sampled and their bacterial diversities were investigated by pyrosequencing of 16S rRNA genes. A total of 157,454 trimed sequences were obtained, resulting in 9413 OTUs at the 97% sequence identity (OTU3%). This pyrosequencing allowed detection of higher than 85% of richness estimator Chao1 and Ace at the OTU3% level. Higher coverage (≥0.97) and much less of rare types (singletons, only accounting for 24.5% of all OTU3%) indicated that this pyrosequencing recovered most of bacteria inhabiting these biospheres. At the phylum level, the high relative sequence abundance (42.0% to 63.3%) showed that Proteobacteria was the dominant member at all these sampling sites. At the class level, Deltaproteobacteria, Gammaproteobacteria, and Flavobacteriia composed the majority of bacterial communities, and the relative abundance of Cyanobacteria and Bacilli varied significantly among the six samples. At the genus level, abundant OTUs related with sulfate reduction, including Desulfobulbus and Desulforhopalus, were identified. Shared and unique OTUs analysis revealed that, at the OTU3% level, 508 OTUs were shared by all the six samples, and the number of unique OTUs ranged from 98 (R02) to 195 (NB04). Principal coordinates analysis PCoA analysis revealed that samples C04 and NB04 had the similar communities and were distinct from the others. Canonical correspondence analysis (CCA) revealed that temperature was the most significant factors that correlated with the bacterial community composition. The differences in bacterial compositions and diversities indicate that the similar sediment habitats contain a large variation in microbial biodiversity.  相似文献   

11.
Forest-to-pasture conversion is known to cause global losses in plant and animal diversity, yet impacts of livestock management after such conversion on vital microbial communities in adjoining natural ecosystems remain poorly understood. We examined how pastoral land management practices impact soil microorganisms in adjacent native forest fragments, by comparing bacterial communities sampled along 21 transects bisecting pasture–forest boundaries. Our results revealed greater bacterial taxon richness in grazed pasture soils and the reduced dispersal of pasture-associated taxa into adjacent forest soils when land uses were separated by a boundary fence. Relative abundance distributions of forest-associated taxa (i.e., Proteobacteria and Nitrospirae) and a pasture-associated taxon (i.e., Firmicutes) also suggest a greater impact of pastoral land uses on forest fragment soil bacterial communities when no fence is present. Bacterial community richness and composition were most related to changes in soil physicochemical variables commonly associated with agricultural fertilization, including concentrations of Olsen P, total P, total Cd, delta 15N and the ratio of C:P and N:P. Overall, our findings demonstrate clear, and potentially detrimental effects of agricultural disturbance on bacterial communities in forest soils adjacent to pastoral land. We provide evidence that simple land management decisions, such as livestock exclusion, can mitigate the effects of agriculture on adjacent soil microbial communities.  相似文献   

12.

Background

The Brazilian Cerrado is one of the most important biodiversity reservoirs in the world. The sugarcane cultivation is expanding in this biome and necessitates the study of how it may impact the soil properties of the Cerrado. There is a lack of information especially about the impacts of different sugarcane management on the native bacterial communities of Cerrado soil. Therefore, our objective was to evaluate and compare the soil bacterial community structure of the Cerrado vegetation with two sugarcane systems.

Methods

We evaluated samples under native vegetation and the impact of the two most commonly used management strategies for sugarcane cultivation (burnt cane and green cane) on this diversity using pyrosequencing and quantitative PCR of the rrs gene (16S rRNA).

Results and Conclusions

Nineteen different phyla were identified, with Acidobacteria (≈35%), Proteobacteria (≈24%) and Actinobacteria (≈21%) being the most abundant. Many of the sequences were represented by few operational taxonomic units (OTUs, 3% of dissimilarity), which were found in all treatments. In contrast, there were very strong patterns of local selection, with many OTUs occurring only in one sample. Our results reveal a complex bacterial diversity, with a large fraction of microorganisms not yet described, reinforcing the importance of this biome. As possible sign of threat, the qPCR detected a reduction of the bacterial population in agricultural soils compared with native Cerrado soil communities. We conclude that sugarcane cultivation promoted significant structural changes in the soil bacterial community, with Firmicutes phylum and Acidobacteria classes being the groups most affected.  相似文献   

