首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Structure and biosynthesis of prokaryotic glycoproteins   总被引:3,自引:0,他引:3  
F Wieland 《Biochimie》1988,70(11):1493-1504
Glycoproteins as components of cell surfaces are not restricted to eukaryotes. The prokaryotic glycoprotein studied in greatest detail so far is the cell surface glycoprotein of the archaebacterium Halobacterium halobium. This bacterial glycoprotein contains 3 different types of glycoconjugates, and each type of glycoconjugate involves a different carbohydrate-protein linkage unit: 1) One glycosaminoglycan chain, constructed from a repeating sulfated pentasaccharide block, is linked to one protein molecule via the novel N-glycosyl linkage unit asparaginyl-N-acetylgalactosamine. 2) Ten sulfated oligosaccharides that contain glucose, glucuronic acid and iduronic acid are bound to the protein via the hitherto unknown N-glycosyl linkage unit asparaginylglucose. 3) About 15 disaccharides, glucosylgalactose, are O-glycosyl-linked to a cluster of threonine residues close to the C-terminus of the core protein. The overall structure of the cell surface glycoprotein of halobacteria is thus reminiscent of animal proteoglycans and a functional role of the glycosaminoglycan chain in maintaining the rod shape of halobacteria is discussed. Biosynthesis of the two N-glycosyl linkage units involves dolichol monophosphate and dolicholdiphosphate-linked saccharide precursors. Sulfation and epimerization of the glycoconjugates occur at the lipid-linked level and the mature saccharides are transferred to the protein core on the cell surface. The sulfated oligosaccharides that finally become bound to asparagine via glucose are transiently methylated at their lipid-linked stage and this transient chemical modification seems to be required for the biosynthesis of the corresponding N-glycosyl bond.  相似文献   

2.
Halobacterial flagellins are sulfated glycoproteins   总被引:21,自引:0,他引:21  
The cell-surface glycoprotein of Halobacteria contains oligosaccharides of the type Glc4----1GlcA4----1GlcA4----1GlcA (where GlcA indicates glucuronic acid) with a sulfate group attached to each of the GlcA residues. We report here that in addition to this cell-surface glycoprotein, the halobacterial flagellar proteins (recently described by Alam, M., and Oesterhelt, D. (1984) J. Mol. Biol. 176, 459-475) also contain the same type of sulfated oligosaccharides. These flagellins have the following features. All of the individual flagellar proteins contain identical sulfated saccharide moieties linked to the amido nitrogen of Asn through a Glc residue (the novel type of N-glycosidic linkage that has been found in the cell-surface glycoprotein from Halobacteria (Wieland, F., Heitzer, R., and Schaefer, W. (1983) Proc. Natl. Acad. Sci. U.S.A. 80, 5470-5474)). The amino acid sequence of one carbohydrate-binding region is Gln-Ala-Ala-Gly-Ala-Asp-Asn-Jle-Asn-Leu-Thr-Lys. This surrounding sequence CHO is consistent with the general formula Asn-X-Thr(Ser), common to all N-linked glycopeptides determined so far. Biosynthesis of flagellar glycoconjugates involved sulfated oligosaccharides linked to dolichol monophosphate. The individual glycoproteins making up the flagella are structurally closely related to one another.  相似文献   

3.
The rat osteosarcoma cell line (UMR 106-01) synthesizes and secretes relatively large amounts of a sulfated glycoprotein into its culture medium (approximately 240 ng/10(6) cells/day). This glycoprotein was purified, and amino-terminal sequence analysis identified it as bone sialoprotein (BSP). [35S]Sulfate, [3H]glucosamine, and [3H]tyrosine were used as metabolic precursors to label the BSP. Sulfate esters were found on N- and O-linked oligosaccharides and on tyrosine residues, with about half of the total tyrosines in the BSP being sulfated. The proportion of 35S activity in tyrosine-O-sulfate (approximately 70%) was greater than that in N-linked (approximately 20%) and O-linked (approximately 10%) oligosaccharides. From the deduced amino acid sequence for rat BSP (Oldberg, A., Franzén, A., and Heineg?rd, D. (1988) J. Biol. Chem. 263, 19430-19432), the results indicate that on average approximately 12 tyrosine residues, approximately 3 N-linked, and approximately 2 O-linked oligosaccharides are sulfated/molecule. The carboxyl-terminal quarter of the BSP probably contains most, if not all, of the sulfated tyrosine residues because this region of the polypeptide contains the necessary requirements for tyrosine sulfation. Oligosaccharide analyses indicated that for every N-linked oligosaccharide on the BSP, there are also approximately 2 hexa-, approximately 5 tetra-, and approximately 2 trisaccharides O-linked to serine and threonine residues. On average, the BSP synthesized by UMR 106-01 cells would contain a total of approximately 3 N-linked and approximately 25 of the above O-linked oligosaccharides. This large number of oligosaccharides is in agreement with the known carbohydrate content (approximately 50%) of the BSP.  相似文献   

