首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Miniature is an extracellular zona pellucida domain-containing protein, required for flattening of pupal wing epithelia in Drosophila. Here, we show that Miniature also plays an important role in the post-eclosion wing maturation processes triggered by the neurohormone bursicon. Wing expansion and epithelial apoptosis are drastically delayed in miniature loss-of-function mutants, and sped up upon overexpression of the protein in wings. Miniature acts upstream from the heterotrimeric Gs protein transducing the bursicon signal in wing epithelia. We propose that Miniature interacts with bursicon and regulates its diffusion through or stability within the wing tissue.  相似文献   

2.
3.
鞣化激素是调节昆虫表皮骨化和翅膀发育的一种神经激素, 尽管已经在许多不同种昆虫上克隆了鞣化激素基因, 但是关于小菜蛾 Plutella xylostella鞣化激素及其基因的研究至今未见报道。本研究克隆了两个小菜蛾鞣化激素基因Pxbursα和Pxbursβ (GenBank 登录号分别为KF498645和KF498646)全长cDNA, 其序列长度分别为537 bp和360 bp, 与已报道的其他昆虫的鞣化激素氨基酸序列一致性分别为51%~68% 和37%~57%。实时定量PCR分析发现Pxbursα和Pxbursβ均在蛹期表达量高, 而在幼虫期和成虫期的表达量低。以Pxbursα部分序列的双链RNA(dsRNA)饲喂小菜蛾4龄末期幼虫, 发现蛹期Pxbursα的表达受到了显著抑制, 小菜蛾的发育停滞在蛹期而无法正常羽化, 并最终死亡。由此推测, 小菜蛾鞣化激素基因在蛹期的大量表达对其生长发育和羽化具有重要的作用。  相似文献   

4.
5.
Using the adult Calliphora bioassay, we found that the tanning hormone, bursicon, is present in the blood of pupal and adult Tenebrio only at the time of ecdysis, when it is released massively from the thoracic and abdominal central nervous system. The hormone's half life in the blood is short (about 1–2 h). Contrary to the findings of other workers, we could find no evidence for the presence of the hormone in the haemolymph during pharate adult development, before ecdysis begins. When newly ecdysed pupae were ligated about the neck, adult development of the thorax and abdomen proceeded normally, but postecdysial tanning of the adult cuticle was almost completely prevented. This failure to tan was not due to lack of bursicon as the hormone was released normally in the ligated animals at the time of ecdysis. This suggests that a pre-ecdysial signal may be required for the development of epidermal competence to respond to bursicon.  相似文献   

6.
棉铃虫酪氨酸羟化酶基因的分子特性及功能分析   总被引:1,自引:0,他引:1  
【目的】酪氨酸羟化酶(tyrosine hydroxylase, TH)是黑色素形成的关键酶,在昆虫表皮骨化过程中扮演重要角色。本研究旨在获得棉铃虫Helicoverpa armigera TH基因序列,并研究其分子特性、表达模式和功能,为更深入探析该基因作用机理奠定基础。【方法】通过生物信息学和分子生物学技术获得了棉铃虫TH基因序列,利用qRT-PCR分析该基因在棉铃虫不同生长发育阶段的表达模式;利用qRT-PCR技术,分别测定了蜕皮激素20E(400 ng/头)处理不同时间和RNAi成功干扰蜕皮激素受体基因(EcR)前提下再用20E(400 ng/头)处理后,棉铃虫5龄幼虫TH表达量变化;采用生物化学方法检测鞣化激素(30 μg/mg组织)和环腺苷酸(cAMP, 200 ng/mg 组织)处理后棉铃虫幼虫脂肪体中TH活性。【结果】获得了棉铃虫酪氨酸羟化酶基因TH (GenBank登录号: MF440319) cDNA片段,长2 270 bp,开放阅读框1 686 bp,编码561个氨基酸残基。该基因在棉铃虫整个发育期均表达,其中在卵期第3天、2龄幼虫第1天、3-5龄蜕皮期、预蛹期和成虫羽化第1天表达量相对较高。研究还发现,400 ng/头 20E注射能够促进TH的转录;在成功干扰并调低幼虫EcR转录水平的前提条件下(对照仅注射dsGFP)再注射20E,对TH表达量无明显影响;而鞣化激素(30 μg/mg组织)和cAMP(200 ng/mg组织)均显著提高了TH的酶活性。【结论】20E在转录水平参与了TH的表达;鞣化激素和cAMP均能够提高TH活性,在蛋白水平上对TH进行调控。  相似文献   

