首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Mutations in the presenilins (PS) account for the majority of familial Alzheimer disease (FAD) cases. To test the hypothesis that oxidative stress can underlie the deleterious effects of presenilin mutations, we analyzed lipid peroxidation products (4-hydroxynonenal (HNE) and malondialdehyde) and antioxidant defenses in brain tissue and levels of reactive oxygen species (ROS) in splenic lymphocytes from transgenic mice bearing human PS1 with the M146L mutation (PS1M146L) compared to those from mice transgenic for wild-type human PS1 (PS1wt) and nontransgenic littermate control mice. In brain tissue, HNE levels were increased only in aged (19-22 months) PS1M146L transgenic animals compared to PS1wt mice and not in young (3-4 months) or middle-aged mice (13-15 months). Similarly, in splenic lymphocytes expressing the transgenic PS1 proteins, mitochondrial and cytosolic ROS levels were elevated to 142.1 and 120.5% relative to controls only in cells from aged PS1M146L animals. Additionally, brain tissue HNE levels were positively correlated with mitochondrial ROS levels in splenic lymphocytes, indicating that oxidative stress can be detected in different tissues of PS1 transgenic mice. Antioxidant defenses (activities of antioxidant enzymes Cu/Zn-SOD, GPx, or GR) or susceptibility to in vitro oxidative stimulation was unaltered. In summary, these results demonstrate that the PS1M146L mutation increases mitochondrial ROS formation and oxidative damage in aged mice. Hence, oxidative stress caused by the combined effects of aging and PS1 mutations may be causative for triggering neurodegenerative events in FAD patients.  相似文献   

2.
3.
Antioxidant enzymes (AOEs), glutathione peroxidase (GPx), superoxide dismutase(SOD) and catalase (CAT) play an important role in protecting tissues from reactive oxygen species (ROS) reactions. The objective of this study was to determine the developmental regulation of AOEs mRNA levels and activity in tissues of different growing phases pigs (Sus scrofa). Nine different tissues were collected from thirty Duroc x Landrace x Yorkshire male pigs with six animals in each age (1, 42, 84, 126 and 168 days) to assay for GPx, CAT and CuZnSOD mRNA expression and activities. Results showed that GPx, CAT, and CuZnSOD mRNA levels in liver increased (P<0.05) at the first stage, and thereafter their levels began to decline (P<0.05), and the maximal mRNA levels of these AOEs were seen at the age of 42, 84, and 126 days, respectively. In Muscle, GPx and CAT mRNA level increased from 1 to 84 days and 1 to 126 days, respectively, and thereafter their levels began to decline, whereas CuZnSOD mRNA level steadily increased (P<0.05) following birth. Activity expression of AOEs in selected tissues was increased as pigs became older (P<0.05) with the exception of CuZnSOD activity in muscle, but changes in AOEs mRNA levels between ages did not fully account for all changes in activity. GPx and CuZnSOD mRNA were most abundantly expressed in muscle, while CAT mRNA were most abundant in brain. AOEs may exert cell and tissue-specific roles in metabolic regulation beyond their mere antioxidant potential. In conclusion, expression of AOEs mRNA and activity exhibit different developmental profiles in various tissues of pigs, and the regulation of AOEs is not tightly coordinated in either tissue.  相似文献   

4.
Angiotensin II (Ang II) plays a profound regulatory effect on NADPH oxidase and the functional features of vascular adventitial fibroblasts, but its role in antioxidant enzyme defense remains unclear. This study investigated the effect of Ang II on expressions and activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in adventitial fibroblasts and the possible mechanism involved. Ang II decreased the expression and activity of CAT in a dose- and time-dependent manner, but not that of SOD and GPx. The effects were abolished by the angiotensin II type 1 receptor (AT1R) blocker losartan and AT1R small-interfering RNA (siRNA). Incubation with polyethylene glycol-CAT prevented the Ang II-induced effects on reactive oxygen species (ROS) generation and myofibroblast differentiation. Moreover, Ang II rapidly induced phosphorylation of ERK1/2, which was reversed by losartan and AT1R siRNA. Pharmacological blockade of ERK1/2 improved Ang II-induced decrease in CAT protein expression. These in vitro results indicate that Ang II induces ERK1/2 activation, contributing to the downregulation of CAT as well as promoting oxidative stress and adventitial fibroblast phenotypic differentiation in an AT1R-mediated manner.  相似文献   

