首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Glutamine synthetase specific activity increases greater than 100-fold during the insulin-mediated differentiation of confluent 3T3-L1 cells into adipocytes. Incubation of the adipocytes for 22 h with 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline, 0.2 mM 8-bromo-cyclic AMP, 10 micro M epinephrine, or 1 microgram of alpha 1-24 adrenocorticotropic hormone/ml decreased glutamine synthetase by greater than 60%. During the same incubation period, there was no effect of these compounds on protein or on the specific activities of glucose-6-P dehydrogenase or hexokinase. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase activity was half-maximal at 50 micro M dibutyryl cyclic AMP. Furthermore, between 10 micro M and 5 mM dibutyryl cyclic AMP, the dibutyryl cyclic AMP-mediated decrease in glutamine synthetase was similar in the absence or presence of 1 microgram of insulin/ml. Immunotitration of glutamine synthetase activity from 3T3 adipocytes indicates that the dibutyryl cyclic AMP-mediated decrease in the activity is due to a decrease in the cellular content of glutamine synthetase molecules. We studied the effects of dibutyryl cyclic AMP on the synthesis and degradation of glutamine synthetase. Synthesis rate was estimated from the incorporation of L-[35S]methionine into glutamine synthetase during a 60-min incubation period. Degradation rate was estimated from the first order disappearance of radioactivity from glutamine synthetase in 3T3 adipocytes previously incubated with L-[35S]methionine. Glutamine synthetase was isolated by immunoprecipitation followed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Incubation of 3T3 adipocytes with dibutyrl cyclic AMP resulted in a rapid decline in the apparent synthesis rate of glutamine synthetase. In addition, dibutyryl cyclic AMP treatment increased the initial rate of glutamine synthetase degradation. The half-life of glutamine synthetase was 24.5 h in control cultures and 16 h in dibutyryl cyclic AMP-treated cultures. In contrast, dibutyryl cyclic AMP had little effect on the synthesis or degradation of soluble protein. Our data indicate that the dibutyryl cyclic AMP-mediated decrease in 3T3 adipocyte glutamine synthetase activity results from a decrease in the synthesis rate and an increase in the initial degradation rate of the enzyme.  相似文献   

2.
Tribbles 3 (TRB3) is a recently recognized atypical inactive kinase that negatively regulates Akt activity in hepatocytes, resulting in insulin resistance. Recent reports link TRB3 to nutrient sensing and regulation of cell survival under stressful conditions. We studied the regulation of TRB3 by glucose, insulin, dexamethasone (Dex), and the unfolded protein response (UPR) in 3T3-L1 adipocytes and in L6 myotubes. In 3T3-L1 adipocytes, incubation in high glucose with insulin did not increase TRB3 mRNA expression. Rather, TRB3 mRNA increased fourfold with glucose deprivation and two- to threefold after incubation with tunicamcyin (an inducer of the UPR). Incubation of cells in no glucose or in tunicamcyin stimulated the expression of CCAAT/enhancer-binding protein homologous protein. In L6 myotubes, absent or low glucose induced TRB3 mRNA expression by six- and twofold, respectively. The addition of Dex to 5 mM glucose increased TRB3 mRNA expression twofold in 3T3-L1 adipocytes but decreased it 16% in L6 cells. In conclusion, TRB3 is not the mediator of high glucose or glucocorticoid-induced insulin resistance in 3T3-L1 adipocytes or L6 myotubes. TRB3 is induced by glucose deprivation in both cell types as a part of the UPR, where it may be involved in regulation of cell survival in response to glucose depletion.  相似文献   

3.
Leptin secreted mainly by adipocytes plays an important role in insulin sensitivity in metabolic syndrome. Inducible nitric oxide synthase (iNOS) in 3T3-L1 adipocytes is induced by lipopolysaccharide (LPS) and several proinflammatory cytokines such as tumor necrosis factor-alpha and interferon-gamma (IFN-gamma). Because the role of iNOS-derived nitric oxide (NO) in adipocyte function has not been fully clarified, the question that we addressed in the present study was whether iNOS-derived NO is involved in regulation of leptin secretion by adipocytes. Incubation of 3T3-L1 adipocytes for 12h with a mixture of IFN-gamma and LPS caused not only a 55% reduction in leptin secretion and a 52% reduction in leptin mRNA, but also significant induction of iNOS at both protein and mRNA levels. Inhibition of leptin secretion that had been induced by the IFN-gamma-LPS mixture was completely nullified by NOS inhibitors such as Nomega-monomethyl-L-arginine and aminoguanidine. Treatment of adipocytes with NO donors such as an NONOate and S-nitrosoglutathione produced an effect on leptin secretion similar to that of the IFN-gamma-LPS mixture. It is likely therefore that NO mediates downregulation of leptin caused by the IFN-gamma-LPS mixture in 3T3-L1 adipocytes, which suggests an important role for NO in adipocyte functions.  相似文献   