4.
The cell surface glycoprotein of Halobacteria contains two different types of sulfated saccharides: hexuronic acid-containing oligosaccharides linked to the protein via asparaginylglucose, and a serially repeated saccharide unit containing amino sugars that resembles the animal glycosaminoglycans. Here we report that 1) the sulfated repeating unit saccharide is linked to the cell surface glycoprotein via asparaginyl-N-acetylgalactosamine, 2) the amino acid sequence surrounding this linkage region is -Asn-Ala-Ser-, and thus in agreement with the acceptor sequence ASN-X-Thr(Ser) common to all eucaryotic N-glycosidically bound saccharides determined so far; 3) in addition to galactose, galacturonic acid, N-acetylglucosamine, and N-acetylgalactosamine, the methylated hexuronic acid 3-O-methylgalacturonic acid occurs as a stoichiometric constituent of the sulfated building block of the glycosaminoglycan chain.  相似文献   

5.
The asparagine-linked oligosaccharides on the pituitary glycoprotein hormones lutropin (LH), follitropin (FSH), and thyrotropin (TSH) consist of a heterogeneous array of neutral, sulfated, sialylated, and sulfated/sialylated structures. In the accompanying paper (Green, E.D., and Baenziger, J.U. (1987) J. Biol. Chem. 262, 25-35), we elucidated the structures of the anionic asparagine-linked oligosaccharides found on the bovine, ovine, and human pituitary glycoprotein hormones. In this study, we determined the relative quantities of the various asparagine-linked oligosaccharides on LH, FSH, and TSH from these three animal species. The proportions of sulfated versus sialylated oligosaccharides varied markedly among the different hormones. Both hormone- and animal species-specific differences in the types and distributions of sulfated, sialylated, and sulfated/sialylated structures were evident. In particular, LH and FSH, which are synthesized in the same pituitary cell and bear alpha-subunits with the identical amino acid sequence, contained significantly different distributions of sulfated and sialylated oligosaccharides. For all three animal species, the ratio of sialylated to sulfated oligosaccharides differed by greater than 10-fold for LH and FSH, with sulfated structures dominating on LH and sialylated structures on FSH. Sialylated oligosaccharides were also heterogeneous with respect to sialic acid linkage (alpha 2,3 versus alpha 2,6). In addition to differences in the proportion of sulfated and sialylated structures on LH and FSH, there were site-specific variations in the amount of mono- and disulfated oligosaccharides at different glycosylation sites on LH alpha-beta dimers. The differences in oligosaccharide structures among the various pituitary glycoprotein hormones as well as among the various glycosylation sites within a single hormone support the hypothesis that glycosylation may serve important functional roles in the expression and/or regulation of hormone bioactivity.  相似文献   

