首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Addition of histidyl-peptides containing the glycyl-glycyl-L-histidyl sequence stimulated the catalysis of Ni(II) hydrogen peroxide reduction. Maximum bleaching of murexide or nitrosodimethylaniline was obtained with glycyl-glycyl-L-histidine. A decrease in the bleaching rates was observed upon addition of SOD or hydroxyl radical scavengers, showing that the hydrogen peroxide/Ni(II)/glycyl-glycyl-L-histidine system generated superoxide anions as well as hydroxyl radicals. In contrast, addition of glycyl-glycyl-L-histidine inhibited the Cu(II) hydrogen peroxide reduction.

When peptides or proteins were exposed to oxygen radicals produced by Ni(II)/glycyl-glycyl-L-histidine catalysis of hydrogen peroxide reduction, the observed effects were similar to those produced by oxygen radicals generated by water radiolysis or by Fe(II) or Cu(II) mediated Fenton-reactions: hydroxylation of phenylalanine, interchange of disulfides, destruction of tryptophans and dityrosine formation.  相似文献   

2.
Oxygen radical scavengers have been shown to prevent the development of ischemic preconditioning, suggesting that reactive oxygen species (ROS) might be involved in this phenomenon. In the present study, we have investigated whether direct exposure to ROS produced by photoactivated Rose Bengal (RB) could mimic the protective effects of ischemic preconditioning.

Methods In vitro generation of ROS from photoactivated RB in a physiological buffer was first characterised by ESR spectroscopy in the presence of 2,2,6,6-tetramethyl-1-piperidone (oxoTEMP) or 5,5-dimethyl-1-pyrroline-N-oxide (DMPO). In a second part of the study, isolated rat hearts were exposed for 2.5 min to photoactivated RB. After 5 min washout, hearts underwent 30 min no-flow normothermic ischemia followed by 30 min of reperfusion.

Results and Conclusions The production of singlet oxygen (1O2) by photoactivated RB in the perfusion medium was evidenced by the ESR detection of the nitroxyl radical oxoTEMPO. Histidine completely inhibited oxoTEMPO formation. In addition, the use of DMPO has indicated that (i) superoxide anions (O·-2) are produced directly and (ii) hydroxyl radicals (HO·) are formed indirectly from the successive O·-2 dismutation and the Fenton reaction. In the perfusion experiments, myocardial post-ischemic recovery was dramatically impaired in hearts previously exposed to the ROS produced by RB photoactivation (1O2, O·-2, H2O2 and HO·) as well as when 1O2 was removed by histidine (50 mM) addition. However, functional recovery was significantly improved when hearts were exposed to photoactivated RB in presence of superoxide dismutase (105 IU/L) and catalase (106 IU/L).

Further studies are now required to determine whether the cardioprotective effects of Rose Bengal in presence of O·-2 and H2O2 scavengers are due to singlet oxygen or to other species produced by Rose Bengal degradation.  相似文献   

3.
Escherichia coli lethality by hydrogen peroxide is characterized by two modes of killing. In this paper we have found that hydroxyl radicals (OH -) generated by H2O2 and intracellular divalent iron are not involved in the induction of mode one lethality (i.e. cell killing produced by concentrations of H2O2 lower than 2.5 mM). In fact, the OH radical scavengers, thiourea, ethanol and dimethyl sulfoxide, and the iron chelator, desferrioxarnine, did not affect the survival of cells exposed to 2.5mM H2O2. In addition cell vulnerability to the same H2O2 concentration was independent on the intracellular iron content. In contrast, mode two lethality (i.e. cell killing generated by concentrations of H2O2 higher than 10mM) was markedly reduced by OH radical scavengers and desferrioxamine and was augmented by increasing the intracellular iron content.

It is concluded that OH. are required for mode two killing of E. coli by hydrogen peroxide.  相似文献   

4.
We have investigated the influence of the free radical initiator characteristics on red blood cell lipid peroxidation, membrane protein modification, and haemoglobin oxidation. 2,2'-Azobis(2-amidinopropane) (AAPH) and 4,4'-azobis(4-cyanovaleric acid) (ACV) were employed as free radical sources. Both azo-compounds are water-soluble, although ACV presents a lowed hydrophilicity, as evaluated from octanol/water partition constants. At physiological pH, they are a di-cation and a di-anion, respectively.