4.
Hirata T  Unoki H  Bujo H  Ueno K  Saito Y 《FEBS letters》2006,580(21):5117-5121
The tumor necrosis factor-alpha (TNF-alpha) expression has been reported to be largely dependent on the size of adipocytes. We herein investigated the gene regulation of diacylglycerol O-acyltransferase (DGAT) in order to clarify the mechanism of TNF-alpha expression induced in large adipocytes. 3T3-L1 cells were cultured in the presence of 5 mM or 25 mM glucose to generate adipocytes from which the triglyceride content differs. The expression of TNF-alpha, DGAT1, and DGAT2 were upregulated in adipocytes cultured with 25 mM glucose. Furthermore, knockdown of DGAT1 gene significantly inhibited the TNF-alpha expression. Finally, the DGAT1 expression levels were closely related to the TNF-alpha level in 3T3-L1 adipocytes.  相似文献   

5.
6.
Confluent 3T3-L1 Swiss mouse fibroblasts acquired morphological and biochemical characteristics of adipocytes when maintained in medium containing 10% calf serum and added insulin. Identical cultures maintained in the absence of added insulin did not differentiate into adipocytes. Incubation of confluent cultures for 48 h with 0.25 μm dexamethasone and 0.5 mm 1-methyl-3-isobutylxanthine yielded subsequent adipocyte differentiation when the culture medium contained 10% fetal calf serum. In contrast, differentiation did not occur when similarly treated cultures were maintained in medium containing 10% calf serum. The increase in glutamine synthetase which occurred during adipocyte differentiation was closely associated with an increased rate of triglyceride synthesis from acetate, with increased protein, and with increases in the activities of glycerol-3-P dehydrogenase and glucose-6-P dehydrogenase. Glutamine synthetase activity remained undetectable in insulin-treated confluent 3T3-C2 cells maintained under conditions which yielded high glutamine synthetase activity in 3T3-L1 cells. (3T3-C2 cells did not differentiate into adipocytes.) Glutamine accumulated in the culture medium of 3T3-L1 adipocytes, but it did not accumulate in the medium from identically treated 3T3-C2 cells. A half-maximal increase in glutamine synthetase specific activity occurred at a culture medium insulin concentration of 10 ng/ml. Neither adipocyte differentiation nor the rise in glutamine synthetase activity were substantially altered by maintaining confluent cultures in medium lacking added glutamine. Incubation of confluent 3T3-L1 cultures with 3 mml-methionine sulfone, a reversible inhibitor of glutamine synthetase, increased by two-fold both the activity and the cellular content of glutamine synthetase. Incubation of confluent 3T3-L1 cultures with 4 mml-glutamine and l-methionine-dl-sulfoximine, an irreversible inhibitor of glutamine synthetase activity, decreased glutamine synthetase activity to less than 5% of the activity in control cultures; however, neither cellular content of the enzyme nor synthesis rate of the enzyme were substantially altered. In the presence of added glutamine, neither methionine sulfone nor methionine sulfoximine had a significant effect on phenotypic adipocyte conversion. By contrast, when confluent cultures were incubated with methionine sulfoximine and no added glutamine, glutamine synthetase remained absent and there was no evidence of adipocyte conversion. Our data indicate (1) that added insulin is required for adipocyte differentiation of 3T3-L1 cells maintained in medium containing calf serum, (2) that glutamine synthetase activity increases during adipocyte conversion regardless of the culture conditions employed to achieve differentiation, and (3) that glutamine synthetase activity may be required for adipocyte differentiation when cultures are maintained in medium lacking added glutamine.  相似文献   