6.
The structures of high molecular weight sulfated oligosaccharide chains in mucins purified from the sputum of a patient with cystic fibrosis and blood group H determinant were established. Reduced oligosaccharides released by treatment with alkaline borohydride were separated by ion exchange chromatography on DEAE-Agarose and a fraction containing multisulfated chains was further purified by lectin affinity chromatography to completely remove small amounts of sialylated chains. A major sulfated oligosaccharide fraction containing chains with an average of 160 to 200 sugar residues was isolated by gel filtration on BioGel P-10 columns and individual subfractions were characterized by methylation analysis, periodate oxidation and sequential glycosidase digestion before and after desulfation. Carbohydrate analysis yielded Fuc, Gal and GldNAc in a ratio of 1:2:2.1 and only one galactosaminitol residue for every 160-to 200 sugar residues. The average molecular weight of oligosaccharide chains in these fractions was between 27,000 and 40,000 daltons. Structural analysis showed that these high molecular weight chains contained varying amounts of the repeating unit shown in the following oligosaccharide. Only one in about every 10 repeating units contained sulfate esters.Several shorter chains which contain 2 to 3 sulfate esters were also isolated from this multisulfated oligosaccharide fraction. The structures proposed for these oligosaccharides indicate that they are lower molecular weight chains with the same general structure as those found in the high molecular weight sulfated oligosaccharides. Taken collectively, the results of these studies show that a major sulfated oligosaccharide fraction in resporatory mucin purified from the mucus of patients with cystic fibrosis contains high molecular weight branched chains that consist of a repeating oligosaccharide sequence with sulfate linked to the 6 positions of galactose and possibly GlcNAc residues in the side chains.  相似文献   

7.
The N-linked oligosaccharides found on the lysosomal enzymes from Dictyostelium discoideum are highly sulfated and contain methylphosphomannosyl residues (Gabel, C. A., Costello, C. E., Reinhold, V. N., Kurtz, L., and Kornfeld, S. (1984) J. Biol. Chem. 259, 13762-13769). Here we report studies done on the structure of N-linked oligosaccharides found on proteins secreted during growth, a major portion of which are lysosomal enzymes. Cells were metabolically labeled with [2-3H]Man and 35SO4 and a portion of the oligosaccharides were released by a sequential digestion with endoglycosidase H followed by endoglycosidase/peptide N-glycosidase F preparations. The oligosaccharides were separated by anion exchange high performance liquid chromatography into fractions containing from one up to six negative charges. Some of the oligosaccharides contained only sulfate esters or phosphodiesters, but most contained both. Less than 2% of the oligosaccharides contained a phosphomonoester or an acid-sensitive phosphodiester typical of the mammalian lysosomal enzymes. A combination of acid and base hydrolysis suggested that most of the sulfate esters were linked to primary hydroxyl groups. The presence of Man-6-SO4 was demonstrated by the appearance of 3,6-anhydromannose in acid hydrolysates of base-treated, reduced oligosaccharides. These residues were not detected in acid hydrolysates without prior base treatment or in oligosaccharides first treated by solvolysis to remove sulfate esters. Based on high performance liquid chromatography quantitation of percentage of 3H label found in 3,6-anhydromannose, it is likely that Man-6-SO4 accounts for the majority of the sulfated sugars in the oligosaccharides released from the secreted glycoproteins.  相似文献   

8.
Lutropin (LH), follitropin (FSH), and thyrotropin (TSH) from pituitary and human chorionic gonadotropin (hCG) from placenta are a family of glycoprotein hormones, each with an alpha and beta subunit. The alpha subunits of all four hormones have the same amino acid sequence, whereas biological specificity is determined by their unique beta subunits. The carbohydrate compositions of these hormones indicate the structures of their Asn-linked oligosaccharides are not identical. Sulfate is present on most, but not all, of these hormones, and for bovine LH is attached to GalNAc (Green, E.D., van Halbeek, H., Boime, I., and Baenziger, J.U. (1985) J. Biol. Chem. 260, 15623-15630). We used a reconstituted cell-free system to study sulfation of bovine (b) and human (h) glycoprotein hormones and its relationship to glycosylation. Exogenously added bLH, bTSH, bFSH, hLH, and hTSH are sulfated exclusively on the oligosaccharides of both alpha and beta subunits. The distribution of sulfated oligosaccharide structures varies among the hormones and appears to result from differences in the extent and/or pathway of oligosaccharide processing. Significant amounts of disulfated, dibranched complex oligosaccharides are present on all the sulfated hormones. Human FSH is not susceptible to sulfation unless first treated with neuraminidase. The sulfated oligosaccharides obtained from bovine FSH and desialylated human FSH are unlike those of the other hormones. Therefore, there is differential processing of the oligosaccharides on pituitary hormones. For FSH and LH, which are believed to be synthesized in the same cell, we would suggest that the unique beta subunits may regulate processing of all oligosaccharides present on the alpha-beta dimers.  相似文献   