7.
朱斌  刘孝明  杜孟芳  尹新明  安世恒 《昆虫学报》2013,56(12):1469-1479
鞣化激素是调控昆虫体壁黑化及翅伸展的一类激素, 是由BURS和PBURS两个亚基组成的一种异源二聚体蛋白质。BURS和PBURS亚基在结构及其进化上相对较为保守, 氨基酸序列中均含有11个半胱氨酸残基。鞣化激素主要是在胸腹神经节中合成的, 一旦释放到血淋巴就与其受体LGR2结合进而激活cAMP/PKA信号, 从而促进酪氨酸羟化酶(tyrosine hydroxylase, TH)的磷酸化。活化后的TH将酪氨酸(tyrosine)转变为多巴(DOPA), 引起昆虫表皮鞣化。同时, cAMP/PKA信号也引起翅真皮细胞凋亡从而促进翅的伸展。除了鞣化激素异聚体调控表皮鞣化及翅的伸展外, BURS亚基或PBURS亚基组成的同源二聚体经IMD路径, 激活转录因子Relish调控昆虫的免疫反应。本文就鞣化激素分子结构特性、 作用机制及功能等方面的研究进展进行了综述, 旨在为进一步研究昆虫鞣化激素提供借鉴和参考。  相似文献   

8.
The levels of ecdysteroids in Sarcophaga bullata were determined by radioimmunoassay (RIA) from the time of larviposition (0 hr) to after the 2nd ecdysis and from late larval to pupal development. Two distinct peaks of ecdysteroid activity were recorded mid-way through the first and second stadia (14 and 34 hr) and two smaller peaks occurred a few hours prior to each ecdysis. A large release of ecdysteroids occurred from 8 hr before and up to 18 hr after formation of the white prepupa. This peak initiated the formation of the prepupa, the tanning of the puparium, larval/pupal apolysis and secretion of the pupal cuticle.Assays for the cuticle tanning hormone, bursicon, in pre-ecdysial larvae were not positive and a possible role for ecdysone in pre-ecdysial tanning of larval cuticular structures is proposed.  相似文献   

9.
We describe the molecular analysis and cellular expression of the insect peptide neurohormone, bursicon. Bursicon triggers the sclerotization of the soft insect cuticle after ecdysis. Using protein elution analyses from SDS gels, we determined the molecular weight of bursicon from different insects to be approximately 30 kDa. Four partial peptide sequences of Periplaneta americana bursicon were obtained from purified nerve cord homogenates separated on two-dimensional gels. Antibodies produced against one of the sequences identified the cellular location of bursicon in different insects and showed that bursicon is co-produced with crustacean cardioactive peptide (CCAP) in the same neurons in all insects tested so far. Additionally, using the partial peptide sequences, we successfully searched the Drosophila genome project for the gene encoding bursicon. With Drosophila as a tool, we can now verify the function of the sequence using transgenic flies. Sequence comparisons also allowed us to verify that bursicon is conserved, corroborating the older data from bioassays and immunohistochemical analyses. The sequence of bursicon will enable further analysis of its function, release, and evolution.  相似文献   

