首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A modified version of quantitating repetitive sequences in genomic DNA was developed to allow comparisons for numerous individual genomes and simultaneous analysis of several sequences in each DNA specimen. The relative genomic content of ribosomal repeats (rDNA) was estimated for 75 individuals, including 33 healthy donors (HD) and 42 schizophrenic patients (SP). The rDNA copy number in HD was 427 ± 18 (mean ± SE) per diploid nucleus, ranging 250–600. In SP, the rDNA copy number was 494 ± 15 and ranged 280–670, being significantly higher than in HD. The two samples did not differ in contents of sequences hybridizing with probes directed to a subfraction of human satellite III or to the histone genes. Cytogenetic analysis (silver staining of metaphase chromosomes) showed that the content of active rRNA genes in nucleolus organizer regions is higher in SP compared with HD. The possible causes of the elevated rRNA gene dosage in SP were considered. The method employed was proposed for studying the polymorphism for genomic content of various repeats in higher organisms, including humans.  相似文献   

2.
The rRNA genes in the somatic macronucleus of Tetrahymena thermophila are normally on 21 kb linear palindromic molecules (rDNA). We examined the effect on rRNA gene dosage of transforming T.thermophila macronuclei with plasmid constructs containing a pair of tandemly repeated rDNA replication origin regions unlinked to the rRNA gene. A significant proportion of the plasmid sequences were maintained as high copy circular molecules, eventually consisting solely of tandem arrays of origin regions. As reported previously for cells transformed by a construct in which the same tandem rDNA origins were linked to the rRNA gene [Yu, G.-L. and Blackburn, E. H. (1990) Mol. Cell. Biol., 10, 2070-2080], origin sequences recombined to form linear molecules bearing several tandem repeats of the origin region, as well as rRNA genes. The total number of rDNA origin sequences eventually exceeded rRNA gene copies by approximately 20- to 40-fold and the number of circular replicons carrying only rDNA origin sequences exceeded rRNA gene copies by 2- to 3-fold. However, the rRNA gene dosage was unchanged. Hence, simply monitoring the total number of rDNA origin regions is not sufficient to regulate rRNA gene copy number.  相似文献   

3.
In the house cricket,Acheta domesticus, the 110 genes per haploid genome encoding 18S and 28S rRNA are contained within rDNA repeats which are amplified during oogenesis. The 5S rRNA coding sequences of this cricket are found in two sizes of 5S DNA repeating units (measuring 2.1 and 3.0 kb). The 3.0 kb repeats account for more than 90% of the totalAcheta 5S DNA. We have determined the number of cricket 5S rRNA genes by RNA-DNA hybridization analysis: 310 5S DNA repeats/haploid genome clearly approximates the number of 18S and 28S rRNA genes. Because of the relatively low copy number of 5S rRNA genes the possibility of 5S DNA amplification in oocytes ofA. domesticus was also examined. Although amplification of rDNA is readily detectable, amplification of 5S DNA is not observed in oocytes ofA. domesticus. Unlike the genes coding for 18S and 28S rRNA which are localized at a single chromosomal site in the genome ofA. domesticus, the 5S rRNA genes occupy numerous sites distributed along the length of most chromosomes.  相似文献   

4.
The four ribosomal RNA genes (rDNA units) of the rodent malaria parasite, Plasmodium berghei, were identified and mapped by restriction enzyme analysis and Southern blot hybridization of genomic DNA. Although the four genes share common characteristics, they appear to be internally different from each other in expanse and sequence. One HindIII site near the 3' end of the coding region for the large rRNA is the only restriction site which we have detected that is conserved in all of the genes. The distance between the conserved HindIII site and the coding region for the small rRNA is at least 1-2 kilobases longer in two of the rDNA units than in a third unit. None of the four rDNA units were linked by restriction mapping where about 150 kilobases of the genome were accounted for. The copy number of two of the rDNA units was determined to be approximately 1 per haploid genome by quantitative analysis of cloned (plasmid) DNA versus genomic DNA digests on Southern blots. The other two genes also appear to be present in 1 copy. Restriction analysis confirms both the low copy number and that these genes are not in an easily recognizable tandem array. The low number of rDNA units requires that new copies of the genome produced during intraerythrocytic growth be active in RNA synthesis soon after their replication.  相似文献   

