共查询到20条相似文献,搜索用时 0 毫秒
2.
Browning BL Brashear DL Butler AA Cyr DD Harris EC Nelsen AJ Yarnall DP Ehm MG Wagner MJ 《Human heredity》2004,57(4):220-227
We performed multipoint linkage analysis using 83 markers from the SNP Consortium (TSC) SNP linkage map in 3 regions covering 190 cM previously scanned with microsatellite markers and found to be linked to type 2 diabetes. Since the average linkage disequilibrium present in the TSC SNP marker clusters is relatively low, we assumed the intracluster genetic distances were a reasonable small nonzero distance (0.03 cM) and performed linkage analysis using GENEHUNTER PLUS and ASM linkage analysis software. We found that for the pedigree structures and missing data patterns in our samples the average information content in all three regions and the LOD score curves in two regions obtained from the TSC SNP markers were similar to results obtained from microsatellite marker maps with 10 cM average spacing. We also give an algorithm which extends the Lander-Green algorithm to permit multipoint linkage analysis of clusters of tightly linked markers with arbitrarily high levels of intracluster linkage disequilibrium. 相似文献
3.
Background
An important goal of whole-genome studies concerned with single nucleotide polymorphisms (SNPs) is the identification of SNPs associated with a covariate of interest such as the case-control status or the type of cancer. Since these studies often comprise the genotypes of hundreds of thousands of SNPs, methods are required that can cope with the corresponding multiple testing problem. For the analysis of gene expression data, approaches such as the empirical Bayes analysis of microarrays have been developed particularly for the detection of genes associated with the response. However, the empirical Bayes analysis of microarrays has only been suggested for binary responses when considering expression values, i.e. continuous predictors. 相似文献4.
A simple procedure for the analysis of single nucleotide polymorphisms facilitates map-based cloning in Arabidopsis 总被引:15,自引:0,他引:15
Drenkard E Richter BG Rozen S Stutius LM Angell NA Mindrinos M Cho RJ Oefner PJ Davis RW Ausubel FM 《Plant physiology》2000,124(4):1483-1492
We developed a modified allele-specific PCR procedure for assaying single nucleotide polymorphisms (SNPs) and used the procedure (called SNAP for single-nucleotide amplified polymorphisms) to generate 62 Arabidopsis mapping markers. SNAP primers contain a single base pair mismatch within three nucleotides from the 3' end of one allele (the specific allele) and in addition have a 3' mismatch with the nonspecific allele. A computer program called SNAPER was used to facilitate the design of primers that generate at least a 1,000-fold difference in the quantity of the amplification products from the specific and nonspecific SNP alleles. Because SNAP markers can be readily assayed by electrophoresis on standard agarose gels and because a public database of over 25,000 SNPs is available between the Arabidopsis Columbia and Landsberg erecta ecotypes, the SNAP method greatly facilitates the map-based cloning of Arabidopsis genes defined by a mutant phenotype. 相似文献
5.
We assessed the disease-causing potential of single nucleotide polymorphisms (SNPs) based on a simple set of sequence-based features. We focused on SNPs from the dbSNP database in G-protein-coupled receptors (GPCRs), a large class of important transmembrane (TM) proteins. Apart from the location of the SNP in the protein, we evaluated the predictive power of three major classes of features to differentiate between disease-causing mutations and neutral changes: (i) properties derived from amino-acid scales, such as volume and hydrophobicity; (ii) position-specific phylogenetic features reflecting evolutionary conservation, such as normalized site entropy, residue frequency and SIFT score; and (iii) substitution-matrix scores, such as those derived from the BLOSUM62, GRANTHAM and PHAT matrices. We validated our approach using a control dataset consisting of known disease-causing mutations and neutral variations. Logistic regression analyses indicated that position-specific phylogenetic features that describe the conservation of an amino acid at a specific site are the best discriminators of disease mutations versus neutral variations, and integration of all our features improves discrimination power. Overall, we identify 115 SNPs in GPCRs from dbSNP that are likely to be associated with disease and thus are good candidates for genotyping in association studies. 相似文献
6.