AAPH and ACV readily oxidise purified oxyhemoglobin in a very efficient free radical-mediated process, particularly for ACV-derived radicals, where nearly one heme moiety was modified per radical introduced into the system, suggesting that negatively charged radicals react preferentially at the heme group. The radicals derived from both azo-compounds lead to different oxidation products. Methemoglobin, hemichromes and choleglobin were produced in AAPH-promoted hemoglobin oxidation, while ACV-derived radicals predominantly form hemichromes, with very low production of choleglobin.

Red cell damage was evaluated at the level of hemoglobin and membrane constituents modification, and was expressed in terms of free radical doses. Before the onset of the lytic process, ACV leads to more lipid peroxidation than AAPH, and induces a moderate oxidation of intracellular Hb. This intracellular oxidation is markedly increased if ACV hydrophilicity is decreased by lowering the pH. On the other hand, AAPH-derived radicals are considerable more efficient in promoting protein band 3 modification and cell lysis, without significant intracellular hemoglobin oxidation. These results show that the lytic process is not triggered by lipid peroxidation or hemichrome formation, and suggest that membrane protein modification is the relevant factor leading to red blood cell lysis.  相似文献   

5.
Using ESR with 5,5-dimethyl-l-pyrroline N-oxide (DMPO) as a spin-trapping reagent, we measured the levels of free radical species generated from living cells of Chlorella vulgaris var. vulgails (IAM C-534). To investigate the production of free radicals in the living Chlorella vulgaris cells, the influence of DMPO toward the intact cells of the Chlorella vulgaris using the O2 evolution rate was first studied as a guide. Since the 02 evolution rate was not changed by DMPO, it was judged that DMPO has no toxicity toward the intact cells of Chlorella vulgaris.

Only hydroxyl radicals (-OH) were detected as the DMPO-OH adduct in the suspension of intact cells of Chlorella vulgaris irradiated with visible light. Moreover, since production of -OH was inhibited by some hydroxyl radical scavengers such as KI and ethanol, production of -OH was proved to be due to hydroxyl radicals. It was also clear that the intensity of OH increased with increasing irradiation intensity of visible light. Therefore, it was suggested that -OH might be one of the photoinhibition factors of the intact Chlorella vulgaris cells in severe light conditions.  相似文献   

6.
Glucose may oxidise under physiological conditions and lead to the production of protein reactive ketoaldehydes, hydrogen peroxide and highly reactive oxidants. Glucose is thus able to modify proteins by the attachment of its oxidation derived aldehydes, leading to the development of novel protein fluoro-phores, as well as fragment protein via free radical mechanisms.

The fragmentation of protein by glucose is inhibitable by metal chelators such as diethylenetriamine pentaacetic acid (DETAPAC) and free radical scavengers such as benzoic acid, and sorbitol. The enzymic antioxidant, catalase, also inhibits protein fragmentation.

Protein glycation and protein oxidation are inextricably linked. Indeed, using boronate affinity chromatography to separate glycated from non-glycated material, we demonstrate that proteins which arc glycated exhibit an enhanced tryptophan oxidation. Our observation that both glycation and oxidation occur simultaneously further supports the hypothesis that tissue damage associated with diabetes and ageing has an oxidative origin.  相似文献   

7.
Silybin has been complexed in 1:1 ratio with phosphatidyl choline to give IdB 1016 in order to increase its bioavailability. The antioxidant and free radical scavenger action of this new form of silybin has beenn evaluated.

One hour after the intragastric administration to rats of IdB 1016 (1.5g/kg b.wt.) the concentration of silybin in the liver microsomes was estimated to be around 2.5°g/mg protein corresponding to a final concentration in the microsomal suspension used of about 10°M. At these levels IdB decreased by about 40% the lipid peroxidation induced in microsomes by NADPH, CC14 and cumene hydroperoxide, probably by acting on lipid derived radicals. Spin trapping experiments showed, in fact, that the complexed form of silybin was able to scavenge lipid dienyl radicals generated in the microsomal membranes. In addition, IdB 1016 was also found to interact with free radical intermediates produced during the metabolic activation of carbon tetrachloride and methylhydrazine.

