首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Epigenetics》2013,8(4):231-234
Many protocols in methylation studies utilize one primer set to generate a PCR product from bisulfite modified template regardless of its methylation status (methylation independent amplification MIP). However, proportional amplification of methylated and unmethylated alleles is hard to achieve due to PCR bias favoring amplification of unmethylated relatively GC poor sequence. Two primer design systems have been proposed to overcome PCR bias in methylation independent amplifications. The first advises against including any CpG dinucleoteides into the primer sequence (CpG-free primers) and the second, recently published by us, is based on inclusion of a limited number of CpG sites into the primer sequence. Here we used the Methylation Sensitive High Resolution Melting (MS-HRM) technology to investigate the ability of primers designed according to both of the above mentioned primer design systems to proportionally amplify methylated and unmethylated templates. Ten “CpG-free” primer pairs and twenty primers containing limited number of CpGs were tested. In reconstruction experiments the “CpG-free” primers showed primer specific sensitivity and allowed us to detect methylation levels in the range from 5 to 50%. Whereas while using primers containing limited number of CpG sites we were able to consistently detect 1–0.1% methylation levels and effectively control PCR amplification bias. In conclusion, the primers with limited number of CpG sites are able to effectively reverse PCR bias and therefore detect methylated templates with significantly higher sensitivity than CpG free primers.  相似文献   

2.
MethPrimer: designing primers for methylation PCRs   总被引:37,自引:0,他引:37  
MOTIVATION: DNA methylation is an epigenetic mechanism of gene regulation. Bisulfite- conversion-based PCR methods, such as bisulfite sequencing PCR (BSP) and methylation specific PCR (MSP), remain the most commonly used techniques for methylation mapping. Existing primer design programs developed for standard PCR cannot handle primer design for bisulfite-conversion-based PCRs due to changes in DNA sequence context caused by bisulfite treatment and many special constraints both on the primers and the region to be amplified for such experiments. Therefore, the present study was designed to develop a program for such applications. RESULTS: MethPrimer, based on Primer 3, is a program for designing PCR primers for methylation mapping. It first takes a DNA sequence as its input and searches the sequence for potential CpG islands. Primers are then picked around the predicted CpG islands or around regions specified by users. MethPrimer can design primers for BSP and MSP. Results of primer selection are delivered through a web browser in text and in graphic view.  相似文献   

3.
Oligonucleotide primers used to amplify target DNA regions via PCR should meet certain design criteria to maximize the potential for efficient priming. The Random Oligonucleotide Construction Kit (ROCK), a spreadsheet-based program that runs under Microsoft Excel 97 or later version for Microsoft Windows, was developed to facilitate the design of efficient random oligonucleotide primers. Primer sequences are generated that meet user-defined criteria with regard to G + C content, size of a 3' GC clamp, maximum intramolecular/intermolecular complementation potential, and maximum intersequence similarity. The user can analyze the intramolecular/intermolecular complementation potential of program-generated primer sequences or of sequences entered manually. The latter may contain any of the standard nucleotide symbols, including ambiguous bases. Primer sequence length, GC%, individual base composition, molecular weight, approximate melting temperature, and mass/volume/concentration relationships can be determined for any sequence generated by ROCK or entered manually.  相似文献   

4.
一步PCR快速扩增辽宁碱蓬甜菜碱醛脱氢酶cDNA 3'末端序列   总被引:8,自引:1,他引:8  
根据已获得的辽宁碱蓬甜菜碱醛脱氢酶cDNA的部分序列,设计一条基因特异性引物,与通用引物并用,一步PCR成功地克隆了辽宁碱蓬甜菜碱醛脱氢酶cDNA 3′末端。与常规的3′RACE法相比,一步PCR法具有快速、简便、经济等优点,是一种非常快捷的扩增cDNA 3′末端序列的方法。 Abstract:Based on part of a known cDNA sequence of Suaeda liaotungensis betaine aldehyde dehydrogenase,we successfully cloned the 3′cDNA end of S.lianotungensis betaine aldehyde dehydrogenase using one step PCR with a gene specific primer and universal primer.Compared with the typical 3′ RACE,one step PCR is rapid,simple and inexpensive.It is very rapid to amplify an unknown cDNA 3′end using this method.  相似文献   