5.
The platelet-activating factor (PAF) is an inflammatory mediator and it may exert some of its effects by reactive oxygen species (ROS). We investigated the effects of PAF and hyperbaric oxygenation (HBO) on copper (Cu) and zinc (Zn) levels in plasma and the intracellular antioxidant enzyme activities of rats. PAF administration caused a decrease in erythrocyte catalase (CAT) and glutathione peroxidase (GPx) activities and in the plasma zinc level. Following PAF administration, exposure to HBO also caused a decrease in erythrocyte GPx activity. These results support the hypothesis that PAF may produce free oxygen radicals and HBO enhances this effect. The enzyme activities of the antioxidant defense system were found to be affected by these oxidative processes. This is likely to be the result of excessive production of ROS or overutilization and/or inhibition of the antioxidant enzymes.  相似文献   

6.
—We studied the axoplasmic transport of choline acetyltransferase (CAT) activity in sciatic nerves of normal mice of various ages. For at least 3 days after unilateral ligation of sciatic nerves of 6 and 30-week-old mice, the CAT activity in the ligated nerve increased as a linear function of time and the increase was confined to the 3 mm length of nerve immediately proximal to the ligature. The rate of increase of CAT activity in the ligated nerves of the 30-week-old mice was only 45 ± 6% that of the 6-week-old mice, whereas the CAT activity of non-ligated sciatic nerves of the older mice was 87 ± 6% more than that of the younger mice (n = 18, P < 0·001). The average velocity of axoplasmic transport of CAT activity was five times greater in the younger mice (1·5 ± 0·2 mm/day vs 0·3 ± 0·1 mm/day, n = 6, P < 0·01). Even greater differences were observed between still younger and older animals: the av velocity of axoplasmic transport of 2-week-old mice (3·5 ± 0·2 mm/day) was 17·5 times greater than that of 36-week-old mice (0·2 ± 0·1 mm/day). We also studied the axoplasmic transport of CAT activity in 6-week-old mice after unilateral section of the sciatic nerve. For at least 3 months after the operation, there were no differences between the sectioned nerves and the intact contralateral nerves with respect to the increase in CAT activity immediately proximal to a ligature placed at various times after neurotomy and one day before sacrifice. On the other hand, there was a reduction in the CAT activity of more proximal segments of the sectioned nerves. The reduction of CAT activity was maximal (52 ± 3%) 3 weeks after the operation when the maximum increase (2·5-fold) in the av velocity of axoplasmic transport of CAT activity was recorded (n = 6, P < 0·001). The inclusion of purified (100-fold) mouse brain CAT activity in the assays for the CAT activity of nerve segments demonstrated that the differences in content and rate of transport were not due to the presence of activators or inhibitors of CAT activity. These differences probably reflect physiologic changes in the axoplasmic transport of cholinergic neurons during development and regeneration.  相似文献   

7.
Glutathione peroxidase-1 protects from CD95-induced apoptosis   总被引:9,自引:0,他引:9  
Through the induction of apoptosis, CD95 plays a crucial role in the immune response and the elimination of cancer cells. Ligation of CD95 receptor activates a complex signaling network that appears to implicate the generation of reactive oxygen species (ROS). This study investigated the place of ROS production in CD95-mediated apoptosis and the role of the antioxidant enzyme glutathione peroxidase-1 (GPx1). Anti-CD95 antibodies triggered an early generation of ROS in human breast cancer T47D cells that was blocked by overexpression of GPx1 and inhibition of initiator caspase activation. Enforced expression of GPx1 also resulted in inhibition of CD95-induced effector caspase activation, DNA fragmentation, and apoptotic cell death. Resistance to CD95-mediated apoptosis was not due to an increased expression of anti-apoptotic molecules and could be reversed by glutathione-depleting agents. In addition, whereas the anti-apoptotic protein Bcl-xL prevented CD95-induced apoptosis in MCF-7 cells, it did not inhibit the early ROS production. Moreover, Bcl-xL but not GPx1 overexpression could suppress the staurosporine-induced late generation of ROS and subsequent cell death. Altogether, these findings suggest that GPx1 functions upstream of the mitochondrial events to inhibit the early ROS production and apoptosis induced by CD95 ligation. Finally, transgenic mice overexpressing GPx1 were partially protected from the lethal effect of anti-CD95, underlying the importance of peroxide formation (and GPx1) in CD95-triggered apoptosis.  相似文献   