7.
When confluent cultures of cloned mouse 3T3-L1 cells were differentiated to adipocytes by three days of treatment with a combination of 0.5 microM dexamethasone and 0.5 mM 1-methyl-3-isobutylxanthine, the S100 protein content in the cells increased markedly, as determined by a sensitive immunoassay system. The S100 protein induced in the cell was the alpha alpha form (S100ao), which is the predominant form of S100 protein in mouse adipose tissue. The S100ao concentration in preadipocytes was about 1-3 ng/mg protein, while the concentration in differentiated adipocytes was 60-200 ng/mg protein. The immunoblotting test of the crude extract of adipocytes confirmed that the immunoreactive substance in the cells was the alpha subunit of S100 protein. The treatment with 1-methyl-3-isobutylxanthine or dexamethasone alone neither elicited the S100 protein induction nor triacylglycerols accumulation in the cells. The accumulation of triacyglycerols in the cells was always preceded by the induction of S100ao protein under conditions where the differentiation to adipocytes was elicited. The induction of S100ao protein and accumulation of triacylglycerols in the cells treated with dexamethasone and 1-methyl-3-isobutylxanthine were inhibited by the addition of antimicrotubular drugs, colchicine and vinblastine, but not by cytochalasin B, an antimicrofilament drug. S100ao protein in 3T3-L1 adipocytes was released by incubation with a lipolytic hormone, adrenocorticotropic hormone or catecholamines, in a cyclic-AMP-dependent manner as observed with rat epididymal fat pads [Biochim. Biophys. Acta (1986) 889, 84-90]. These results also suggest that S100 protein may participate in the function of adipocytes.  相似文献   

8.
We have recently identified the winged helix/forkhead gene Foxc2 as a key regulator of adipocyte metabolism that counteracts obesity and diet-induced insulin resistance. This study was performed to elucidate the hormonal regulation of Foxc2 in adipocytes. We find that TNF alpha and insulin induce Foxc2 mRNA in differentiated 3T3-L1 cells with the kinetics of an immediate early response (1-2 h with 100 ng/ml insulin or 5 ng/ml TNF alpha). This induction is, in both cases, attenuated by the PI3K inhibitor wortmannin as well as the MAPK kinase inhibitor PD98059. Furthermore, we show that stimulation of 3T3-L1 adipocytes with phorbol-12-myristate-13-acetate or 8-(4-chlorophenyl)thio-cAMP induces the expression of Foxc2. Interestingly, we find that the basal level of Foxc2 mRNA is down-regulated whereas hormonal responsiveness increases during differentiation of 3T3-L1 from preadipocytes to adipocytes. At the protein level, immunoblots with Foxc2 antibody demonstrated an induction of Foxc2 by insulin and TNF alpha in nuclear extracts of 3T3-L1 adipocytes. EMSA of nuclear proteins from phorbol-12-myristate-13-acetate- and TNF alpha-treated 3T3-L1 adipocytes using a forkhead consensus oligonucleotide revealed specific binding of a Foxc2/DNA complex. In conclusion, our data suggest that insulin and TNF alpha regulate the expression of Foxc2 via a PI3K- and ERK 1/2-dependent pathway in 3T3-L1 adipocytes. Also, signaling pathways downstream of PKA and PKC induce the expression of Foxc2 mRNA.  相似文献   

9.
10.
11.
Genistein affects lipogenesis and lipolysis in isolated rat adipocytes   总被引:2,自引:0,他引:2  
Genistein is a phytoestrogen found in several plants eaten by humans and food-producing animals and exerting a wide spectrum of biological activity. In this experiment, the impact of genistein on lipogenesis and lipolysis was studied in isolated rat adipocytes. Incubation of the cells (106 cells/ml in plastic tubes at 37°C with Krebs-Ringer buffer, 90 min) with genistein (0.01, 0.3, 0.6 and 1 mM) clearly restricted (1 nM) [U-14C]glucose conversion to total lipids in the absence and presence of insulin. When [14C]acetate was used as the substrate for lipogenesis, genistein (0.01, 0.1 and 1 mM) exerted a similar effect. Thus, the anti-lipogenetic action of genistein may be an effect not only of alteration in glucose transport and metabolism, but this phytoestrogen can also restrict the fatty acids synthesis and/or their estrification. Incubation of adipocytes with estradiol at the same concentrations also resulted in restriction of lipogenesis, but the effect was less marked. Genistein (0.1 and 1 mM) augmented basal lipolysis in adipocytes. This process was strongly restricted by insulin (1 μM) and H-89 (an inhibitor of protein kinase A; 50 μM) and seems to be primarily due to the inhibitory action of the phytoestrogen on cAMP phosphodiesterase in adipocytes. Genistein at the smallest concentration (0.01 mM) augmented epinephrine-stimulated (1 μM) lipolysis but failed to potentiate lipolysis induced by forskolin (1 μM) or dibutyryl-cAMP (1 mM). These results suggest genistein action on the lipolytic pathways before activation of adenylate cyclase. The restriction of lipolysis stimulated by several lipolytic agents – epinephrine, forskolin and dibutyryl-cAMP were observed when adipocytes were incubated with genistein at highest concentrations (0.1 and 1 mM). These results prove the inhibitory action of this phyestrogen on the final steps of the lipolytic cascade, i.e. on protein kinase A or hormone sensitive lipase. Estradiol, added to the incubation medium, did not affect lipolysis. It can be concluded that genistein significantly affects lipogenesis and lipolysis in isolated rat adipocytes.  相似文献   