9.
The O-linked oligosaccharides of the cloned, murine cytotoxic T cell line B6.1.SF.1 were compared with the corresponding oligosaccharides from a Vicia villosa lectin-resistant mutant of B6.1.SF.1 called VV6 (Conzelmann, A., Pink, R., Acuto, O., Mach, J.-P., Dolivo, S., and Nabholz, M. (1980) Eur. J. Immunol. 10, 860-868). The VV6 mutant cells are deficient in binding sites for this GalNAc-specific lectin. Cells were grown in the presence of [3H]glucosamine and [3H] galactose to label the glycoproteins, and the desialyzed, alkaline borohydride-released oligosaccharides were isolated and characterized. The VV6 cells contained a series of O-linked oligosaccharides ranging in size from a disaccharide to a pentasaccharide. These were composed of galactose, N-acetylglucosamine, and N-acetylhexosaminitol, the latter sugar being derived from the reducing terminus. The predominant oligosaccharide had the partial structure Gal beta GlcNAc beta-(Gal beta)N-acetylhexosaminitol. In contrast, the analogous oligosaccharides of the parental cells contained additional beta-linked GalNAc residues located at nonreducing termini. The smallest of these had the structure GalNAc beta 1,4Gal beta-N-acetylhexosaminitol. Neither cell line contained significant amounts of terminal GalNAc linked to Ser/Thr which is the main binding site for the V. villosa B4 lectin on Tn erythrocytes (Tollefsen, S. R., and Kornfeld, R. (1983) J. Biol. Chem. 258, 5172-5176). These findings suggest that the major binding sites for the V. villosa lectin on the parental cytotoxic T cell line consist of structures containing beta 1,4-linked GalNAc residues at the nonreducing ends of conventional O-linked structures. The VV6 cells lack these beta-linked GalNAc residues, and this may account for their deficiency of V. villosa lectin-binding sites. In the following paper (Conzelmann, A., and Kornfeld, S. (1984) J. Biol. Chem. 259, 12536-12542), we demonstrate that the VV6 cells are missing the N-acetylgalactosaminyltransferase that is responsible for the synthesis of these unusual oligosaccharides.  相似文献   

10.
We have reported the presence of N-acetylgalactosamine linked beta 1,4 to galactose on O-linked oligosaccharides of a cloned murine cytotoxic T cell line and the absence of these residues from the O-linked structures of a Vicia villosa lectin-resistant mutant line, VV6, derived from parental B6.1.SF.1 cells (Conzelmann, A., and Kornfeld, S. (1984) J. Biol. Chem. 259, 12528-12535). This study shows that B6.1.SF.1 cells contain an enzyme which transfers N-acetylgalactosamine from UDP-GalNAc onto the O-linked tetrasaccharides of human glycophorin A, giving rise to pentasaccharides which contain beta-glycosidically linked N-acetylgalactosamine. Desialylated glycophorin was inactive as an acceptor. The enzyme also transfers N-acetylgalactosamine to the N-linked oligosaccharides of the Tamm-Horsfall glycoprotein. This glycoprotein is known to contain N-linked oligosaccharides with beta-linked N-acetylgalactosamine residues which constitute the Sda blood group determinant. This N-acetylgalactosaminyltransferase could not be detected in VV6 cells which can account for the lack of beta-linked N-acetylgalactosamine residues on its O-linked oligosaccharides. The two cell lines have comparable levels of UDP-GalNAc:apomucin N-acetylgalactosaminyltransferase, demonstrating that the enzyme deficiency in VV6 cells is selective. Both cell lines have a similar glycolipid content, with the major component being asialo-GM1. Since this glycolipid contains N-acetylgalactosamine linked beta 1,4 to galactose, it would appear that the N-acetylgalactosyltransferase involved in the biosynthesis of glycolipids is different from the UDP-GalNAc:glycoprotein N-acetylgalactosaminyltransferase. An independently derived murine CTL line also contains the UDP-GalNAc:glycoprotein N-acetylgalactosaminyltransferase, suggesting that the expression of this enzyme is a common characteristic of this type of cell line.  相似文献   

