首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free‐living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one‐host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed.  相似文献   

2.
The positions of 3 cestode species, Triaenophorus crassus Forel, Triaenophorus nodulosus (Pallas), and Proteocephalus pinguis LaRue, and a nematode, Raphidascaris acus (Bloch), within the intestine of naturally infected pike (Esox lucius L.) were evaluated with respect to the presence or absence and state of digestion of host stomach contents. The positions of scolices and strobilae of the cestodes did not vary with respect to host stomach contents. By contrast, R. acus was anterior (near the stomach) when the stomach contained partially digested items, posterior when the stomach was empty, and in an intermediate position when the stomach contained only intact items. These results are interpreted as migration of R. acus, but not T. crassus, T. nodulosus, or P. pinguis, in response to feeding activity of the host. Adult and larval R. acus migrated, but the extent of migration was reduced in hosts harboring T. crassus, more so for larval than adult R. acus.  相似文献   

3.
The nematode Soboliphyme baturini Petrov, 1930, was found to represent a single species with a relatively broad geographic range across Beringia and northwestern North America on the basis of the assessment of molecular sequence data for adult and juvenile parasites. Refuted are hypotheses suggesting that several cryptic species could be partitioned either among an array of mustelid definitive hosts or across the vast region that links North America and Eurasia. Host specificity for this species is examined on the basis of a comprehensive list for definitive hosts, derived from new field surveys and existing literature for S. baturini. Only 5 mustelids (Gulo gulo, Martes americana, M. caurina, M. zibellina, and Neovison vison) appear to have significant roles in the life history, persistence, and transmission of this nematode. Soboliphyme baturini readily switches among M. americana, M. caurina, Mustela erminea, or N. vison at any particular locality throughout its geographic range in North America, although Martes spp. could represent the source for nematodes in a broader array of mustelids. Molecular analyses (243 base pairs of mitochondrial gene nicotinamide dehydrogenase [ND4]) suggest that hypotheses for host specificity across an array of mustelid definitive hosts are not supported. The life cycle of S. baturini is explored through a review of diet literature for 2 marten species, M. americana and M. caurina, and other mustelids across the Holarctic. Shrews (Soricomorpha: Soricidae) comprise >8% of prey for these species of Martes, suggesting their putative role as paratenic hosts. Juvenile nematodes found in the diaphragms of soricids are genetically identical to adult S. baturini found in the stomachs of mustelids at the same locations in both Asia and North America, corroborating a role in transmission for species of Sorex.  相似文献   

4.
From October 1985 until July 1987, the seasonal dynamics of Rhabdochona denudata in its principal definitive host, the chub (Leuciscus cephalus), was studied in the Rokytná River (the Danube basin), Czechoslovakia. Prevalence (overall prevalence 77%) and intensity of infection (1-59 nematodes per fish) in the fish were high all year, with both abiotic and biotic factors influencing the fluctuations. Maximum values of prevalence (82-87%) were found in the fish with body length exceeding 20 cm; the mean intensity was highest in the size-group of fish 20-25 cm long, whereas its values gradually decreased in larger fish, this being due to the choice of food by fish of different size-groups. In contrast to the situation in other localities, an annual maturation cycle was not evident and egg-producing female nematodes were present in fish throughout the year. New infections in fish were most common in summer but occurred all year round. This life history pattern seems to be mainly due to the availability of infected ephemeropteran intermediate hosts during all seasons, in this case the nymphs of Ephemera danica, a species noted for its two-year development. In this locality, specifically not determined Rhabdochona larvae were recorded from the mayfly nymphs Ephemera danica (0.4%), Ecdyonurus aurantiacus (7%), and Caenis macrura (10%). The diet of the chub included mayfly nymphs at all seasons.  相似文献   