12.
Glucose-6-phosphate dehydrogenase (G6PD) produces cellular NADPH, which is required for the biosynthesis of fatty acids and cholesterol. Although G6PD is required for lipogenesis, it is poorly understood whether G6PD in adipocytes is involved in energy homeostasis, such as lipid and glucose metabolism. We report here that G6PD plays a role in adipogenesis and that its increase is tightly associated with the dysregulation of lipid metabolism and insulin resistance in obesity. We observed that the enzymatic activity and expression levels of G6PD were significantly elevated in white adipose tissues of obese models, including db/db, ob/ob, and diet-induced obesity mice. In 3T3-L1 cells, G6PD overexpression stimulated the expression of most adipocyte marker genes and elevated the levels of cellular free fatty acids, triglyceride, and FFA release. Consistently, G6PD knockdown via small interfering RNA attenuated adipocyte differentiation with less lipid droplet accumulation. Surprisingly, the expression of certain adipocytokines such as tumor necrosis factor alpha and resistin was increased, whereas that of adiponectin was decreased in G6PD overexpressed adipocytes. In accordance with these results, overexpression of G6PD impaired insulin signaling and suppressed insulin-dependent glucose uptake in adipocytes. Taken together, these data strongly suggest that aberrant increase of G6PD in obese and/or diabetic subjects would alter lipid metabolism and adipocytokine expression, thereby resulting in failure of lipid homeostasis and insulin resistance in adipocytes.  相似文献   

13.
14.
Obesity is a serious health problem and a major risk factor for the onset of several diseases such as heart disease, diabetes, stroke and cancer. The conversion of white adipocytes to brown-like adipocytes, also called beige or brite adipocytes, by pharmacological and dietary compounds has gained attention as an effective treatment for obesity. Cyanidin-3-glucoside (Cy3G), a polyphenolic compound contained in black soybean, blueberry and grape, has several antiobesity effects. However, there are no reports on the role of Cy3G in the induction of differentiation of preadipocytes to beige adipocytes and corresponding phenotypes. Here, the formation of beige adipocyte phenotypes following treatment with Cy3G was evaluated using 3T3-L1 adipocytes. Cy3G induced phenotypic changes to white adipocytes, such as increased multilocular lipid droplets and mitochondrial content. Additionally, the expression of mitochondrial genes (TFAM, SOD2, UCP-1 and UCP-2), UCP-1 protein and beige adipocyte markers (CITED1 and TBX1) in 3T3-L1 adipocytes was increased by Cy3G. Furthermore, Cy3G promoted preadipocyte differentiation by up-regulating of C/EBPβ through the elevation of the intracellular cAMP levels. These results indicated that Cy3G elevates the intracellular cAMP levels, which induces beige adipocyte phenotypes. This is the first report on the effect of Cy3G on induction of differentiation of preadipocytes into beige adipocyte phenotypes.  相似文献   

15.
The regulation of avian lipoprotein lipase by dibutyryl cyclic AMP in cultured adipocytes was studied with quantitative and specific methods for the measurements of enzyme catalytic activity, enzyme protein mass, and immunoadsorption of labeled enzyme. Incubation of adipocytes in 0.5 mM dibutyryl cyclic AMP plus 0.5 mM theophylline results in a time-dependent decrease in cell lipoprotein lipase catalytic activity. The activity is decreased by 70% in 4 h and over 90% by 12 h. The decrease in cellular catalytic activity is due to a decrease in both enzyme content and enzyme catalytic efficiency. 4 h after exposure of adipocytes to cAMP, enzyme protein was decreased from 3.58 +/- 0.5 to 1.92 +/- 0.1 ng/dish and specific activity from 15.1 +/- 2.1 to 8.4 +/- 1.1 nmol/ng. In the presence of 0.5 mM theophylline, the dibutyryl cyclic AMP-mediated decrease in lipoprotein lipase activity was half-maximal at less than 25 microM dibutyryl cyclic AMP. The rate of lipoprotein lipase synthesis was estimated by measuring the incorporation of L-[35S]methionine into enzyme protein during 30 min. A method for the quantitative immunoadsorption of lipoprotein lipase from cell lysates was developed. Utilizing this immunoadsorption technique, the rate of incorporation of L-[35S]methionine into lipoprotein lipase was 0.0026 +/- 0.002%, when expressed as a percentage of that incorporated into total trichloroacetic acid-precipitable counts. By 2 h after exposure of adipocytes to 0.5 mM dibutyryl cAMP, the relative synthesis rate had already decreased to 64 +/- 4% of the control rate. After 16 h the synthesis rate was 43.2 +/- 13.8% of the control rate. The observed decreased synthesis rate could account for most of the decreased cellular enzyme content and diminished enzyme secretion rate.  相似文献   