10.
11.
In an effort to characterize the insect molting hormone bursicon from the cockroach, Periplaneta americana, amino acid sequences with high identity of Cu,Zn-superoxide dismutase (SOD) of Drosophila virilis were identified. Antisera against a conserved region of SOD, and a sequence unique to Periplaneta SOD were produced and used to test whether bursicon might be a form of SOD. Western blots of one- and two-dimensional gels revealed that the dimeric form of SOD and bursicon have a similar molecular mass (30 kDa). The two proteins can be separated, however, according to their different isoelectric points. Bursicon is identified in two-dimensional gels by elution from four unique spots not labeled by the anti-SOD antisera. In sections of Periplaneta nerve cords the antisera labeled glial material surrounding neuronal somata close to the neural sheath. Bursicon, however, is contained in unique cell pairs in the ganglia of the ventral nerve cord. These neurons were labeled with new antisera produced against novel sequences of one of the four above-mentioned bursicon active spots. The results show unequivocally that SOD and bursicon are distinctly different proteins. Furthermore, the anti-SOD antisera provided a tool to isolate and sequence bursicon.  相似文献   

12.
杨科  许益鹏  董胜张  俞晓平 《昆虫学报》2012,55(11):1255-1263
Bursicon是通过G蛋白受体调节昆虫表皮硬化及展翅的功能蛋白, 它在昆虫蜕皮后的表皮硬化过程中起着关键作用。为探讨灰飞虱Laodelphax striatellus的 bursicon的功能, 利用RT-PCR和RACE技术克隆获得1 126 bp的bursicon α和761 bp的bursicon β全长序列, 将其分别命名为Lsburs-α和Lsburs-β。生物信息学分析表明: Lsburs-α开放阅读框长483 bp, 编码160个氨基酸, 该蛋白具有2个N-豆蔻酰化位点、 3个酪蛋白激酶Ⅱ磷酸化位点以及2个蛋白激酶C磷酸化位点。Lsburs-β开放阅读框长417 bp, 编码138个氨基酸, 该蛋白具有2个N-豆蔻酰化位点、 3个酪蛋白激酶Ⅱ磷酸化位点以及1个酪氨酸激酶磷酸化位点。qRT-PCR结果表明: Lsburs-α和Lsburs-β在灰飞虱各龄期均有转录表达, 并在若虫期随龄期增加呈上升趋势, 在羽化期达到峰值, 成虫期表达量逐渐降低。结果提示bursicon与灰飞虱蜕皮后的外表皮硬化关系密切。本文结果为深入研究bursicon的功能、受体调节和信号通路等奠定了基础。  相似文献   

13.
To accommodate growth, insects must periodically replace their exoskeletons. After shedding the old cuticle, the new soft cuticle must sclerotize. Sclerotization has long been known to be controlled by the neuropeptide hormone bursicon, but its large size of 30 kDa has frustrated attempts to determine its sequence and structure. Using partial sequences obtained from purified cockroach bursicon, we identified the Drosophila melanogaster gene CG13419 as a candidate bursicon gene. CG13419 encodes a peptide with a predicted final molecular weight of 15 kDa, which likely functions as a dimer. This predicted bursicon protein belongs to the cystine knot family, which includes vertebrate transforming growth factor-beta (TGF-beta) and glycoprotein hormones. Point mutations in the bursicon gene cause defects in cuticle sclerotization and wing expansion behavior. Bioassays show that these mutants have decreased bursicon bioactivity. In situ hybridization and immunocytochemistry revealed that bursicon is co-expressed with crustacean cardioactive peptide (CCAP). Transgenic flies that lack CCAP neurons also lacked bursicon bioactivity. Our results indicate that CG13419 encodes bursicon, the last of the classic set of insect developmental hormones. It is the first member of the cystine knot family to have a defined function in invertebrates. Mutants show that the spectrum of bursicon actions is broader than formerly demonstrated.  相似文献   