These effects indicate IdB 1016 as a potentially protective agent against free radical-mediated toxic damage.  相似文献   

8.
Prior to comparative studies on the reactivity of various copper complexes with respect to OH radicals, the influence of free Cu2+ ions on the superoxide-independent generation of OH radicals through Fenton assays and water gamma radiolysis has been tested in the present work.

Cu2+ ions have been shown to behave in a distinct manner towards each of these two production systems. As was logically expected from the noninvolvement of copper in OH- radical production through gamma radioiysis, no influence of Cu2+ ions has been observed on the amount of radicals detected in that case. In contrast, Cu2+ ions do influence OH- radical generation through iron-driven Fenton reactions, but differently depending on copper concentration.

When present in high concentrations, Cu2+ ions significantly contribute to OH- radical production, which confirms previous observations on the reactivity of these in the presence of hydrogen peroxide. At lower levels corresponding to copper/iron ratios below unity on the contrary, Cu2+ ions behave as inhibitors of the OH- production in a pH-dependent manner over the 1-6 range investigated: the lower the pH, the greater the inhibition.

The possible origin of this previously unreported inhibitory effect is discussed.  相似文献   

9.
This paper deals with the reactivity of the nitro radical anion electrochemically generated from nitrofurantoin with glutathione. Cyclic voltammetry (CV) and controlled potential electrolysis were used to generate the nitro radical anion in situ and in bulk solution, respectively and cyclic voltammetry, UV-Visible and EPR spectroscopy were used to characterize the electrochemically formed radical and to study its interaction with GSH.

By cyclic voltammetry on a hanging mercury drop electrode, the formation of the nitro radical anion was possible in mixed media (0.015M aqueous citrate/DMF, 40/60, pH 9) and in aprotic media. A second order decay of the radicals was determined, with a k2 value of 201 and 111M-1 s-1, respectively. Controlled potential electrolysis generated the radical and its detection by cyclic voltammetry, UV-Visible and EPR spectroscopy was possible. When glutathione (GSH) was added to the solution, an unambiguous decay in the signals corresponding to a nitro radical anion were observed and using a spin trapping technique, a thiyl radical was detected.

Electrochemical and spectroscopic data indicated that it is possible to generate the nitro radical anion from nitrofurantoin in solution and that GSH scavenged this reactive species, in contrast with other authors, which previously reported no interaction between them.  相似文献   

10.
Objective: Free radicals contribute to the tissue damage caused by ischaemia-reperfusion. The aim of the present study was to investigate whether preoperative antioxidant therapy (allopurinol) affects free radical levels in cerebral venous blood in connection with surgery for carotid artery stenosis.

Materials and methods: Twenty-five patients were randomised into the study. Thirteen were controls and 12 were pretreated with allopurinol the day before surgery. Before, during and after surgery, blood samples were drawn from the ipsilateral jugular vein. Radical levels were measured using the spin trap technique ex vivo using OXANOH as the spin trap. Multivariate statistics were used with Principal Component Analysis and Partial Least Square regression analysis.

Results: Radical levels increased with diabetes, high leukocyte count, high creatinine and a high degree of contralateral stenosis. Radical levels decreased with high age, blood pressure, collateral circulation as well as operation for left-side carotid artery stenosis. After pretreatment with allopurinol, several of the relationships noted in the control group were eliminated, i.e. leukocyte count, side of operation, Betapred pretreatment and collateral circulation.

Conclusions: Radical levels can be determined in connection with surgery for carotid artery stenosis using an ex vivo spin trap method. With preoperative antioxidant therapy the relationships between enhanced radical levels and clinical data, as seen in control subjects, disappeared. This might indicate a beneficial effect of preoperative pretreatment with antioxidants.  相似文献   

11.
Electron paramagnetic resonance spectroscopy (EPR) was used to study free radicals and transition metal complexes in liver tissue taken from patients with liver disease. Samples were frozen to 77K directly following biopsy to prevent deterioration. Our major aim was to compare signals from patients suffering from alcohol abuse with those from patients having liver damage not induced by alcohol. Samples were obtained from 19 chronic alcohol abusers and 7 non-alcoholic liver disease patients. Of the 19 alcoholic patients, 18 had an increased fat content, 6 had Mallory's hyaline, 12 had an acute inflammatory response, 9 had increased stainable iron and 4 had evidence of fibrosis. A signal derived from free radicals with a spectroscopic splitting factor of g = 2.0045 was found in all samples. This signal in the alcoholic patients had a mean amplitude of 2.96 cm (± 1.42 SD), and in patients with non-alcoholic liver disease 2.12cm (±0.82) (p = 0.10NS), measured under identical instrument settings.