11.
Structures of the N-linked oligosaccharides of a recombinant soluble form of human CD4 glycoprotein (sCD4) have been investigated by enzymic microsequencing. The glycoprotein has two N-glycosylation sites, Asn271 and Asn300, at both of which evidence for the presence of complex type biantennary sialo-oligosaccharides has been obtained previously by mass spectrometric analyses [Carr, S.A., Hemling, M.E., Folena-Wasserman, G., Sweet, R.W., Anumula, K., Barr, J.R., Huddleston, M.J. & Taylor, P. (1989) J. Biol. Chem. 264, 21,286-21,295]. Among oligosaccharides released from sCD4 by hydrazinolysis and labelled with NaB3H4, neutral (12.8%) and acidic (87.2%) oligosaccharides were detected by paper electrophoresis. The latter were rendered neutral following sialidase treatment indicating that acidity was due exclusively to the presence of sialic acid residues. By enzymic microsequencing of the sialidase-treated oligosaccharides (fractionated on affinity columns of Ricinis communis agglutinin 120 and concanavalin A) in conjunction with methylation data from the earlier study, 14 sequences were identified. These accounted for over 80% of the sialidase-treated oligosaccharides of sCD4 as follows: [formula: see text] where +/- indicates residues present on only a proportion of chains. The spectrum of oligosaccharide structures released from each glycosylation site was assessed as being similar to that of total oligosaccharides on the basis of their chromatographic profiles on the lectin columns and on Bio-Gel P-4.  相似文献   

12.
Four oligosaccharide fractions were isolated and purified from the kidney of goats affected with beta-mannosidosis by repeating Bio-Gel P-2 column chromatography. The structural characterization of the purified oligosaccharide fractions (oligosaccharides A, B, C1,2, and D) included sugar composition analysis by gas chromatography, sugar sequence analysis by mass spectrometry of their permethylated alditols, and by methylation analysis as well as anomeric configuration studies by exoglycosidase digestions. Oligosaccharides A and B were the major oligosaccharides accumulating in the kidney and were elucidated as Man beta 1-4GlcNAc and Man beta 1-4GlcNAc beta 1-4GlcNAc, respectively (Matsuura, F., Laine, R. A., and Jones, M. Z. (1981) Arch. Biochem. Biophys. 211, 485-493). Oligosaccharide C1,2 was a mixture of two tetrasaccharides and oligosaccharide D was a pentasaccharide. The proposed structures are: oligosaccharide C1, Man beta 1-4GlcNAc beta 1-4Man beta 1-4GlcNAc; oligosaccharide C2, Man alpha 1-6Man beta 1-4GlcNAc beta 1-4GlcNAc; oligosaccharide D, Man beta 1-4GlcNAc beta 1-4Man beta 1-4GlcNAc beta 1-4GlcNAc. Tetrasaccharide C1 and pentasaccharide D are heretofore undiscovered oligosaccharides. There is no precedent for these structures in glycoproteins or other glycoconjugates. One possibility which accounts for the presence of oligosaccharide C1 and D is that a bisecting N-acetylglucosamine (the beta-N-acetylglucosamine residue linked at the C-4 position of the beta-mannosyl residue of the trimannosyl core of the asparagine-linked sugar chains) is linked by a beta-mannosyl residue. Moreover, the detection of oligosaccharides containing two N-acetylglucosamine residues at the reducing terminus, together with those containing a single N-acetylglucosamine residue, is further corroboration of species-specific differences in glycoprotein catabolic pathways (Hancock, L. W., and Dawson, G. (1984) Fed. Proc. 43, 1552) or in glycoprotein structures.  相似文献   