5.
In higher eukaryotes, the 5S ribosomal DNA (5S rDNA) is organized in tandem arrays with repeat units composed of a coding region and a non-transcribed spacer sequence (NTS). These tandem arrays can be found on either one or more chromosome pairs. 5S rDNA copies from the tilapia fish, Oreochromis niloticus, were cloned and the nucleotide sequences of the coding region and of the non-transcribed spacer were determined. Moreover, the genomic organization of the 5S rDNA tandem repeats was investigated by fluorescence IN SITU hybridization (FISH) and Southern blot hybridization. Two 5S rDNA classes, one consisting of 1.4-kb repeats and another one with 0.5-kb repeats were identified and designated 5S rDNA type I and type II, respectively. An inverted 5S rRNA gene and a 5S rRNA putative pseudogene were also identified inside the tandem repeats of 5S rDNA type I. FISH permitted the visualization of the 5S rRNA genes at three chromosome loci, one of them consisting of arrays of the 5S rDNA type I, and the two others corresponding to arrays of the 5S rDNA type II. The two classes of the 5S rDNA, the presence of pseudogenes, and the inverted genes observed in the O. niloticus genome might be a consequence of the intense dynamics of the evolution of these tandem repeat elements.  相似文献   

6.
J M Guay  A Huot  S Gagnon  A Tremblay  R C Levesque 《Gene》1992,114(2):165-171
The ribosomal DNA (rDNA encoding rRNA) of the obligately intracellular protozoan parasite, Toxoplasma gondii, was identified, cloned, physically mapped, its copy number determined, and the 5S gene sequenced. Using total RNA as a probe, a collection of recombinant lambda phages containing copies of rDNA were isolated from a lambda 2001 tachyzoite genomic library. Northern gel hybridization confirmed specific homology of the 7.5-kb rDNA unit, subcloned into pTZ18R, to T. gondii rRNA. The mapped rDNA found in pTOX1 contained small ribosomal subunit (SS; 18S)- and large ribosomal subunit (LS; 26S)-encoding genes localized using intragenic heterologous probes from the conserved sequences of the SS (18S) and LS (28S) Xenopus laevis genes. the physical mapping data, together with partial digestion experiments and Southern gel hybridization, confirmed a 7.5-kb rDNA unit arranged in a simple head-to-tail fashion that is tandemly repeated. We estimated the rDNA repeat copy number in T. gondii to be 110 copies per haploid tachyzoite genome. Parts of the SS gene and the complete 5S gene were sequenced. The 5S gene was found to be within the rDNA locus, a rare occurrence found only in some fungi and protozoa. Secondary-structure analysis revealed an organization remarkably similar to the 5S RNA of eukaryotes.  相似文献   

7.
8.
Nkongolo KK  Kim NS  Michael P 《Hereditas》2004,140(1):70-78
Sequences homologous to the pKFJ660 probe, a fragment of DNA derived from the rice blast fungus (Magnaporthe grisea) carrying TC/AG repeat microsatellite sequences and 30 bp direct repeats were identified in the genome of Picea (spruce) and Pinus (pine) species by fluorescence in situ hybridization (FISH) and slot blot analyses. Slot blot analysis using the pKFJ660 probe revealed hybridization signals with genomic DNAs from various pine and spruce species. Further analyses indicated that the copy number of the (AG)30 motif was higher than 5 x 10(4) per plant genome for all plant samples tested, but the copy number of the sequences homologous to the whole pKFJ660 probe varies considerably among the 25 plant species tested. In situ hybridization of metaphase chromosomes from Pinus resinosa, P. banksiana and P. strobus showed the presence of sequences homologous to this probe on several chromosomes in a dispersed pattern. Major signals were observed on a few chromosomes indicating that some of these sequences are clustered in specific genomic locations. The locations of these repeats were compared to those of 18S-5.8S-26S rDNA in pine species. Chromosomal distribution of 18S-5.8S-26S rDNA varied among the three pine species (P. resinosa, P. banksiana and P. strobus) studied. Ribosomal DNA (rDNA) sites were identified on 14 to 20 chromosomes in these pine species.  相似文献   

9.
Tetrahymena thermophila contains in the macronucleus multiple copies of extrachromosomal palindromic genes coding for rRNA (rDNA) which are generated from a single chromosomal copy during development. In this study we isolated the chromosomal copy of rDNA and determined the structure and developmental fate of the sequence surrounding its 5' junction. The result indicates that specific chromosomal breakage occurs at or near the 5' junction of rDNA during development. The breakage event is associated with DNA elimination and telomeric sequence addition. Similar results were also found previously for the 3' junction of this gene. These results could explain how the extrachromosomal rDNA is first generated. Near both junctions of the chromosomal rDNA, a pair of 20-nucleotide repeats was found. These sequences might serve as signals for site-specific breakage. In addition, we found a pair of perfect inverted repeats at the 5' junction of this gene. The repeats are 42 nucleotides long and are separated by 28 nucleotides. The existence of this structure provides a simple explanation for the formation of the palindromic rDNA.  相似文献   