The molar proportion of diene conjugated linoleic acid (DCLA), a free radical marker, in the sera of alcoholic patients was 2.68% (±1.93), but did not correlate with the free radical signals obtained by EPR spectroscopy. Also, there was no correlation between the free radical derived EPR signal and fat content, Mallory's hyaline, inflammatory infiltrate, iron or fibrosis in the liver biopsy specimens. Similarly the concentrations of aspartate transaminase, albumin, and gamma-glutamyl transferase in serum samples showed no correlations with free radical concentrations.

The absence of any significant increase in the stable free radical signal in the presence of alcohol induced liver disease and the lack of correlation between the signal and either histological or serological evidence of liver damage, suggests that alcohol derived free radicals may not be involved in the pathogenesis of alcoholic liver disease.

Unusually large sextet features characteristic of MN(II) complexes were observed for all liver samples. Such signals are very rare in human tissue, showing that there is a strong accumulation of Mn (II) in the liver. However, no systematic trends were observed. In some samples signals characteristic of iron-sulphur cluster units were detected, but again no correlations could be discovered.  相似文献   

12.
Nitrosoderivatives of the nitrodiphenyl ether herbicides (nitrofen, bifenox) have been studied. UV irradiation in different organic solvents gives degradation products. In buffered aqueous media, in the presence of chloroplasts and spin traps such as DMPO, hydroxy and peroxy radicals have been characterized.

In organic media and in the presence of spin traps such as DMPO, PBN, 4-POBN, solvent radicals (CHCIl2, CCI3, CH2O) have been formed.

Nitro-derivatives have been studied under UV irradiation and in the presence of tetramethylethylene (TME), alkenylhydroxylamines are formed which autoxidize in nitroxide radicals. The formation of the stable nitroxide radical occurs in the dark process after continuous irradiation. The intensity of the signal decreases strongly when a new irradiation is applied. Radical species, with analogous ESR spectral characteristics are formed on reaction with nitrodiphenyl ethers and fatty acids.

The reactivity of these herbicides in micellar media (SDS, Brij 35, and CTAB) has been investigated. The kinetics of formation of the ESR signal corresponding to the photoreduction of the nitrodiphenyl ether in the presence of TME behave differently in a micellar environment as compared to solution. The intensity of the formation of the nitroxide increases under irradiation and decreases in the dark; the rotational correlation time tc has been determined for each type of micelle.

Synthetic nitrosodiphenyl ether made by the reduction of nitrodiphenyl ether using hydrogen gas and PtO2 as a catalyst gives the corresponding amine, which is oxidized with rneta-chloroperbenzoic acid (m.CPBA). The nitrosodiphenyl ether in the presence of soja azolectin liposorne containing a fluorescent probe has been analysed. When this synthetic nitrosodiphenyl ether is added to a medium containing soja azolectin liposomes and a carboxyfluorescein, fluorescent probe placed inside the liposornes, a rapid increase in the fluorescence of the medium is observed. The nitrosodiphenyl ether induce a break in the liposorne membrane.  相似文献   

13.
Luminol chemiluminescence was used to evaluate the scavenging of superoxide, hydroxyl and alkoxy radicals by four antioxidants: dipyridamole, diethyldithiocarbamic acid, (+)catechin, and ascorbic acid. Different concentrations of these compounds were compared with well-known oxygen radical scavengers in their capacity to inhibit the chemiluminescence produced in the reaction between luminol and specific oxygen radicals. Hydroxyl radicals were generated using the Fenton reaction and these produced chemiluminescence which was inhibited by diethyldithiocarbamate. Alkoxy radicals were generated using the reaction of tert-butyl hydroperoxide and ferrous ion and produced chemiluminescence which was inhibited equally by all of the compounds tested. For the determination of superoxide scavengers we describe a new, simple, economic, and rapid chemiluminescence method consisting of the reaction between luminol and horseradish peroxidase (HRP). With this method it was found that 40 nmol/l dipyridamole, 0.18 μmol/l ascorbic acid, 0.23 μmol/l (+)catechin, and 3 μmol/l diethyldithiocarbamic acid are equivalent to 3.9 ng/ml superoxide dismutase (specific scavenger of superoxide) in causing the same degree of chemiluminescence inhibition. These results not only indicated that the antioxidative properties of these compounds showed different degrees of effectiveness against a particular radical but also that they may exert their action against more than one radical.  相似文献   