8.
Huntington's disease is an autosomal dominant disorder with degeneration of medium size striatal neurones. As the disease evolves, other neuronal populations are also progressively affected. A transgenic mouse model of the disease (R6/2) that expresses exon 1 of the human Huntington gene with approximately 150 CAG repeats has been developed, but GABA concentrations are reported to be normal in the striatum of these animals. In the present study, we analysed the status of GABAergic systems by means of glutamic acid decarboxylase (GAD)67 mRNA in situ hybridization in the brain of R6/2 transgenic mice and wild-type littermates. We show that GAD67 expression is normal in the striatum, cerebellum and septum but decreased in the frontal cortex, parietal cortex, globus pallidus, entopeduncular nucleus and substantia nigra pars reticulata of R6/2 mice. These data, which may, in part, account for the behavioural changes seen in these animals, indicate that at 12.5 weeks of age the pathological features seen in the mice differ from those seen in humans with Huntington's disease.  相似文献   

9.
G protein-coupled receptor (GPCR) kinases (GRKs) regulate the sensitivity of GPCRs, including dopamine receptors. The GRK4 locus is linked to, and some of its polymorphisms are associated with, human essential hypertension. Transgenic mice overexpressing human (h) GRK4gamma A142V on a mixed genetic background (C57BL/6J and SJL/J) have impaired renal D(1)-dopamine receptor (D(1)R) function and increased blood pressure. We now report that hGRK4gamma A142V transgenic mice, in C57BL/6J background, are hypertensive and have higher blood pressures than hGRK4gamma wild-type transgenic and nontransgenic mice. The hypertensive phenotype is stable because blood pressures in transgenic founders and F6 offspring are similarly increased. To determine whether the hypertension is associated with increased production of reactive oxygen species (ROS), we measured renal NADPH oxidase (Nox2 and Nox4) and heme oxygenase (HO-1 and HO-2) protein expressions and urinary excretion of 8-isoprostane and compared the effect of Tempol on blood pressure in hGRK4gamma A142V transgenic mice and D(5)R knockout (D(5)(-/-)) mice in which hypertension is mediated by increased ROS. The expressions of Nox isoforms and HO-2 and the urinary excretion of 8-isoprostane were similar in hGRK4gamma A142V transgenic mice and their controls. HO-1 expression was increased in hGRK4gamma A142V relative to hGRK4gamma wild-type transgenic mice. In contrast with the hypotensive effect of Tempol in D(5)(-/-) mice, it had no effect in hGRK4gamma A142V transgenic mice. We conclude that the elevated blood pressure of hGRK4gamma A142V transgenic mice is due mainly to the effect of hGRK4gamma A142V transgene acting via D(1)R and increased ROS production is not a contributor.  相似文献   

10.
Hyperglycemia is well-recognized and has long-term complications in diabetes mellitus and diabetic nephropathy. In podocytes, the main component of the glomerular barrier, overproduction of reactive oxygen species (ROS) in the presence of high glucose induces dysfunction and increases excretion of albumin in urine. This suggests an impaired antioxidant defense system has a role in the pathogenesis of diabetic nephropathy. We studied expression of NAD(P)H oxidase subunits by Western blotting and immunofluorescence and the activities of the oxidant enzyme, NAD(P)H, and antioxidant enzymes, superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT), in mouse podocytes cultured in a high glucose concentration (30 mM). We found long-term (3 and 5 days) exposure of mouse podocytes to high glucose concentrations caused oxidative stress, as evidenced by increased expression of Nox4 and activities of NAD(P)H oxidase (Δ 182%) and SOD (Δ 39%) and decreased activities of GPx (Δ -40%) and CAT (Δ -35%). These biochemical changes were accompanied by a rise in intracellular ROS production and accumulation of hydrogen peroxide in extracellular space. The role of Nox4 in ROS generation was confirmed with Nox4 siRNA. In conclusion, high glucose concentration affects the oxidant-antioxidant balance in mouse podocytes, resulting in enhanced generation of superoxide anions and its attenuated metabolism. These observations suggest free radicals may play an important role in the pathogenesis of diabetic nephropathy.  相似文献   