13.
In the preceding paper (Roux, L., Holojda, S., Sundblad, G., Freeze, H. H., and Varki, A. (1988) J. Biol. Chem. 263, 8879-8889) we described the metabolic labeling and isolation of sulfated N-linked oligosaccharides from mammalian cell lines. All cell lines studied contained a class of sulfated sialylated complex-type chains with 2-6 negative charges. In this paper, we show that bovine pulmonary arterial endothelial (CPAE) and human erythroleukemia (K562) cell lines also contain a class of more highly charged sulfated but less sialylated oligosaccharides. These molecules were further characterized by ion exchange chromatography and various enzymatic and chemical treatments. In both cell lines they contained greater than 6 negative charges, but those from K562 were even more highly charged than those from CPAE. Nitrous acid, heparinase, and heparitinase degradation of K562 oligosaccharides released 88, 64, and 78%, respectively, of 35S label. Combined digestion with the two enzymes resulted in 87% release. The corresponding values for CPAE were 48, 25, and 50% (60% for the two enzymes together). Chondroitinase ABC (or AC) digestion of K562 and CPAE oligosaccharides released 10 and 5%, respectively. About 30% of the 35S-labeled oligosaccharides from CPAE were sensitive to endo-beta-galactosidase, indicating that poly-N-acetyl-lactosamine structures were present on some chains. Highly charged [3H]mannose-labeled sulfated oligosaccharides from CPAE cells became neutral after treatment with heparinase/heparitinase but were resistant to Pronase, further proving that glycosaminoglycan (GAG)-like chains were directly attached to N-linked oligosaccharides. Such neutralized oligosaccharides did not bind to concanavalin A-Sepharose, but some interacted with phytohemagglutinin L4, indicating that they were bi-, tri-, or tetra-antennary complex-type chains. Thus, K562 and CPAE cells contain different types of GAG chains directly attached to asparagine-linked oligosaccharides. Such molecules were not found in many other cell lines that synthesize the more typical O-linked GAG chains. This suggests that the occurrence of these novel N-linked chains is not a random event resulting from accidental initiation of GAG chain synthesis on N-linked intermediates in the Golgi apparatus.  相似文献   

14.
We have elucidated the structures of the anionic asparagine-linked oligosaccharides present on the glycoprotein hormones lutropin (luteinizing hormone), follitropin (follicle-stimulating hormone), and thyrotropin (thyroid-stimulating hormone). Purified hormones, isolated from bovine, ovine, and human pituitaries, were digested with N-glycanase, and the released oligosaccharides were reduced with NaB[3H]4. The 3H-labeled oligosaccharides from each hormone were then fractionated by anion-exchange high performance liquid chromatography (HPLC) into populations differing in the number of sulfate and/or sialic acid moieties. The anionic oligosaccharides were further purified as well as structurally characterized using a variety of preparative and analytical techniques, including HPLC, endo- and exoglycosidase digestions, and lectin affinity chromatography. The sulfated, sialylated, and sulfated/sialylated structures, which together comprised 67-90% of the asparagine-linked oligosaccharides on the pituitary glycoprotein hormones, were highly heterogeneous and displayed hormone- as well as animal species-specific features. The sulfated oligosaccharides consisted of hybrid and complex type oligosaccharides with one or two branches terminating in SO4-4GalNAc beta 1,4. In contrast, the sialylated oligosaccharides consisted of a wide array of differing structures containing two or three peripheral branches as well as one, two, or three sialic acid moieties. A previously uncharacterized dibranched oligosaccharide, bearing one residue each of sulfate and sialic acid, was found on all of the hormones except bovine lutropin. In this study, we describe the purification and detailed structural characterizations of the sulfated, sialylated, and sulfated/sialylated oligosaccharides found on lutropin, follitropin, and thyrotropin from several animal species. In the accompanying paper (Green, E.D., and Baenziger, J.U.(1987) J. Biol. Chem. 262, 36-44) we demonstrate the marked quantitative differences among the pituitary glycoprotein hormones in terms of sulfation, sialylation, and underlying oligosaccharide structures, as well as provide evidence for site-specific synthesis of oligosaccharides on individual hormones.  相似文献   

15.
The asparagine-linked sugar chains of fibronectin purified from human placenta were quantitatively released as oligosaccharides by hydrazinolysis. After N-acetylation, they were converted to radioactive oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharides were fractionated by their charge on an anion-exchange column chromatography. All of the acidic oligosaccharides could be converted to neutral oligosaccharides by sialidase digestion. These oligosaccharides were then fractionated by serial affinity chromatography using immobilized lectin columns. Study of each oligosaccharide by sequential exoglycosidase digestion and methylation analysis revealed the following information as to the structures of the sugar chains of human placental fibronectin: 1) nine sugar chains are included in one molecule; 2) all sialic acid residues are exclusively linked at the C-3 position of the galactose residues; 3) bi-, tri-, and tetraantennary complex-type oligosaccharides with the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)-GlcNac as their cores were found; 4) the bisecting N-acetylglucosamine residue and the Gal beta 1----4GlcNAc beta 1----repeating groups are included in some of the sugar chains.  相似文献   