5.
The lifecycle, the host–parasite system, and the ecological features of the nematode Dichelyne minutus (Rudolphi, 1819), which parasitizes invertebrates and fish in the estuarine biocenosis located at the influx of the Chornaya River into the Black Sea (off Sevastopol), have been studied. The host–parasite system of D. minutus includes the polychaete Hediste diversicolor Müller, 1776 (as an obligatory intermediate host) and nine fish species, of which seven are definitive hosts and two are accidental or captive hosts. It has been found that the lifecycle of D. minutus in the biocoenosis of the Black Sea differs from the lifecycle of this nematode that inhabits the Baltic and North seas. In the studied biocoenosis, nematode larvae occur in polychaetes and fish only in the spring and summer; no larvae are found in the autumn (the study was not conducted in the winter). The nematode parasitizes the polychaete H. diversicolor in the spring; the main source of infection in this period is obviously nematode eggs that were laid in the autumn and have overwintered in the environment. The infection process ends by early summer. The seasonal and size–age dynamics of nematode infection of the round goby, Neogobius melanostomus (Pallas, 1814), are analyzed taking the specifics of fish biology into account. The short period of infection, as characterized by the active emission of nematode larvae, their low survival in polychaetes and fish, a short lifecycle and the mortality of mature nematodes after egg-laying in the autumn result in an over-scattered distribution (mostly of the negative-binomial type) of D. minutus in populations of all the hosts.  相似文献   

6.
A comprehensive review of the infection of mammals with the nematode Dioctophyme renale (Goeze, 1782) (Nematoda, Dioctophymidae) is presented. Mammals, including man, are the definitive hosts for this parasite. Several aspects of the infection with the parasite in mammals other than humans are critically evaluated: geographical distribution, host species recorded so far and the relative importance of the different hosts, location of parasites within the host, prevalence and intensity of the infection, diagnostic methods, pathology induced by the parasites, epidemiology and the methods of control and treatment. The authors provide an updated review about the infection, based on a extensive bibliographic search worldwide, and point out the most relevant aspects of the biology of the parasite as well as several research topics which need to be explored for a better understanding of the biology of this interesting and important parasitic nematode.  相似文献   

7.
Temporal variations in the prevalence of larval trematodes in the short-lived prosobranch mudsnail Hydrobia ventrosa (Montagu) were investigated in relation to host life history and season for 4 successive years in temperate windflats of the southern Baltic Sea. The component community of trematode larvae in H. ventrosa comprises at least 10 species; families (and species) represented include Notocotylidae (1), Echinostomatidae (1 or 2), Heterophyidae (2), Monorchidae (1), Microphallidae (3 or 4), Psilostomatidae (1), and Hemiuridae (1). The notocotylid Paramonostomum alveatum was the most prevalent species, followed by the microphallids Maritrema subdolum and Microphallus sp. Trematode prevalence in H. ventrosa fluctuated seasonally. Prevalence usually peaked in summer between July and September-October and decreased in late winter-early spring. This seasonal change is chiefly explained by the life history patterns of the semelparous snail host. Hydrobia ventrosa has a maximum life span of about 2 yr and reproduces between June and November of its second calendar year. The first trematode infections appeared annually in May when the most abundant cohort of H. ventrosa, the second-calendar-year snails, mature. The prevalence continued to increase until August-September, throughout the reproductive period of the second-calendar-year snails, Prevalence decreased during winter, when most of the second-calendar-year snails died after reproduction. On the basis of longterm laboratory experiments, it has been shown that the late autumn-winter mortality was not the result of trematode infections. Seasonal patterns of prevalence were similar among the trematode species except for the monorchid Asymphylodora demeli, the only one using fish definitive hosts. Species-specific differences in the seasonal occurrence of prepatent infections and the predominance of certain larval stages in winter are interpreted as different strategies of the trematode species to survive the harsh winter conditions, or to survive the death of the first intermediate host in autumn-winter, or both.  相似文献   

8.
In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be exploited.  相似文献   

9.
Nine polymorphic microsatellite loci were characterized from the freshwater trematode Coitocaecum parvum. This parasite can either reproduce sexually in the definitive host or produce eggs by selfing inside its second intermediate host. Two to 11 alleles per locus were detected in 24 trematode sporocysts and observed heterozygosities ranged from 0.04 to 0.96. These loci will be useful for identifying parasite genetic clones within hosts and testing for effects of relatedness on parasite life history strategy.  相似文献   