Due to the surge in interest in using single nucleotide polymorphisms (SNPs) for genotyping a facile and affordable method for this is an absolute necessity. Here we introduce a procedure that combines an easily automatable single tube sample preparation with an efficient high throughput mass spectrometric analysis technique. Known point mutations or single nucleotide polymorphisms are easily analysed by this procedure. It starts with PCR amplification of a short stretch of genomic DNA, for example an exon of a gene containing a SNP. By shrimp alkaline phosphatase digest residual dNTPs are destroyed. Allele-specific products are generated using a special primer, a conditioned set of α-S-dNTPs and α-S-ddNTPs and a fresh DNA polymerase in a primer extension reaction. Unmodified DNA is removed by 5′-phosphodiesterase digestion and the modified products are alkylated to increase the detection sensitivity in the mass spectrometric analysis. All steps of the preparation are simple additions of solutions and incubations. The procedure operates at the lowest practical sample volumes and in contrast to other genotyping protocols with mass spectrometric detection requires no purification. This reduces the cost and makes it easy to implement. Here it is demonstrated in a version using positive ion detection on described mutations in exon 17 of the amyloid precursor protein gene and in a version using negative ion detection on three SNPs of the granulocyte-macrophage colony stimulating factor gene. Preparation and analysis of SNPs is shown separately and simultaneously, thus demonstrating the multiplexibility of this genotyping procedure. The preparation protocol for genotyping is adapted to the conditions used for the SNP discovery method by denaturing HPLC, thus demonstrating a facile link between protocols for SNP discovery and SNP genotyping. Results corresponded unanimously with the control sequencing. The procedure is useful for high throughput genotyping as it is required for gene identification and pharmacogenomics where large numbers of DNA samples have to be analysed. We have named this procedure the ‘GOOD Assay’ for SNP analysis. 相似文献
7.
MOTIVATION: Single nucleotide polymorphisms (SNPs) are the most common form of genetic variant in humans. SNPs causing amino acid substitutions are of particular interest as candidates for loci affecting susceptibility to complex diseases, such as diabetes and hypertension. To efficiently screen SNPs for disease association, it is important to distinguish neutral variants from deleterious ones. RESULTS: We describe the use of Pfam protein motif models and the HMMER program to predict whether amino acid changes in conserved domains are likely to affect protein function. We find that the magnitude of the change in the HMMER E-value caused by an amino acid substitution is a good predictor of whether it is deleterious. We provide internet-accessible display tools for a genomewide collection of SNPs, including 7391 distinct non-synonymous coding region SNPs in 2683 genes. AVAILABILITY: http://lpgws.nci.nih.gov/cgi-bin/GeneViewer.cgi 相似文献
8.
9.
随着大量与人类疾病和药物治疗相关的单核苷酸多态性(Single-nucleotide polymorphism,SNP)的发现,出现了多种SNP分型检测的方法和技术。然而,大多数方法由于受限于检测灵敏度低或对检测设备和实验条件要求较高,不适宜于在一般实验条件下进行常规临床检测。通过建立一种基于连接酶-ELISA的SNP快速分型新方法,以非小细胞肺癌个体化治疗中,酪氨酸激酶抑制剂药物的生物标记基因—表皮生长因子受体基因(EGFR)为检测对象,对EGFR,c.2573T〉G(L858R),EGFR,c.2582T〉A(L861Q)和EGFR,c.2155 G〉T(G719C)3个SNP位点进行了突变检测。经过18~28个循环的PCR扩增,能够通过琼脂糖凝胶电泳和ELISA反应,根据电泳条带的有无和ELISA显色值清晰判断检测位点的基因型,并且能够从混合等位基因样本中检测出5%的突变型等位基因。结果表明,方法具有较高的特异性和灵敏度,适合于在常规实验条件下从不均一的样本中进行突变等位基因的检测。 相似文献
10.