5.
The PCR suite   总被引:2,自引:0,他引:2  
The web application PCR Suite is an extension of the primer design program Primer3. It allows the design of primer sets encompassing single nucleotide polymorphisms, all exons of a single gene, all open reading frames in a list of cDNAs or the creation of overlapping PCR products.  相似文献   

6.
Polymerase chain reaction (PCR) based on single primers of arbitrary nucleotide sequence provides a powerful marker system for genome analysis because each primer amplifies multiple products, and cloning, sequencing, and hybridization are not required. We have evaluated this typing system for the mouse by identifying optimal PCR conditions; characterizing effects of GC content, primer length, and multiplexed primers; demonstrating considerable variation among a panel of inbred strains; and establishing linkage for several products. Mg2+, primer, template, and annealing conditions were identified that optimized the number and resolution of amplified products. Primers with 40% GC content failed to amplify products readily, primers with 50% GC content resulted in reasonable amplification, and primers with 60% GC content gave the largest number of well-resolved products. Longer primers did not necessarily amplify more products than shorter primers of the same proportional GC content. Multiplexed primers yielded more products than either primer alone and usually revealed novel variants. A strain survey showed that most strains could be readily distinguished with a modest number of primers. Finally, linkage for seven products was established on five chromosomes. These characteristics establish single primer PCR as a powerful method for mouse genome analysis.  相似文献   

7.
PerlPrimer is a cross-platform graphical user interface application for the design of primers for standard, bisulphite and real-time PCR, and sequencing. The program incorporates highly accurate melting-temperature and primer-dimer prediction algorithms with powerful tools such as sequence retrieval from Ensembl and the ability to BLAST search primer pairs. It aims to automate and simplify the process of primer design. AVAILABILITY: Open-source and freely available from http://perlprimer.sourceforge.net.  相似文献   

8.
To study functional diversity of proteins encoded from a single gene, it is important to distinguish the expression levels among the alternatively spliced variants. A variant-specific primer pair is required to amplify each alternatively spliced variant individually. For this purpose, we developed a new feature, homolog-specific primer design (HSPD), in our high-throughput primer and probe design software tool, PRIMEGENS-v2. The algorithm uses a de novo approach to design primers without any prior information of splice variants or close homologs for an input query sequence. It not only designs primer pairs but also finds potential isoforms and homologs of the input sequence. Efficiency of this algorithm was tested for several gene families in soybean. A total of 187 primer pairs were tested under five different abiotic stress conditions with three replications at three time points. Results indicate a high success rate of primer design. Some primer pairs designed were able to amplify all splice variants of a gene. Furthermore, by utilizing combinations within the same multiplex pool, we were able to uniquely amplify a specific variant or duplicate gene. Our method can also be used to design PCR primers to specifically amplify homologs in the same gene family. PRIMEGENS-v2 is available at: http://primegens.org.  相似文献   

9.
The design and operating parameters affecting the performance of 5' nuclease PCR (TaqMan) assays for the detection of Listeria monocytogenes was investigated. A system previously developed and based on the hlyA gene was used as a model [Appl. Environ. Microbiol. 61 (1995) 3724]. A series of fluorogenic probes labeled with a reporter and a quencher dye was synthesized to explore the effect of probe position and sequence content on the efficiency of probe hydrolysis. In addition, a series of PCR primer pairs that altered the distance between the upstream primer and the interceding probe was examined. The effects of various assay parameters were evaluated by measuring the ratio of the fluorescence intensity of the reporter dye over the quencher dye (deltaRQ). For a given probe sequence, the deltaRQ was typically lower if the 5' terminus was a G residue. Decreasing the probe concentration increased the deltaRQ, although this was at the expense of reproducibility in the assay readout. The distance between the upstream primer and the interceding probe has a significant effect on probe hydrolysis. Reducing the primer-probe distance from, for example, 127 to 4 nt increased the deltaRQ from 2.87 to 5.00. These general rules were used to develop a 5' nuclease PCR (TaqMan) assay with enhanced signal output, providing higher and more reproducible deltaRQ values for L. monocytogenes detection.  相似文献   