13.
Permafrost wetlands are important methane emission sources and fragile ecosystems sensitive to climate change. Presently, there remains a lack of knowledge regarding bacterial communities, especially methanotrophs in vast areas of permafrost on the Tibetan Plateau in Northwest China and the Sanjiang Plain (SJ) in Northeast China. In this study, 16S rRNA-based quantitative PCR (qPCR) and 454 pyrosequencing were used to identify bacterial communities in soils sampled from a littoral wetland of Lake Namco on the Tibetan Plateau (NMC) and an alluvial wetland on the SJ. Additionally, methanotroph-specific primers targeting particulate methane monooxygenase subunit A gene (pmoA) were used for qPCR and pyrosequencing analysis of methanotrophic community structure in NMC soils. qPCR analysis revealed the presence of 1010 16S rRNA gene copies per gram of wet soil in both wetlands, with 108 pmoA copies per gram of wet soil in NMC. The two permafrost wetlands showed similar bacterial community compositions, which differed from those reported in other cold environments. Proteobacteria, Actinobacteria , and Chloroflexi were the most abundant phyla in both wetlands, whereas Acidobacteria was prevalent in the acidic wetland SJ only. These four phyla constituted more than 80 % of total bacterial community diversity in permafrost wetland soils, and Methylobacter of type I methanotrophs was overwhelmingly dominant in NMC soils. This study is the first major bacterial sequencing effort of permafrost in the NMC and SJ wetlands, which provides fundamental data for further studies of microbial function in extreme ecosystems under climate change scenarios.  相似文献   

14.
Soil contamination with heavy metals is a widespread problem, especially prominent on grounds lying in the vicinity of mines, smelters, and other industrial facilities. Many such areas are located in Southern Poland; they are polluted mainly with Pb, Zn, Cd, or Cu, and locally also with Cr. As for now, little is known about most bacterial species thriving in such soils and even less about a core bacterial community—a set of taxa common to polluted soils. Therefore, we wanted to answer the question if such a set could be found in samples differing physicochemically and phytosociologically. To answer the question, we analyzed bacterial communities in three soil samples contaminated with Pb and Zn and two contaminated with Cr and lower levels of Pb and Zn. The communities were assessed with 16S rRNA gene fragments pyrosequencing. It was found that the samples differed significantly and Zn decreased both diversity and species richness at species and family levels, while plant species richness did not correlate with bacterial diversity. In spite of the differences between the samples, they shared many operational taxonomic units (OTUs) and it was possible to delineate the core microbiome of our sample set. The core set of OTUs comprised members of such taxa as Sphingomonas, Candidatus Solibacter, or Flexibacter showing that particular genera might be shared among sites ~40 km distant.  相似文献   

15.
Forest fires are a common natural disturbance in forested ecosystems and have a large impact on the microbial communities in forest soils. The response of soil fungal communities to forest fire is poorly documented. Here, we investigated fungal community structure and function across a 152-year boreal forest fire chronosequence using high-throughput sequencing of the internal transcribed spacer 2 (ITS2) region and a functional gene array (GeoChip). Our results demonstrate that the boreal forest soil fungal community was most diverse soon after a fire disturbance and declined over time. The differences in the fungal communities were explained by changes in the abundance of basidiomycetes and ascomycetes. Ectomycorrhizal (ECM) fungi contributed to the increase in basidiomycete abundance over time, with the operational taxonomic units (OTUs) representing the genera Cortinarius and Piloderma dominating in abundance. Hierarchical cluster analysis by using gene signal intensity revealed that the sites with different fire histories formed separate clusters, suggesting differences in the potential to maintain essential biogeochemical soil processes. The site with the greatest biological diversity had also the most diverse genes. The genes involved in organic matter degradation in the mature forest, in which ECM fungi were the most abundant, were as common in the youngest site, in which saprotrophic fungi had a relatively higher abundance. This study provides insight into the impact of fire disturbance on soil fungal community dynamics.  相似文献   