10.
We assessed the utility of fluorescent in situ hybridization (FISH) in the screening of clone libraries of (meta)genomic or environmental DNA for the presence and expression of bacterial ribosomal RNA (rRNA) genes. To establish proof-of-principle, we constructed a fosmid-based library in Escherichia coli of large-sized genomic DNA fragments of the mycophagous soil bacterium Collimonas fungivorans, and hybridized 768 library clones with the Collimonas-specific fluorescent probe CTE998-1015. Critical to the success of this approach (which we refer to as large-insert library FISH or LIL-FISH) was the ability to induce fosmid copy number, the exponential growth status of library clones in the FISH assay and the use of a simple pooling strategy to reduce the number of hybridizations. Twelve out of 768 E. coli clones were suspected to harbour and express Collimonas 16S rRNA genes based on their hybridization to CTE998-1015. This was confirmed by the finding that all 12 clones were also identified in an independent polymerase chain reaction-based screening of the same 768 clones using a primer set for the specific detection of Collimonas 16S ribosomal DNA (rDNA). Fosmids isolated from these clones were grouped by restriction analysis into two distinct contigs, confirming that C. fungivorans harbours at least two 16S rRNA genes. For one contig, representing 1-2% of the genome, the nucleotide sequence was determined, providing us with a narrow but informative view of Collimonas genome structure and content.  相似文献   

11.
The replication fork barrier site (RFB) is an approximately 100-bp DNA sequence located near the 3' end of the rRNA genes in the yeast Saccharomyces cerevisiae. The gene FOB1 is required for this RFB activity. FOB1 is also necessary for recombination in the ribosomal DNA (rDNA), including increase and decrease of rDNA repeat copy number, production of extrachromosomal rDNA circles, and possibly homogenization of the repeats. Despite the central role that Foblp plays in both replication fork blocking and rDNA recombination, the molecular mechanism by which Fob1p mediates these activities has not been determined. Here, I show by using chromatin immunoprecipitation, gel shift, footprinting, and atomic force microscopy assays that Fob1p directly binds to the RFB. Fob1p binds to two separated sequences in the RFB. A predicted zinc finger motif in Fob1p was shown to be essential for the RFB binding, replication fork blocking, and rDNA recombination activities. The RFB seems to wrap around Fob1p, and this wrapping structure may be important for function in the rDNA repeats.  相似文献   

12.
The organization of the ribosomal ribonucleic acid (rRNA) genes (rDNA) of Bacillus subtilis was examined by cleaving the genome with several restriction endonucleases. The rDNA sequences were assayed by hybridization with purified radioactive rRNA's. Our interpretation of the resulting electrophoretic patterns is strengthened by an analysis of a fragment of B. subtilis rDNA cloned in Escherichia coli. The results indicated that there are eight rRNA operons in B. subtilis. Each operon contains one copy of the sequences coding for 16S, 23S, and 5S rRNA. The sequences coding for 5S rRNA were shown to be more closely linked to the 23S rRNA genes than to the 16S rRNA genes.  相似文献   

13.
Cucurbitaceae are characterized by a high copy number for nuclear ribosomal RNA genes. We have investigated the genomic ribosomal DNA (rDNA) of four closely related species of this family with respect to structure, length heterogeneity, and evolution. InCucumis melo (melon) there are two main length variants of rDNA repeats with 10.7 and 10.55kb.Cucumis sativus (cucumber) shows at least three repeat types with 11.5, 10.5, and 10.2kb.Cucurbita pepo (zucchini) has two different repeat types with 10.0 and 9.3kb. There are also two different repeat types inCucurbita maxima (pumpkin) of about 11.2 and 10.5kb. Restriction enzyme mapping of the genomic rDNA of these four plants and of cloned repeats ofC. sativus shows further heterogeneities which are due to methylation or point mutations. By comparison of the restriction enzyme maps it was possible to trace some evolutionary events in the family ofCucurbitaceae. Some aspects of regulation and function of the middle repetitive rRNA genes (here between 2000 and 10000 copies) are discussed.  相似文献   

14.
Restriction endonuclease cleavage analyses of cloned and genomic DNA samples indicate that the structure of the DNA encoding the large cytoplasmic RNAs (rDNAs) is altered in Drosophila mercatorum lines which exhibit an abnormal abdomen (aa) phenotype. In a majority of the rDNA repeat units from aa flies, the 28S coding sequence is interrupted by a large [5-6 kilobase pairs (kbp)] insert. A subclone containing this inserted DNA (ins 3) hybridizes primarily to rDNA-containing sequences in in situ and genomic blot hybridization experiments. Additionally, genomic nitrocellulose blot hybridization analyses show that ins- containing rDNA repeat units are clustered in a spontaneously arising aa mutant. This rDNA alteration in D. mercatorum flies with the aa phenotype more closely resembles the bobbed (bb) defect of D. hydei than the bb defect of D. melanogaster, which involves alterations in rDNA copy number. By analogy with the other Drosophila systems, we propose that the altered D. mercatorum rDNA repeat units are defective in rRNA production at a critical stage. The lowered levels of rRNA ultimately would limit the concentration of ribosomes needed to produce large quantities of a protein (in these cases, juvenile hormone esterase) needed for normal development.  相似文献   