10.
ABSTRACT: BACKGROUND: Polymerase chain reaction (PCR) plays an important role in molecular biology. Primer design fundamentally determines its results. Here, we present a currently available software for a rather straight-forward way of visualizing the primer design process for infrequent users. RESULTS: URPD (yoUR Primer Design), a web-based specific product primer design tool, combines the NCBI Reference Sequences (RefSeq), UCSC In-Silico PCR, memetic algorithm (MA) and genetic algorithm (GA) primer design methods to obtain specific primer sets. A friendly user interface is accomplished by built-in parameter settings. The incorporated smooth pipeline operations effectively guide both occasional and advanced users. URPD contains an automated process, which produces feasible primer pairs that satisfy the specific needs of the experimental design with practical PCR amplifications. Visual virtual gel electrophoresis and in silico PCR provide a simulated PCR environment. The comparison of Practical gel electrophoresis comparison to virtual gel electrophoresis facilitates and verifies the PCR experiment. Wet-laboratory validation proved that the system provides feasible primers. CONCLUSIONS: URPD is a user-friendly tool that provides specific primer design results. The pipeline design path makes it easy to operate for beginners. URPD also provides a high throughput primer design function. Moreover, the advanced parameter settings assist sophisticated researchers in performing experiential PCR. Several novel functions, such as a nucleotide accession number template sequence input, local and global specificity estimation, primer pair redesign, user-interactive sequence scale selection, and virtual and practical PCR gel electrophoresis discrepancies have been developed and integrated into URPD. The URPD program is implemented in JAVA and freely available at http://bio.kuas.edu.tw/urpd/.  相似文献   

11.
Yang CH  Chang HW  Ho CH  Chou YC  Chuang LY 《PloS one》2011,6(3):e17729

Background

Complete mitochondrial (mt) genome sequencing is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. For long template sequencing, i.e., like the entire mtDNA, it is essential to design primers for Polymerase Chain Reaction (PCR) amplicons which are partly overlapping each other. The presented chromosome walking strategy provides the overlapping design to solve the problem for unreliable sequencing data at the 5′ end and provides the effective sequencing. However, current algorithms and tools are mostly focused on the primer design for a local region in the genomic sequence. Accordingly, it is still challenging to provide the primer sets for the entire mtDNA.

Methodology/Principal Findings

The purpose of this study is to develop an integrated primer design algorithm for entire mt genome in general, and for the common primer sets for closely-related species in particular. We introduce ClustalW to generate the multiple sequence alignment needed to find the conserved sequences in closely-related species. These conserved sequences are suitable for designing the common primers for the entire mtDNA. Using a heuristic algorithm particle swarm optimization (PSO), all the designed primers were computationally validated to fit the common primer design constraints, such as the melting temperature, primer length and GC content, PCR product length, secondary structure, specificity, and terminal limitation. The overlap requirement for PCR amplicons in the entire mtDNA is satisfied by defining the overlapping region with the sliding window technology. Finally, primer sets were designed within the overlapping region. The primer sets for the entire mtDNA sequences were successfully demonstrated in the example of two closely-related fish species. The pseudo code for the primer design algorithm is provided.