14.
15.
During maturation Drosophila wing epithelial cells undergo number of changes due to processes, which take place in the wing of the newly emerged fly, among which epithelial-to-mesenchymal transition (EMT) and apoptosis are pivotal. It is considered that neurohormone bursicon is responsible for their triggering. In turn, extracellular matrix protein Miniature is also essential for proper progress of apoptosis and, presumably, EMT. In accordance with our previously proposed hypothesis, Miniature and bursicon form stabilizing/accumulative complexes, which are able to diffuse freely within Drosophila wing, in such a way constitutively promoting enough concentrations of the maturation triggering signal. Here we tried to come to confirmation of our hypothesis from the other side, using UAS/GAL4 system and RNAi-silencing techniques.  相似文献   

16.
17.
【目的】探讨禾谷缢管蚜 Rhopalosiphum padi (Linnaeus)鞣化激素基因的发育表达模式及功能。【方法】采用转录组测序得到禾谷缢管蚜鞣化激素基因bursicon-α 和 bursicon-β cDNA序列。通过实时荧光定量PCR方法,分析该基因的发育表达模式。利用RNA干扰(RNA interference, RNAi)介导 bursicon-α 和bursicon-β 沉默,分析鞣化激素的功能。【结果】序列分析结果显示,禾谷缢管蚜鞣化激素α亚基基因(bursicon-α)cDNA序列开放阅读框为480 bp,编码159个氨基酸残基;β亚基基因(bursicon-β)cDNA序列开放阅读框为417 bp,编码138个氨基酸残基。时序表达分析表明,鞣化激素两个亚基基因在禾谷缢管蚜整个发育期均有表达,以1龄若蚜期表达量最高;成蚜有翅个体中表达量显著高于无翅个体。RNAi介导的 bursicon-α 和 bursicon-β 沉默均能显著抑制禾谷缢管蚜成蚜表皮的黑化。【结论】研究结果表明,鞣化激素在禾谷缢管蚜体壁黑化中发挥着重要作用。该结果为进一步研究鞣化激素在蚜虫生长发育过程中的生理功能提供了基础资料。  相似文献   

18.
19.

Background  

The protective external cuticle of insects does not accommodate growth during development. To compensate for this, the insect life cycle is punctuated by a series of molts. During the molt, a new and larger cuticle is produced underneath the old cuticle. Replacement of the smaller, old cuticle culminates with ecdysis, a stereotyped sequence of shedding behaviors. Following each ecdysis, the new cuticle must expand and harden. Studies from a variety of insect species indicate that this cuticle hardening is regulated by the neuropeptide bursicon. However, genetic evidence from Drosophila melanogaster only supports such a role for bursicon after the final ecdysis, when the adult fly emerges. The research presented here investigates the role that bursicon has at stages of Drosophila development which precede adult ecdysis.  相似文献   

20.
At the last step of metamorphosis in Drosophila, the wing epidermal cells are removed by programmed cell death during the wing spreading behavior after eclosion. The cell death was accompanied by DNA fragmentation demonstrated by the TUNEL assay. Transmission electron microscopy revealed that this cell death exhibited extensive vacuoles, indicative of autophagy. Ectopic expression of an anti-apoptotic gene, p35, inhibited the cell death, indicating the involvement of caspases. Neck ligation and hemolymph injection experiments demonstrated that the cell death is triggered by a hormonal factor secreted just after eclosion. The timing of the hormonal release implies that the hormone to trigger the death might be the insect tanning hormone, bursicon. This was supported by evidence that wing cell death was inhibited by a mutation of rickets, which encodes a G-protein coupled receptor in the glycoprotein hormone family that is a putative bursicon receptor. Furthermore, stimulation of components downstream of bursicon, such as a membrane permeant analog of cAMP, or ectopic expression of constitutively active forms of G proteins or PKA, induced precocious death. Conversely, cell death was inhibited in wing clones lacking G protein or PKA function. Thus, activation of the cAMP/PKA signaling pathway is required for transduction of the hormonal signal that induces wing epidermal cell death after eclosion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号