11.
Huntington''s Disease (HD) is a neurodegenerative disorder that is caused by abnormal expansion of a polyglutamine tract in huntingtin (htt) protein. The expansion leads to increased htt aggregation and toxicity. Factors that aid in the clearance of mutant huntingtin proteins should relieve the toxicity. We previously demonstrated that overexpression of ubiqulin-1, which facilitates protein clearance through the proteasome and autophagy pathways, reduces huntingtin aggregates and toxicity in mammalian cell and invertebrate models of HD. Here we tested whether overexpression of ubiquilin-1 delays or prevents neurodegeneration in R6/2 mice, a well-established model of HD. We generated transgenic mice overexpressing human ubiquilin-1 driven by the neuron-specific Thy1.2 promoter. Immunoblotting and immunohistochemistry revealed robust and widespread overexpression of ubiquilin-1 in the brains of the transgenic mice. Similar analysis of R6/2 animals revealed that ubiquilin is localized in huntingtin aggregates and that ubiquilin levels decrease progressively to 30% during the end-stage of disease. We crossed our ubiquilin-1 transgenic line with R6/2 mice to assess whether restoration of ubiquilin levels would delay HD symptoms and pathology. In the double transgenic progeny, ubiquilin levels were fully restored, and this correlated with a 20% increase in lifespan and a reduction in htt inclusions in the hippocampus and cortex. Furthermore, immunoblots indicated that endoplasmic reticulum stress response that is elevated in the hippocampus of R6/2 animals was attenuated by ubiquilin-1 overexpression. However, ubiquilin-1 overexpression neither altered the load of htt aggregates in the striatum nor improved motor impairments in the mice.  相似文献   

12.
Natural antioxidants have shown a remarkable reduction in oxidative stress due to excess formation of reactive oxygen species by enhancing antioxidant mechanism in the neurodegenerative disorders. Sesame seed oil (SO) is one of the most important edible oil in India as well as in Asian countries and has potent antioxidant properties thus the present study evaluated the neuroprotective effect of SO by using 6-Hydroxydopamine (6-OHDA)-induced Parkinson’s disease model in mice. The mice were fed an SO mix diet for 15 days and then 6-OHDA was injected into the right striatum of mice brain. Three weeks after 6-OHDA infusion, mice were sacrificed and the striatum was removed. The neuroprotective role of SO on the activities of antioxidant and non-antioxidant enzymes such as glutathione reductase (GR), glutathione-S-transferase (GST), glutathione peroxidase (GPx), catalase (CAT) and content of glutathione (GSH) and thiobarbituric acid reactive substance (TBARS) were studied in the striatum. The activities of all the above-mentioned enzymes decreased significantly in 6-OHDA group (Lesioned) when compared with Sham. The pretreatment of SO on antioxidant mechanism and dopamine level in the brain had shown some significant improvement in Lesion+SO (L+SO) group when compared with Lesioned group. However, NADPH oxidase subunit, Nox2 and inflammatory stimulator Cox2 expression was increased as well as antioxidant MnSOD level was decreased in Lesioned group while SO showed the inhibitory effect on the activation of Nox2 and Cox2 and restored MnSOD expression in L+SO group. Increased tyrosine hydroxylase (TH) expression in substantia nigra as well as dopamine and its metabolite DOPAC level in L+SO group also support our findings that SO may inhibit activation of NADPH oxidase dependent inflammatory mechanism due to 6-OHDA induced neurotoxicity in mice.  相似文献   

13.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

14.
Methamphetamine (METH) produces dopaminergic neurotoxicity by the production of reactive oxygen (ROS) and nitrogen (RNS) species. The role of free radicals has also been implicated in the process of aging. The present study was designed to evaluate whether METH-induced dopaminergic neurotoxicity and hyperthermia is a result of peroxynitrite production and if these effects correlate with age. One-, six- and 12-month-old male rats (n = 8) were administered a single dose of METH (0, 5, 10, 20, and 40 mg/kg, intraperitoneally). The formation of 3-nitrotyrosine (3-NT) as a marker of peroxynitrite production as well as dopamine and its metabolites DOPAC and HVA were measured in the striatum 4-h after METH-administration. Rectal temperature was monitored every 30 min after METH administration until 4 h. At 40 mg/kg METH, a 100% mortality in 12-month-old animals was observed, whereas no deaths occurred in 1- or 6-month-old rats. An age-dependent increase in hyperthermia was observed after METH-administration. A similar pattern of dose-dependent increase in the formation of 3-NT and in the depletion of dopamine and its metabolites with age was observed in the striatum. Furthermore, no effect was observed at 5 mg/kg METH in 1-month-old animals, whereas the effect was significant in 6- and 12-month-old animals. These data suggest that aging increases the susceptibility of the animals toward METH-induced peroxynitrite generation and striatal dopaminergic neurotoxicity.  相似文献   