Conclusions/Significance

In conclusion, it can be said that our proposed sliding window-based PSO algorithm provides the necessary primer sets for the entire mt genome amplification and sequencing.  相似文献   

12.
Zou N  Ditty S  Li B  Lo SC 《BioTechniques》2003,35(4):758-60, 762-5
Here we report a new methodology to study trace amounts of DNA of unknown sequence using a two-step PCR strategy to amplify and clone target DNA. The first PCR is carried out with a partial random primer comprised of a specific 21-nucleotide 5' sequence, a random heptamer, and a 3' TGGC clamp. The second PCR is carried out with a single 19-nucleotide primer that matches the specific 5' sequence of the partial random primer. Using human and Mycoplasma genitalium DNA as examples, we demonstrated the efficiency of this approach by effectively cloning target DNA fragments from 1 pg DNA sample. The cloning sensitivity could reach 100 fg target DNA templates. Compared to the strategy of first adding adapter sequences to facilitate the PCR amplification of unknown sequences, this approach has the advantage of allowing for the amplification of DNA samples in both natural and denatured forms, which provides greater flexibility in sample preparation. This is an efficient strategy to retrieve sequences from trace DNA samples from various sources.  相似文献   

13.
In its basic concept, in vitro DNA amplification by the polymerase chain reaction (PCR) is restricted to those instances in which segments of known sequence flank the fragment to be amplified. Recently, techniques have been developed for amplification of unknown DNA sequences. These techniques, however, are dependent on the presence of suitable restriction endonuclease sites. Here, we describe a strategy for PCR amplification of DNA that lies outside the boundaries of known sequence. It is based on the use of one specific primer, homologous to the known sequence, and one semi-random primer. Restriction sites in the 5' proximal regions of both primers allow for cloning of the amplified DNA in a suitable sequencing vector or any other vector. It was shown by sequence analysis that the cloned DNA fragments represent contiguous DNA fragments that are flanked at one side by the sequence of the specific primer. When omitting the semi-random primer, a single clone was obtained, which originated from PCR amplification of target DNA by the specific primer in both directions.  相似文献   

14.
Annealing control primer system for improving specificity of PCR amplification   总被引:16,自引:0,他引:16  
Hwang IT  Kim YJ  Kim SH  Kwak CI  Gu YY  Chun JY 《BioTechniques》2003,35(6):1180-1184
A novel primer designed to improve the specificity of PCR amplification, called the annealing control primer (ACP), comprises a tripartite structure with a polydeoxyinosine [poly(dI)] linker between the 3' end target core sequence and the 5' end nontarget universal sequence. We show that this ACP linker prevents annealing of the 5' end nontarget sequence to the template and facilitates primer hybridization at the 3' end to the target sequence at specific temperatures, resulting in a dramatic improvement of annealing specificity. The effect of this linker is demonstrated by the incorporation of ACP sequences as primers during the amplification of target nucleotide sequence and as hybridization probes in the genotyping of single nucleotide polymorphisms. This is the first report to show that a poly(dI) linker between two different sequences of ACP forms a bubble-like structure and disrupts or destabilizes DNA duplex formation at certain annealing temperatures.  相似文献   

15.
A method for the amplification of a single DNA strand at low copy number is described. It is a wholly PCR based approach which involves an initial linear amplification of the target using a tagged strand specific primer. This is followed by classical PCR amplification of the progeny using a pair of primers, one specific for the sequence tagged onto the 5' end of the first round primer, the second specific for the target sequence. Given the protocol used the ratio of the two strands in the final amplification product was 50:1.  相似文献   