16.
Structures of the asparagine-linked sugar chains of laminin   总被引:13,自引:0,他引:13  
This investigation describes the isolation and characterization of oligosaccharides of the basement membrane glycoprotein, laminin. Pronase-released glycopeptides of isolated laminin, from a mouse Engelbreth-Holm-Swarm tumor, were fractionated using a combination of gel permeation chromatography and Con A-Sepharose affinity chromatography. The glycopeptides were analyzed for sugar linkage patterns by methylation analysis. Glycopeptides and hydrazine-released oligosaccharides were further analyzed using endo-beta-galactosidase, endo-beta-N-acetylglucosaminidase H and specific exoglycosidases in conjunction with calibrated gel permeation chromatography. Based on these experiments, murine tumor laminin was shown to contain asparagine-linked oligosaccharides with the following structures: bi-, tri- and tetraantennary complex-type oligosaccharides; polylactosaminyl side chains containing Gal(beta 1----4)GlcNAc(beta 1----3) repeating units attached to the trimannose core portion of the bi-, tri- and tetraantennary complex-type oligosaccharides; unusual complex-type oligosaccharides terminated at the nonreducing end with sialic acid, alpha-galactose, beta-galactose and beta-N-acetylglucosamine; alpha-galactosyl residues linked to N-acetyllactosamine sequences; high-mannose-type oligosaccharides. These results, in conjunction with analytical data, indicate that most of the carbohydrate of this laminin is N-linked to asparagine and that there are about 43 such N-linked oligosaccharides per laminin molecule.  相似文献   

17.
An extracellular mucous glycoprotein has been isolated from the hard coral Acropora formosa. The glycoprotein contains sulfated oligosaccharide side chains attached through O-glycosidic linkages to serine and threonine, the principal amino acids (77%) in the polypeptide. The oligosaccharide side chains consist of D-arabinose, D-mannose, and N-acetyl-D-glucosamine with smaller amounts of D-galactose, L-fucose, and N-acetyl-D-galactosamine, but no sialic or uronic acids. Alkaline borohydride reductive cleavage resulted in a mixture of oligosaccharide alditols. Six oligosaccharides were purified by high performance liquid chromatography. The structures of these oligosaccharides, which do not resemble those of any other glycoprotein so far examined, were determined by a combination of gas chromatography/mass spectrometry analysis of methylation products and NMR spectroscopy. All oligosaccharides contain a reducing terminal mannitol residue with N-acetylglucosamine linked to carbon 2, 4, or 6 of the mannitol. There is no evidence for linkage of N-acetylglucosamine to any other glycoses in the glycoprotein. Galactose was detected in two oligosaccharides linked to the 4-position of mannitol. Arabinose (Ara) was found in only one oligosaccharide. This was probably due to hydrolysis of the labile arabino-furanoside linkages. Evidence is presented which indicates the arabinose occurs primarily at the terminal position of oligosaccharide side chains. The structures of the oligosaccharides isolated from the glycoprotein were: (Formula: see text).  相似文献   