10.
The life history of A. mackerrasae was found to differ from that of A. cantonensis as follows: (1) the moulting times of A. cantonensis in the definitive host occurred a few days earlier than those of A. mackerrasae; (2) the growth rate of A. cantonensis was more rapid than that of A. mackerrasae. However, there were no differences in the migratory pattern of the third-stage larvae of both species in experimentally-infected definitive hosts. It is concluded that Mackerras & Sandars (1955) described the life history of A. mackerrasae and not A. cantonensis.  相似文献   

11.
Adult acanthocephalan body sizes vary interspecifically over more than two orders of magnitude; yet, despite its importance for our understanding of the coevolutionary links between hosts and parasites, this variation remains unexplained. Here, we used a comparative analysis to investigate how final adult sizes and relative increments in size following establishment in the definitive host are influenced by three potential determinants of acanthocephalan sizes: initial (cystacanth) size at infection, host body mass, and the thermal regime experienced during growth, i.e. whether the definitive host is an ectotherm or an endotherm. Relative growth from the cystacanth stage to the adult stage ranged from twofold to more than 10,000-fold across acanthocephalan species, averaging just over 100-fold. However, this relative increment in size did not correlate with host mass, and did not differ between acanthocephalan species using ectothermic hosts and those growing in endothermic hosts. In contrast, final acanthocephalan adult sizes correlated positively with host mass, and after correction for host mass, final adult sizes were higher in species parasitising endotherms than in those found in ectotherms. The relationship between host mass and acanthocephalan adult size practically disappears, however, once phylogenetic influences are taken into account. Positive relationships between adult acanthocephalan size, cystacanth size and egg size indicate that a given relative size is a feature of an acanthocephalan species at all stages of its life cycle. These relationships also suggest that adult size is to some extent determined by cystacanth size, and that the characteristics of the definitive host are not the sole determinants of parasite life history traits.  相似文献   

12.
Trade‐offs between virulence (defined as the ability to infect a resistant host) and life‐history traits are of particular interest in plant pathogens for durable management of plant resistances. Adaptation to plant resistances (i.e., virulence acquisition) is indeed expected to be associated with a fitness cost on susceptible hosts. Here, we investigated whether life‐history traits involved in the fitness of the potato cyst nematode Globodera pallida are affected in a virulent lineage compared to an avirulent one. Both lineages were obtained from the same natural population through experimental evolution on resistant and susceptible hosts, respectively. Unexpectedly, we found that virulent lineages were more fit than avirulent lineages on susceptible hosts: they produced bigger cysts, containing more larvae and hatching faster. We thus discuss possible reasons explaining why virulence did not spread into natural G. pallida populations.  相似文献   

13.
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web.  相似文献   

14.
Although there are no confirmed fossil records of mollusc parasitic nematodes, diverse associations of more than 108 described nematode species with slugs and snails provide a fertile ground for speculation of how mollusc parasitism evolved in nematodes. Current phylogenic resolution suggests that molluscs have been independently acquired as hosts on a number of occasions. However, molluscs are significant as hosts for only two major groups of nematodes: as intermediate hosts for metastrongyloids and as definitive hosts for a number of rhabditids. Of the 61 species of nematodes known to use molluscs as intermediate hosts, 49 belong to Metastrongyloidea (Order Strongylida); of the 47 species of nematodes that use molluscs as definitive hosts, 33 belong to the Order Rhabditida. Recent phylogenetic hypotheses have been unable to resolve whether metastrongyloids are sister taxa to those rhabditids that use molluscs as definitive hosts. Although most rhabditid nematodes have been reported not to kill their mollusc hosts prior to their reproduction, some species are pathogenic. In fact, infective juveniles of Phasmarhabditis hermaphrodita vector a lethal bacterium into the slug host in which they reproduce. This life cycle is remarkably similar to the entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae. Also, the discoveries of Alloionema and Pellioditis in slugs are interesting, as these species have been speculated to represent the ancestral forms of the entomopathogenic nematodes. Development of the infective stage appears to be an important step toward the acquisition of molluscs as definitive hosts, and the association with specific bacteria may have arisen in conjunction with the evolution of necromeny.  相似文献   