14.
One of the common explanations for oxidative stress in the physiological milieu is based on the Fenton reaction, i.e. the assumption that radical chain reactions are initiated by metal-catalyzed electron transfer to hydrogen peroxide yielding hydroxyl radicals. On the other hand — especially in the context of so-called “iron switches” — it is postulated that cellular signaling pathways originate from the interaction of reduced iron with hydrogen peroxide.

Using fluorescence detection and EPR for identification of radical intermediates, we determined the rate of iron complexation by physiological buffer together with the reaction rate of concomitant hydroxylations of aromatic compounds under aerobic and anaerobic conditions. With the obtained overall reaction rate of 1,700 M-1s-1 for the buffer-dependent reactions and the known rates for Fenton reactions, we derive estimates for the relative reaction probabilities of both processes.

As a consequence we suggest that under in vivo conditions initiation of chain reactions by hydroxyl radicals generated by the Fenton reaction is of minor importance and hence metal-dependent oxidative stress must be rather independent of the so-called “peroxide tone”. Furthermore, it is proposed that — in the low (subtoxic) concentration range — hydroxylated compounds derived from reactions of “non-free” (crypto) OH radicals are better candidates for iron-dependent sensing of redox-states and for explaining the origin of cellular signals than the generation of “free” hydroxyl radicals.  相似文献   

15.
Captopril (CpSH), an angiotensin converting enzyme (ACE) inhibitor, is reported to provide protection against free-radical mediated damage. The purpose of this study was to investigate, by means of pulse radiolysis technique, the behaviour of CpSH towards radiation-induced radicals in the absence and in the presence of copper(II) ions, which can play a relevant role in the metal catalysed generation of reactive oxygen species. The results indicate that the -SH group is crucial in determining the radical scavenging action of CpSH and the nature of the resulting CpSH transient products in the absence or in the presence of oxygen.

In the presence of Cu(II), the -SH group is still involved in the biological action of the molecule participating both in the one-electron reduction of Cu(II) with formation of CpSSCp, and in Cu(I) chelation. This conclusion is supported by the Raman spectroscopic data which allow to identify the CpSH sites involved in the copper complex at different pH.

These results suggest that CpSH may potentially inhibit oxidative damage both through free radical scavenging and metal chelation. Considering the low CpSH concentration in vivo, the metal chelation mechanism, more than the direct radical scavenging, could play the major role in moderating the toxicological effects of free radicals.  相似文献   

16.
Like the oxidation in a flame, the oxidation in the atmosphere is mediated by free radicals. Unlike a flame, however, atmospheric oxidation needs an external source of energy: the sun light. In fact the most important radical acting in the lower atmosphere, the hydroxyl radical, OH, is produced following the UV-photolysis of ozone, O,which yields an excited oxygen atom, O'D:

OH reacts with most atmospheric trace gases, in many cases as the first and rate determining step in the reaction chain leading to oxidation. In this way a host of various other radicals (e.g. peroxy radicals), most of them very short lived, are generated. Usually these oxidation reactions form chains which regenerate OH, thus maintaining OH at a relatively high concentration level on the order of 106cm∼3 during the day. The reactions which control the OH concentration will be discussed in detail. During the night radical formation is greatly diminished. It proceeds, for example, through the reaction of defines with O, and. in dry air, through reaction of defines and aldehydes with the nitrate radical, NO,.  相似文献   

17.
In the gingival crevicular fluid (GCF) of control and chronic adult periodontitis (CAP) patients there is a spontaneous release of O2- radicals from polymorphonuclear leukocytes (PMN). The addition of the exogenous stimuli phorbol myrystate acetate (PMA) decreased the O2- formation in control GCF, while in CAP patients produced a marked enhancement of O2- generation.