16.
宝天曼落叶阔叶林土壤细菌多样性   总被引:2,自引:0,他引:2  
土壤微生物在森林生态系统中起着重要作用。高通量测序方法的出现为进一步认识土壤微生物提供了契机。本文利用Illumina Miseq高通量测序技术对宝天曼森林土壤的细菌多样性进行了初步研究。结果显示: 在31个采样点内, 随着采样点增加, 检测出不同分类水平的土壤细菌类群也在增多, 当采样点达到31个时, 检测出的土壤细菌类群达到45门163纲319目495科785属和42,632个OTU; 31个土壤样品中所检测出的细菌类群平均有34.2门114.7纲215.2目323.7科446.6属5,924.7个OTU, 其中门、纲、目分类水平上的优势类群(所占比例)分别为变形菌门(Proteobacteria)(38.30%)、α-变形菌纲(α-Proteobacteria)(18.08%)、根瘤菌目(Rhizobiales)(10.62%)。这些初步研究结果表明在一定程度上宝天曼森林土壤有较高的细菌多样性水平, 为进一步认识森林土壤细菌多样性与植物多样性关系等奠定了基础。  相似文献   

17.
Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.  相似文献   

18.
Tropical forests are being rapidly altered by logging, and cleared for agriculture. Understanding the effects of these land use changes on soil fungi, which play vital roles in the soil ecosystem functioning and services, is a major conservation frontier. Using 454-pyrosequencing of the ITS1 region of extracted soil DNA, we compared communities of soil fungi between unlogged, once-logged, and twice-logged rainforest, and areas cleared for oil palm, in Sabah, Malaysia. Overall fungal community composition differed significantly between forest and oil palm plantation. The OTU richness and Chao 1 were higher in forest, compared to oil palm plantation. As a proportion of total reads, Basidiomycota were more abundant in forest soil, compared to oil palm plantation soil. The turnover of fungal OTUs across space, true β-diversity, was also higher in forest than oil palm plantation. Ectomycorrhizal (EcM) fungal abundance was significantly different between land uses, with highest relative abundance (out of total fungal reads) observed in unlogged forest soil, lower abundance in logged forest, and lowest in oil palm. In their entirety, these results indicate a pervasive effect of conversion to oil palm on fungal community structure. Such wholesale changes in fungal communities might impact the long-term sustainability of oil palm agriculture. Logging also has more subtle long term effects, on relative abundance of EcM fungi, which might affect tree recruitment and nutrient cycling. However, in general the logged forest retains most of the diversity and community composition of unlogged forest.  相似文献   

19.
杉木人工林土壤真菌遗传多样性   总被引:12,自引:2,他引:10  
何苑皞  周国英  王圣洁  李河 《生态学报》2014,34(10):2725-2736
为探明杉木人工林土壤真菌遗传多样性及其与环境因子的关系,采用454测序技术对土壤真菌的遗传多样性进行了分析,测定了黄丰桥林场杉木人工林土壤真菌的遗传多样性与环境因子的相关性。试验结果表明:①不同代数、林龄的杉木人工林土壤理化性质及林下植被多样性均有显著差异。第1代杉木幼林林土壤肥力较高,有机质、全N、速效K的均值分别为88.02g/kg、2.56 g/kg、84.96 mg/kg均高于第2代和第3代杉木幼林林,速效N和含水量的均值分别为22.86 mg/kg和26.28%低于其他样地。杉木幼林林下植被多样性最为丰富。②通过454测序技术分析发现第1代杉木幼林真菌Ace丰富度指数、Chao丰富度指数及群落遗传多样性指数均大于第2代杉木幼林和第3代杉木幼林。杉木人工林土壤中粪壳菌纲(Sordariomycetes)真菌为优势种群。不同栽培代数杉木人工林的真菌群落存在差异,其中块菌科(Tuberaceae)为第2代和第3代杉木林特有真菌,而不同发育阶段的杉木人工林的真菌群落差异不明显。③经RDA分析,杉木人工林土壤主要真菌群落受含水量、有机质、速效P、速效K影响较大。土壤真菌群落遗传多样性Shannon-Wiener多样性指数与林下植被多样性、土壤全N显著正相关,土壤真菌Chao指数与土壤真菌Shannon-Wiener多样性指数、土壤全N含量显著正相关。本研究表明不同栽培代数杉木人工林的真菌群落存在差异,土壤真菌群落与环境因子之间具有相关性。  相似文献   

20.
为探明种植阔叶树种和毛竹对土壤有机碳矿化与微生物群落特征的影响,本研究通过盆栽试验和室内培养法比较分析种植香樟、木荷、青冈等阔叶树种与毛竹的土壤有机碳矿化速率和累计矿化量,并结合末端限制性片段长度多态性(T-RFLP)以及荧光定量PCR技术,分析土壤细菌、真菌群落组分与数量特征.结果表明:与种植阔叶树种的土壤相比,种植...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号