15.
Numerous studies have shown that the lifespan can be extended by caloric restriction or by altering the growth hormone (GH)-insulin-like growth factor 1 signaling pathway. Both of these manipulations produce physiological alterations, such as increased insulin sensitivity, and reduced glucose levels and body size. However, it is difficult to evaluate whether these are merely correlates of delayed aging or whether they have a direct causal effect on lifespan. One parameter that has been demonstrated to have causal, positive effects on longevity in invertebrates is improved antioxidant defenses. We measured activities of antioxidant enzymes Cu/Zn superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) and quantified free-radical damage by lipid peroxidation (LP) and protein oxidation (PO) measurements in liver and kidney tissues, and evaluated the response to paraquat-induced oxygen toxicity in the long-living GH receptor/binding protein gene knockout (GHR-KO) mouse. We found that in the kidney, SOD was lower and GPx was higher in GHR-KO mice, and LP was higher in female GHR-KO mice only. In the liver, female GHR-KO mice had lower GPx, while male GHR-KO mice had lower CAT and higher LP. GHR-KO males were also more susceptible to paraquat toxicity compared to females or normal males. We conclude that in long-living GHR-KO mice, GH-resistance does not confer longevity by improved free-radical scavenging in the liver and kidney, suggesting that greater free-radical defenses in other tissues, or altered glucose metabolism may have a more central role in extending the lifespan of these animals.  相似文献   

16.
Many forms of neurodegeneration are associated with oxidative stress and mitochondrial dysfunction. Mitochondria are prominent targets of oxidative damage, however, it is not clear whether mitochondrial DNA (mtDNA) damage and/or its lack of repair are primary events in the delayed onset observed in Huntington's disease (HD). We hypothesize that an age-dependent increase in mtDNA damage contributes to mitochondrial dysfunction in HD. Two HD mouse models were studied, the 3-nitropropionic acid (3-NPA) chemically induced model and the HD transgenic mice of the R6/2 strain containing 115-150 CAG repeats in the huntingtin gene. The mitochondrial toxin 3-NPA inhibits complex II of the electron transport system and causes neurodegeneration that resembles HD in the striatum of human and experimental animals. We measured nuclear and mtDNA damage by quantitative PCR (QPCR) in striatum of 5- and 24-month-old untreated and 3-NPA treated C57BL/6 mice. Aging caused an increase in damage in both nuclear and mitochondrial genomes. 3-NPA induced 4-6 more damage in mtDNA than nuclear DNA in 5-month-old mice, and this damage was repaired by 48h in the mtDNA. In 24-month-old mice 3NPA caused equal amounts of nuclear and mitochondrial damage and this damage persistent in both genomes for 48h. QPCR analysis showed a progressive increase in the levels of mtDNA damage in the striatum and cerebral cortex of 7-12-week-old R6/2 mice. Striatum exhibited eight-fold more damage to the mtDNA compared with a nuclear gene. These data suggest that mtDNA damage is an early biomarker for HD-associated neurodegeneration and supports the hypothesis that mtDNA lesions may contribute to the pathogenesis observed in HD.  相似文献   

17.
Transgenic Huntington's disease (HD) mice, expressing exon 1 of the HD gene with an expanded CAG repeat, are totally resistant to striatal lesion induced by excessive NMDA receptor activation. We now show that striatal lesions induced by the mitochondrial toxin malonate are reduced by 70-80% in transgenic HD mice compared with wild-type littermate controls. This occurred in 6- and 12-week-old HD mice with 150 CAG repeats (line R6/2) and in 18-week-old, but not 6-week-old, HD mice with 115 CAG repeats (line R6/1). Therefore, we show for the first time that the resistance to neurotoxin in transgenic HD mice is dependent on both the CAG repeat length and the age of the mice. Importantly, most HD patients develop symptoms in adulthood and exhibit an inverse relationship between CAG repeat length and age of onset. Transgenic mice expressing a normal CAG repeat (18 CAG) were not resistant to malonate. Although endogenous glutamate release has been implicated in malonate-induced cell death, glutamate release from striatal synaptosomes was not decreased in HD mice. Malonate-induced striatal cell death was reduced by 50-60% in wild-type mice when they were treated with either the NMDA receptor antagonist MK-801 or the caspase inhibitor zVAD-fmk. These two compounds did not reduce lesion size in transgenic R6/1 mice. This might suggest that NMDA receptor- and caspase-mediated cell death pathways are inhibited and that the limited malonate-induced cell death still occurring in HD mice is independent of these pathways. There were no changes in striatal levels of the two anti cell death proteins Bcl-X(L) and X-linked inhibitor of apoptosis protein (XIAP), before or after the lesion in transgenic HD mice. We propose that mutant huntingtin causes a sublethal grade of metabolic stress which is CAG repeat length-dependent and results in up-regulation over time of cellular defense mechanisms against impaired energy metabolism and excitotoxicity.  相似文献   