16.
In this article, we investigated the in vitro potential beneficial effects of the anthocyanin cyanidin-3-O-glucoside (C3G) on inflammation and insulin resistance markers induced by palmitic acid (PA) in human SGBS adipocytes. Results demonstrated that PA reduced insulin sensitivity in SGBS cells with a significant inhibition of Akt phosphorylation, with a higher sensitivity to PA than murine 3T3-L1 adipocytes, GLUT-1 and GLUT-4 glucose transporters and the enzyme hexokinase-II. C3G pretreatment (1–20 μM) reverted these effects. Moreover, we demonstrated, for the first time in human adipocytes, that cells exposure to PA induced gene expression of proinflammatory cytokines TNF-α, IL-6, IL-8, and MCP-1. Cells pretreatment with C3G resulted in a reduction in mRNA levels starting at very low concentrations (1 μM). In conclusion, this study highlights the effects of PA on inflammation and insulin resistance markers in human adipocytes, and confirm the role of C3G in the prevention of lipotoxicity in dysfunctional adipocytes.  相似文献   

17.
Fong JC  Kao YS  Tsai H  Ho LT 《Cellular signalling》2001,13(7):491-497
The mechanism of enhancing glucose transport by prolonged endothelin-1 (ET-1) treatment of 3T3-L1 adipocytes was examined. Western and Northern blot analyses indicated that ET-1 increased the amount of both GLUT1 protein and mRNA. The degradation rate of GLUT1 mRNA as measured in the presence of actinomycin D, nevertheless, was not significantly altered by ET-1. Whereas various inhibitors for distinct signalling pathways were tested, only the mitogen-activated protein kinase (MAPK) kinase inhibitor, PD98059, was found to decrease significantly the enhancing effect of ET-1. Similar extent of inhibition was observed in cells pretreated with pertussis toxin (PT). Immunoblot analysis revealed that ET-1 may stimulate a transient phosphorylation of p42/p44 MAPK and both PT and PD98059 inhibited this stimulation. In addition, the effect of ET-1 on GLUT1 mRNA accumulation was inhibited by PD98059 and cycloheximide, implying that a trans-activation was involved. Taken together, these results suggest that ET-1 may induce GLUT1 gene expression by a MAPK-dependent mechanism.  相似文献   

18.
Objective: To investigate the ability of 1,25(OH)2D3 (D) and genistein (G), alone and in combination, to inhibit adipogenesis and induce apoptosis in 3T3‐L1 adipocytes. Methods and Procedures: 3T3‐L1 preadipocytes and mature adipocytes were incubated with various concentrations of D and G, alone and in combination, for 48 h. Viability was determined using the Cell Titer 96 Aqueous One Solution Cell Proliferation Assay. Post‐confluent preadipocytes were incubated with D and G for up to 6 days during adipogenesis and lipid content was quantified by Nile Red dye; apoptosis was quantified by measurement of single‐stranded DNA. Expression of adipocyte‐specific proteins and VDR was analyzed by western blotting. Results: Combining D and G did not cause an enhanced effect on cell viability in either preadipocytes or mature adipocytes. In maturing preadipocytes, D at 0.5 nmol/l (D0.5) increased apoptosis by 47 ± 10.25% (P < 0.05) and inhibited lipid accumulation by 28 ± 10% (P < 0.001), while G at 25 μmol/l (G25) had no significant effect. However, D+G caused an enhanced apoptosis by 136 ± 12.6% (P < 0.001) and enhanced inhibition of lipid accumulation by 82.46 ± 2.95% (P < 0.001). Similarly, D0.5 alone decreased adipose‐specific gene 422 (aP2) expression to 34.2 ± 2.3% and increased VDR expression levels by 41.8 ± 11% (P < 0.001), but G25 showed no effect. However, D0.5+G25 decreased aP2 expression to 52 ± 4.2% (P < 0.05) and increased VDR expression levels by 131 ± 14.5% (P < 0.0001). Discussion: These findings suggest that combining 1,25(OH)2D3 with genistein results in an enhanced inhibition of lipid accumulation and induction of apoptosis in maturing 3T3‐L1 preadipocytes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号