15.
Three clones containing satellite DNA sequences were selected from a randomly sheared genomic DNA library of Picea abies (clones PAF1, PAG004P22F (2F), and PAG004E03C (3C)). PAF1 contained 7 repeats that were 37-55 bp in length and had 68.9%-91.9% nucleotide sequence similarity. Two 2F repeats were 305-306 bp in length and had 83% sequence similarity. Two 3C repeats were 193-226 bp in length and had a sequence similarity of 78.6%. The copy number per 1C DNA of PAF1, 2F, and 3C repeats was 2.7 x 106, 2.9 x 105, and 2.9 x 104, respectively. In situ hybridization showed centromeric localization of these sequences in two chromosome pairs with PAF1, all pairs but one with 2F, and three pairs with 3C. Moreover, PAF1 sequences hybridized at secondary constrictions in six pairs, while 2F-related sequences were found at these chromosome regions only in four pairs. These hybridization patterns allow all chromosome pairs to be distinguished. PAF1-related repeats were contained in the intergenic spacer (IGS) of ribosomal cistrons in all six nucleolar organizers of the complement, while sequences related to 2F were found on only one side of the rDNA arrays in four pairs, showing structural diversity between rDNA regions of different chromosomes.  相似文献   

16.
17.
18.
The rDNA of eukaryotic organisms is transcribed as the 40S-45S rRNA precursor, and this precursor contains the following segments: 5' - ETS - 18S rRNA - ITS 1 - 5.8S rRNA - ITS 2 - 28S rRNA - 3'. In amphibians, the nucleotide sequences of the rRNA precursor have been completely determined in only two species of Xenopus. In the other amphibian species investigated so far, only the short nucleotide sequences of some rDNA fragments have been reported. We obtained a genomic clone containing the rDNA precursor from the Japanese pond frog Rana nigromaculata and analyzed its nucleotide sequence. The cloned genomic fragment was 4,806 bp long and included the 3'-terminus of 18S rRNA, ITS 1, 5.8S rRNA, ITS 2, and a long portion of 28S rRNA. A comparison of nucleotide sequences among Rana, the two species of Xenopus, and human revealed the following: (1) The 3'-terminus of 18S rRNA and the complete 5.8S rRNA were highly conserved among these four taxa. (2) The regions corresponding to the stem and loop of the secondary structure in 28S rRNA were conserved between Xenopus and Rana, but the rate of substitutions in the loop was higher than that in the stem. Many of the human loop regions had large insertions not seen in amphibians. (3) Two ITS regions had highly diverged sequences that made it difficult to compare the sequences not only between human and frogs, but also between Xenopus and Rana. (4) The short tracts in the ITS regions were strictly conserved between the two Xenopus species, and there was a corresponding sequence for Rana. Our data on the nucleotide sequence of the rRNA precursor from the Japanese pond frog Rana nigromaculata were used to examine the potential usefulness of the rRNA genes and ITS regions for evolutionary studies on frogs, because the rRNA precursor contains both highly conserved regions and rapidly evolving regions.  相似文献   

19.
20.
Fucosyltransferases catalyse fucose transfer onto oligosaccharides. Two fucosylated structures have been identified in plants: the alpha1,4-fucosylated Lewis-a epitope and the alpha1,3-fucosylated core. Here we report the cloning, genomic characterization, and physical mapping of two genes encoding proteins similar to alpha1,4-fucosyltransferase (EC 2.4.1.65, MtFUT1) and alpha1,3-fucosyltransferase (EC 2.4.1.214, MtFUT2) in Medicago truncatula. Analysis of the genomic organization of the fucosyltransferase genes in M. truncatula, revealed the presence of two genomic variants of the MtFUT1 gene coding sequence, one containing a single intron and the other intronless, whereas in MtFUT2, the gene coding region is interrupted by four introns. Using for the first time fluorescence in situ hybridization (FISH) to physically map fucosyltransferase genes in plants, this study reveals a high genomic dispersion of these genes in Medicago. The MtFUT1 genes are mapped on chromosomes 4, 7, and 8, colocalizing on three of the five MtFUT2 loci. Chromosomes 1 and 5 carry the additional MtFUT2 loci. Moreover, the intensity of the FISH signals reveals marked differences in the number of gene copies per locus for both genes. Simultaneous mapping of rRNA genes on chromosome 5 shows that several MTFUT2 gene loci are inserted within the rDNA array. Insertions of coding DNA sequences into the rDNA repeats were never reported to date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号