The circulating PMN of control subjects did not show a spontaneous O2- formation, differently from CAP patients. On the contrary, a similar O2- production was measured when the circulating PMN were stimulated with PMA.

Moreover, the antioxidant activity measured in 10μl of cell free gingival supernatant (GS) of control and CAP patients had the same values by inhibiting 12.6% and 18.9% respectively of the O2- formation supported by a xanthine/xanthine oxidase system.

Probably, the protective or destructive effect of PMN in GCF of CAP patients depends on the variations of the rate of O2- formation in respect to the intrinsic antioxidant property of GS.  相似文献   

18.
The reactions of cerium(IV) and the hydroxyl radical [generated from iron(ii)/H2O2] with bovine serum albumin (BSA) have been investigated by EPR spin trapping. With the former reagent a protein-derived thiyl radical is selectively generated; this has been characterized via the anisotropic EPR spectra observed on reaction of this radical with the spin trap DMPO. Blocking of the thiol group results in the loss of this species and the detection of a peroxyl radical, believed to be formed by reaction of oxygen with initially-generated, but undetected, carbon-centred radicals from aromatic amino acids. Experiments with a second spin trap (DBNBS) confirm the formation of these carbon-centred species and suggest that damage can be transferred from the thiol group to carbon sites in the protein. A similar transfer pathway can be observed when hydroxyl radicals react with BSA.

Further experiments demonstrate that the reverse process can also occur: when hydroxyl radicals react with BSA, the thiol group appears to act as a radical sink and protects the protein from denaturation and fragmentation through the transfer of damage from a carbon site to the thiol group. Thiol-blocked BSA is shown to be more susceptible to damage than the native protein in both direct EPR experiments and enzyme digestion studies. Oxygen has a similar effect, with more rapid fragmentation detected in its presence than its absence.  相似文献   

19.
We have studied the effects of oxygen radical scavengers on the inactivation of ss ΦX174 DNA by the semi-quinone free radical of the antitumor agent etoposide (VP 16-213), which was generated from the ortho-quinone of etoposide at pH ≥ 7.4. A semi-quinone free radical of etoposide is thought to play a role in the inactivation of ss ΦDX174 DNA by its precursors 3',4'-ortho-quinone and 3',4'-ortho-dihydroxy-derivative. The possible role of oxygen radicals formed secondary to semi-quinone formation in the inactivation of DNA by the semi-quinone free radical was investigated using the hydroxyl radical scavengers t-butanol and DMSO. the spin trap DMPO, the enzymes catalase and superoxide dismutase, the iron chelator EDTA and potassium superoxide. Hydroxyl radicals seem not important in the process of inactivation of DNA by the semi-quinone free radical, since t-butanol, DMSO, catalase and EDTA had no inhibitory effect on DNA inactivation. The spin trapping agent DMPO strongly inhibited DNA inactivation and semi-quinone formation from the ortho-quinone of etoposide at pH ≥ 7.4 with the concomitant formation of a DMPO-OH adduct. This adduct probably did not arise from OH· trapping but from trapping of O2-. DMSO increased both the semi-quinone formation from and the DNA inactivation by the ortho-quinone of etoposide at pH ≥ 7.4. Potassium superoxide also stimulated ΦDX174 DNA inactivation by the ortho-quinone at pH ≤ 7. From the present study, it is also concluded that superoxide anion radicals probably play an important role in the formation of the semi-quinone free radical from the orthoquinone of etoposide, thus indirectly influencing DNA inactivation.  相似文献   

20.
1) Rat hepatocytes, stored in a simple salts medium for 24 h at 4°C, retain more than 80% of their capacity to synthesize glucose from lactate.

2) The combination of NH4Cl with oleate is cytotoxic during storage and during subsequent incubation of hepatocytes from 48 h starved rats, but not to hepatocytes from fed rats.

3) Protection against cytotoxicity is afforded by albumin and by a number of other compounds, notably polyols and glycerol.

4) These compounds appear to exert their effects by scavenging free radicals and, in the case of polyols and glycerol, by supplying reducing equivalents to maintain the redox state of the cell in the face of increased flux through glutathione peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号