18.
In order to develop a molecular probe to delineate chemical and biological characteristics of human neuroblastoma cells, a murine monoclonal antibody (Mab 5G3) was produced that is directed to a glycoprotein, preferentially expressed on the surface of such cells. This antibody is of IgG2a isotype, has an association constant of 8 X 10(9) M-1, and reacts preferentially with human neuroblastoma cell lines and fresh frozen tissue sections in enzyme-linked immunosorbent assay and immunoperoxidase assays, respectively. Minimal reactivity is observed with a variety of lymphoblastoid cell lines and normal fetal and adult tissues. Mab 5G3 specifically recognizes a neuroblastoma target glycoprotein antigen of 215 kDa that is derived from a 200-kDa precursor, as evident from pulse-chase biosynthetic studies. Treatment with tunicamycin revealed that both molecules contain N-asparagine-linked oligosaccharides; however, only the 215-kDa species is resistant to treatment with endo-beta-N-acetylglucosaminidase H and sensitive to neuraminidase, indicating that it contains trimmed and terminally sialylated oligosaccharides of the "complex" type. In contrast, the 200-kDa precursor is sensitive to endo-beta-N-acetylglucosaminidase H and resistant to neuraminidase treatment indicating that it contains high-mannose non-processed oligosaccharides. The 215-kDa molecule is sulfated, phosphorylated at serine residues, and expressed on the cell surface. A molecule of 200 kDa is detected by Mab 5G3 in spent culture medium of human neuroblastoma cells which is neither sulfated nor phosphorylated.  相似文献   

19.
The previous study from this laboratory demonstrated that the corneal epithelium of 19-d-old chick embryo synthesizes two classes of sulfated glycoconjugates consisting of sulfated glycoproteins and proteoglycans (Yonekura, H., Oguri, K., Nakazawa, K., Shimizu, S., Nakanishi, Y., & Okayama, M. (1982) J. Biol. Chem. 257, 11166-11175). The present study demonstrated that when the sulfated glycoproteins labeled metabolically with [35S]sulfate and [3H]glucosamine were analyzed by SDS-PAGE, the 70,000 component (accounting for approximately 30% of the 35S and 35% of the 3H of the total sulfated glycoprotein) co-migrated with five major proteins with apparent molecular weights (Mrs) of 70,000, 66,000, 58,000, 51,000, and 48,000, which together accounted for about 57% of the total tissue protein. All five proteins cross-reacted with an antibody against human sole keratin, indicating that they are cytokeratin polypeptides of the corneal epithelium. Amino acid analysis demonstrated that they had high contents of glycine, serine, glutamic acid, leucine, and aspartic acid. Two-dimensional tryptic peptide maps indicated that they were all different. Analysis of radiolabeled materials released by alkaline borohydride treatment of the sulfated glycoproteins which were synthesized in the presence and absence of tunicamycin and co-purified with the five cytokeratin polypeptides, revealed that they contained both N- and O-glycosidically linked sulfated oligosaccharides. All the results obtained in the present study indicate that the five sulfated glycoproteins are similar, if not identical, to the cytokeratin polypeptides. This is consistent with the result in the accompanying paper that these sulfated glycoproteins are localized intracellularly.  相似文献   

20.
The interaction of basic FGF (bFGF) with heparin, heparan sulfate and related sugars can potentiate or antagonize bFGF activity, depending on the size of the saccharide used. Oligosaccharides based on heparin structures, as small as six sugar residues, have been demonstrated to bind to bFGF and block its activity, while larger structures (> 10 sugar residues) tend to potentiate bFGF. In this study we have synthesized a series of compounds designed to test the requirements of size and sulfation for binding of oligosaccharides to bFGF. These oligosaccharides are not derived from heparin, but rather, are linear chains of glucose linked α1–4 (malto-oligosaccharides) that have been chemically sulfated. In addition to bFGF binding, these compounds were tested for their ability to block basic functions of endothelial cells that are known to be mediated, at least in part, by bFGF. We report that the ability of sulfated malto-oligosaccharides to block binding of bFGF to heparan sulfate was dependent on the size (at least a tetrasaccharide is required), and the degree of sulfation. The activity profile in the bFGF ELISA closely correlated with the ability of these compounds to block REEC or HMVEC tube formation on Matrigel. There was a similar relationship of size and sulfation to the ability of the sulfated malto-oligosaccharides to inhibit endothelial cell growth for most human and rat EC types tested. The single exception was REEC cell growth. One isolate of these cells was stimulated by sulfated malto-oligosaccharides rather than inhibited by them, while a second isolate was neither stimulated nor inhibited. This stimulation showed no correlation with inhibition of bFGF binding in the ELISA assay, suggesting that growth of this cell type was probably not dependent on bFGF. Compounds derived from this series of sulfated, malto-oligosaccharides have the potential to function as bFGF antagonists, are relatively easy to produce, and possess relatively low anticoagulant properties. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号