15.
The population biology of parasite-induced changes in host behavior   总被引:5,自引:0,他引:5  
The ability of parasites to change the behavior of infected hosts has been documented and reviewed by a number of different authors (Holmes and Bethel, 1972; Moore, 1984a). This review attempts to quantify the population dynamic consequences of this behavior by developing simple mathematical models for the most frequently recorded of such parasite life cycles. Although changes in the behavior of infected hosts do occur for pathogens with direct life cycles, they are most commonly recorded in the intermediate hosts of parasites with complex life cycles. All the changes in host behavior serve to increase rates of transmission of the parasites between hosts. In the simplest case the changes in behavior increase rates of contact between infected and susceptible conspecific hosts, whereas in the more complex cases fairly sophisticated manipulations of the host's behavioral repertory are achieved. Three topics are dealt with in some detail: (1) the behavior of the insect vectors of such diseases as malaria and trypanosomiasis; (2) the intermediate hosts of helminths whose behavior is affected in such a way as to make them more susceptible to predation by the definitive host in the life cycle; and (3) the behavior and fecundity of molluscs infected with asexually reproducing parasitic flatworms. In each case an expression is derived for R0, the basic reproductive rate of the parasite when first introduced into the population. This is used to determine the threshold numbers of definitive and intermediate hosts needed to maintain a population of the pathogen. In all cases, parasite-induced changes in host behavior tend to increase R0 and reduce the threshold number of hosts required to sustain the infection. The population dynamics of the interaction between parasites and their hosts are then explored using phase plane analyses. This suggests that both the parasite and intermediate host populations may show oscillatory patterns of abundance. When the density of the latter is low, parasite-induced changes in host behavior increase this tendency to oscillate. When intermediate host population densities are high, parasite population density is determined principally by interactions between the parasites and their definitive hosts, and changes in the behavior of intermediate hosts are less important in determining parasite density. Analysis of these models also suggests that both asexual reproduction of the parasite within a host and parasite-induced reduction in host fecundity may be stabilizing mechanisms when they occur in the intermediate hosts of parasite species with indirect life cycles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
The seasonal population dynamics of adult and larval Cystidicoloides tenuissima were studied in its definitive hosts brown trout, Salmo trutta and juvenile Atlantic salmon, S. salar , and mayfly intermediate host, Leptophlebia marginata , from the River Swincombe, Dartmoor National Park, Devon, U.K. Infective larvae were present in each mayfly generation for almost its entire duration in the steam benthos. The infection parameters (prevalence and mean intensity) and maturation in the fish indicated C. tenuissima was an annual parasite exhibiting a seasonal periodicity and also systematic variation with the host age. Maturation was correlated to river water temperature. Infection parameters increased from September to May, then declined in June and July and remained relatively constant for the rest of the summer. Variation in the fish infection parameters over time, site, and host species appeared to be controlled by transmission related events; the availability of infective larvae, host feeding behaviour and water temperature. The availability of infective larvae and host diet controlled the rate at which parasites were added to the parasite population, but the pattern of gains and losses was determined by a temperature dependent rejection response.  相似文献   

17.
The distribution, specificity and pathogenicity of the acanthocephalan Pomphorhynchus laevis (Müller) were studied in the River Avon, Hampshire. The parasite occurred in every fish species, but three categories of hosts could be distinguished. Using growth and maturation as criteria of specificity, only chub Leuciscus cephalus (L.) and barbel Barbus barbus (L.) were recognized as its preferred hosts. Parasites occasionally matured in trout Salmo trutta (L.) and dace Leuciscus leuciscus (L.), but none grew or matured in other host species. Changes in the abundance of P. laevis along the river were related to changes in the abundance of both the intermediate host, Gammarus pulex , and the preferred hosts, and its occurrence in fish to the importance of G. pulex in their diet. In the upper reaches of the River Avon and in other localities populations could be maintained at a low level by parasites maturing in trout, and presence and abundance at any site depended upon the presence and abundance of both intermediate and definitive hosts especially and upon the dietary preferences of the latter. The absence of P. laevis from many parts of Britain is nevertheless still inexplicable. The parasite caused local damage to the intestinal wall of fish, the extent of which varied from species to species, but did not affect host growth rate or cause direct mortality and P. laevis cannot be regarded as an important pathogen in the River Avon or any other British River.  相似文献   