18.
Diving seals experience heart rate reduction and preferential distribution of the oxygenated blood flow to the heart and brain, widespread peripheral vasoconstriction, and selective ischemia in the most hypoxia-tolerant tissues. The first breath after the dive restores the oxygenated blood flow to all tissues and raises the potential for the production of reactive oxygen species (ROS). We hypothesized that in order to counteract the damaging effects of ROS and to tolerate repetitive cycles of ischemia/reperfusion associated with diving, ringed seal (Phoca hispida) tissues have elevated activities of antioxidant enzymes. Activities of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione-S-transferase (GST) were measured by spectrophotometric techniques in heart, kidney, liver, lung, and muscle extracts of ringed seals and domestic pigs (Sus scrofa). The results suggest that in ringed seal heart SOD, GPx and GST activities are an efficient protective mechanism for counteracting ROS production and its deleterious effects. Apparently CAT activity in seal liver and GPx activity in seal muscle participate in the removal of hydroperoxides, while seal lung appears to be protected from oxidative damage by SOD and GPx activities.  相似文献   

19.
本文旨在研究姜黄素(CRC)对双酚A(BPA)诱导的小鼠卵巢氧化损伤的保护作用。将28日龄雌性小鼠分为对照组、姜黄素组、双酚A组和双酚A加姜黄素组,连续灌胃6周。收集卵巢,通过活性氧(ROS)水平的检测、卵巢闭锁卵泡的观察以及3种关键抗氧化酶表达和活性的测定,研究姜黄素对双酚A诱发的卵巢氧化损伤的保护作用及机制。结果显示,与对照组相比,双酚A暴露后明显增加了卵巢的活性氧水平,造成氧化应激,提高了卵巢中有腔卵泡闭锁比例。与双酚A组相比,双酚A和姜黄素共同处理组降低了卵巢的活性氧水平和卵巢中有腔卵泡闭锁比例。双酚A暴露降低了卵巢超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)以及过氧化氢酶(CAT)的表达和活性,姜黄素逆转了双酚A诱导的3种抗氧化酶表达和活性的下降。结果表明,姜黄素可逆转双酚A通过氧化应激造成的卵巢损伤。  相似文献   

20.
The alphaB-crystallin/small heat shock protein gene is expressed very highly in the mouse eye lens and to a lesser extent in many other nonocular tissues, including the heart, skeletal muscle and brain. Previously we showed in transgenic mice that lens-specific alphaB-crystallin promoter activity is directed by a proximal promoter fragment (-164/+44) and that non-lens promoter activity depends on an upstream enhancer (-427/-259) composed of at least 5 cis-control elements. Here we have used truncated alphaB-crystallin promoter-CAT transgenes to test by biphasic CAT assays and/or histochemistry for specific expression in the cornea and lens. Deletion either of 87 bp (-427/-340) from the 5' end of the alphaB-crystallin enhancer or of the whole enhancer (-427/-258) abolished alphaB-crystallin promoter activity in all tissues except the lens and corneal epithelium when examined by the biphasic CAT assay in 4-5-week-old transgenic mice. These truncations also lowered promoter strength in the lens. The -426/+44-CAT, -339/+44-CAT and -164/+44-CAT (previously thought to be lens-specific in transgenic mice) transgenes were all expressed in the 4-6-week-old corneal epithelium when examined histochemically. Immunohistochemical staining confirmed the presence of endogenous alphaB-crystallin in the mature corneal epithelial cells. CAT gene expression driven by the alphaB-crystallin promoter with or without the enhancer was evident in the embryonic and 4-6-week-old lens. By contrast, activity of the alphaB-crystallin promoter/enhancer-CAT transgene was not detectable in the corneal epithelium before birth. Taken together, these results indicate that the intact enhancer of the alphaB-crystallin/small heat shock protein gene is required for promoter activity in all tissues tested except the lens and cornea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号