16.
A simple and rapid method for cloning of amplification products directly from the polymerase chain reaction (PCR) has been developed. The method is based on the addition of a 12-base dUMP-containing sequence (CUACUACUACUA) to the 5' end of PCR primers. Incorporation of these primers during PCR results in the selective placement of dUMP residues into the 5' end of amplification products. Selective degradation of the dUMP residues in the PCR products with uracil DNA glycosylase (UDG) disrupts base pairing at the termini and generates 3' overhangs. Annealing of 3' protruding termini to vector DNA containing complementary 3' ends results in chimeric molecules which can be transformed, with high efficiency, without in vitro ligation. Directional cloning of PCR products has also been accomplished by incorporating different dU-containing sequences at the end of each PCR primer. Substitution of all dT residues in PCR primers with dU eliminates cloning of aberrant "primer dimer" products and enriches cloning of genuine PCR products. The method has been applied to cloning of inter-Alu DNA sequences from human placental DNA. Using a single primer, DNA sequences between appropriately oriented Alu sequences were amplified and cloned. Cloning of cDNA for the glyceraldehyde-3'-phosphate dehydrogenase gene from rat brain RNA was also demonstrated. The 3' end region of this gene was amplified by the 3' RACE method and the amplified DNA was cloned after UDG digestion. Characterization of cloned DNAs by sequence analysis showed accurate repair of the cloning junctions. The ligase-free cloning method with UDG should prove to be a widely applicable procedure for rapid cloning of PCR-amplified DNA.  相似文献   

17.
《Nature methods》2005,2(8):629-630
This method is used to extend partial cDNA clones by amplifying the 5' sequences of the corresponding mRNAs 1-3. The technique requires knowledge of only a small region of sequence within the partial cDNA clone. During PCR, the thermostable DNA polymerase is directed to the appropriate target RNA by a single primer derived from the region of known sequence; the second primer required for PCR is complementary to a general feature of the target-in the case of 5' RACE, to a homopolymeric tail added (via terminal transferase) to the 3' termini of cDNAs transcribed from a preparation of mRNA. This synthetic tail provides a primer-binding site upstream of the unknown 5' sequence of the target mRNA. The products of the amplification reaction are cloned into a plasmid vector for sequencing and subsequent manipulation.  相似文献   

18.
We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3-4 highly conserved amino acids within a 3' degenerate core. A longer 5' non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org).  相似文献   

19.
We describe a new application of megaprimer polymerase chain reaction (PCR) for constructing a tandemly repeated DNA sequence using the drought responsive element (DRE) from Arabidopsis thaliana as an example. The key feature in the procedure was PCR primers with partial complementarity but differing melting temperatures (T(m)). The reverse primer had a higher T(m), a 3' end complementary to the DRE sequence and a 5' region complementary to the forward primer. The initial cycles of the PCR were conducted at a lower primer annealing temperature to generate products that served as megaprimers in the later cycles conducted at a higher temperature to prevent annealing of the forward primer. The region of overlap between the megaprimers was extended for generating products with a variable copy number (one to four copies) of tandem DRE sequence repeats (71?bp). The PCR product with four tandem repeats (4× DRE) was used as a template to generate tandem repeats with higher copies (copy number large than four) or demonstrated to bind DRE-binding protein in an yeast one-hybrid assay using promotorless reporter genes (HIS and lacZ). This PCR protocol has numerous applications for generating DNA fragments of repeated sequences.  相似文献   

20.
Efficient PCR amplifications require precisely designed and optimized oligonucleotide primers, components, and cycling conditions. Despite recent software development and reaction improvement, primer design can still be enhanced. The aims of this research are to understand (1) the effect on PCR efficiency and DNA yields of primer thermodynamics parameters, and (2) the incorporation of 5′ A/T-rich overhanging sequences (flaps) during primer design. Two primer sets, one optimal (ΔG = 0) and one sub-optimal (ΔG = 0.9), were designed using web interface software Primer3, BLASTn, and mFold to target a movement protein gene of Tobacco mosaic virus. The optimal primer set amplifies a product of 195 bp and supports higher PCR sensitivity and yields compared to the sub-optimal primer set, which amplifies a product of 192 bp. Greater fluorescence was obtained using optimal primers compared to that with sub-optimal primers. Primers designed with sub-optimal thermodynamics can be substantially improved by adding 5′ flaps. Results indicate that even if the performance of some primers can be improved substantially by 5′ flap addition, not all primers will be similarly improved. Optimal 5′ flap sequences are dependent on the primer sequences, and alter the primer’s T m value. The manipulation of this feature may enhance primer’s efficiency to increase the PCR sensitivity and DNA yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号