18.
Larval helminths often share intermediate hosts with other individuals of the same or different species. Competition for resources and/or conflicts over transmission routes are likely to influence both the association patterns between species and the life history strategies of each individual. Parasites sharing common intermediate hosts may have evolved ways to avoid or associate with other species depending on their definitive host. If not, individual parasites could develop alternative life history strategies in response to association with particular species. Three sympatric species of helminths exploit the amphipod Paracalliope fluviatilis as an intermediate host in New Zealand: the acanthocephalan Acanthocephalus galaxii, the trematode Microphallus sp. and the progenetic trematode Coitocaecum parvum. Adult A. galaxii and C. parvum are both fish parasites whereas Microphallus sp. infects birds. We found no association, either positive or negative, among the three parasite species. The effects of intra- and interspecific interactions were also measured in the trematode C. parvum. Both intra- and interspecific competition seemed to affect both the life history strategy and the size and fecundity of C. parvum. Firstly, the proportion of progenesis was higher in metacercariae sharing their host with Microphallus sp., the bird parasite, than in any other situation. Second, the intensity of intraspecific competition apparently constrained the ability of metacercariae to adopt progenesis and limited both the growth and egg production of progenetic individuals. These results show that the life history strategy adopted by a parasite may be influenced by other parasites sharing the same host.  相似文献   

19.
Mutualisms are interactions between two species in which the fitnesses of both symbionts benefit from the relationship. Although examples of mutualism are ubiquitous in nature, the ecology, evolution, and stability of mutualism has rarely been studied in the broader, multi-species community context in which they occur. The pollination mutualism between figs and fig wasps provides an excellent model system for investigating interactions between obligate mutualists and antagonists. Compared to the community of non-pollinating fig wasps that develop within fig inflorescences at the expense of fig seeds and pollinators, consequences of interactions between female pollinating wasps and their host-specialist nematode parasites is much less well understood. Here we focus on a tri-partite system comprised of a fig (Ficus petiolaris), pollinating wasp (Pegoscapus sp.), and nematode (Parasitodiplogaster sp.), investigating geographical variation in the incidence of attack and mechanisms through which nematodes may limit the fitness of their wasp hosts at successive life history stages. Observational data reveals that nematodes are ubiquitous across their host range in Baja California, Mexico; that the incidence of nematode infection varies across seasons within- and between locations, and that infected pollinators are sometimes associated with fitness declines through reduced offspring production. We find that moderate levels of infection (1–9 juvenile nematodes per host) are well tolerated by pollinator wasps whereas higher infection levels (≥10 nematodes per host) are correlated with a significant reduction in wasp lifespan and dispersal success. This overexploitation, however, is estimated to occur in only 2.8% of wasps in each generation. The result that nematode infection appears to be largely benign – and the unexpected finding that nematodes frequently infect non-pollinating wasps – highlight gaps in our knowledge of pollinator-Parasitodiplogaster interactions and suggest previously unappreciated ways in which this nematode may influence fig and pollinator fitness, mutualism persistence, and non-pollinator community dynamics.  相似文献   

20.
Seasonal dynamics of the fish parasite Neoplagioporus ayu (Digenea; Opecoelidae; Plagioporinae) in its definitive host, the ayu Plecoglossus altivelis, in the Chikugo River, Kyushu, Japan, was examined. Natural ayu are amphidromous. In the upper Chikugo River, ayu fry raised in hatcheries are released into the river every spring because the migration of ayu is completely blocked by a dam that has no fish-pass channel. Ayu collected in April 2003 (within 1 month after release) harbored no N. ayu, but the prevalence of N. ayu rose to about 80% in May. The prevalence, abundance, and maturity of N. ayu were maintained at high levels from June to September. These finding indicate that the life cycle of N. ayu is completed in a freshwater area, although its intermediate hosts have not yet been identified despite the intense examination of invertebrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号