11.
miRNA相关单核苷酸多态性(miRNA-related single nucleotide polymorphisms或mirSNP)是可以导致miRNA基因调控功能缺失或紊乱的一类功能型SNP的总称。不论是miRNA靶基因结合位点,还是miRNA基因或miRNA加工基因上的mirSNP,都有可能影响miRNA对靶基因的调控。miRNA基因及miRNA加工基因上的mirSNP主要通过阻碍miRNA的生物合成而发挥功能,而靶基因结合位点上的mirSNP主要通过导致自由能的改变或功能构象的消失,影响miRNA与靶序列结合而丧失其原有的调控功能。mirSNP大多位于人类基因组基因间区和内含子区,与包括肿瘤在内的众多复杂性疾病密切关联。mirSNP不论对于复杂性疾病发病机制研究还是诊疗预后分子标志的确定都具有极其重要的研究价值。 相似文献
12.
A genome-wide view of sequence mutability in mice is still limited, although biologists usually assume the same scenario for mice as for humans. In this study, we examined the sequence context in the local environment of 482,528 mouse single nucleotide polymorphisms (SNPs). We found that CpG-containing short sequences, in general, had more representation in the local sequences of SNPs compared to the genome sequences. The extent of this overrepresentation was stronger in mice than in humans, which is inconsistent with previous observations of the weaker neighboring-nucleotide biases on mouse SNPs. To exclude the CpG effect, we compared the distribution patterns of short sequences among the six categories of SNPs. The results revealed an even stronger pattern in the CpG-containing group for C/G substitution compared to for A/G or C/T substitutions. We next performed the first genome-wide sequence context analysis of SNPs in the mouse CpG islands. SNPs occurring at CpG sites were 3.14-fold less prevalent than expected, suggesting the suppression of methylation-dependent deamination in the CpG islands. The extent of this suppression was less in mice than in humans. Finally, compared with humans, the observations of a greater deficit of CpG dinucleotides, a stronger overrepresentation of CpG-containing n-mers surrounding the polymorphic sites, and a higher SNP/genome ratio of CpG dinucleotides in the mouse genome support the "loss of CpG islands" model in the mouse lineage. 相似文献
13.
SOP3: a web-based tool for selection of oligonucleotide primers for single nucleotide polymorphism analysis by Pyrosequencing 总被引:1,自引:0,他引:1
Alexander AM Pecoraro C Styche A Rudert WA Benos PV Ringquist S Trucco M 《BioTechniques》2005,38(1):87-94
SOP3 is a web-based software tool for designing oligonucleotide primers for use in the analysis of single nucleotide polymorphisms (SNPs). Accessible via the Internet, the application is optimized for developing the PCR and sequencing primers that are necessary for Pyrosequencing. The application accepts as input gene name, SNP reference sequence number, or chromosomal nucleotide location. Output can be parsed by gene name, SNP reference number, heterozygosity value, location, chromosome, or function. The location of an individual polymorphism, such as an intron, exon, or 5' or 3' untranslated region is indicated, as are whether nucleotide changes in an exon are associated with a change in an amino acid sequence. SOP3 presents for each entry a set of forward and biotinylated reverse PCR primers as well as a sequencing primer for use during the analysis of SNPs by Pyrosequencing. Theoretical pyrograms for each allele are calculated and presented graphically. The method has been tested in the development of Pyrosequencing assays for determining SNPs and for deletion/insertion polymorphisms in the human genome. Of the SOP3-designed primer sets that were tested, a large majority of the primer sets have successfully produced PCR products and Pyrosequencing data. 相似文献
14.
In response to a need for a general catalog of genome variation to address the large-scale sampling designs required by association studies, gene mapping and evolutionary biology, the National Cancer for Biotechnology Information (NCBI) has established the dbSNP database. Submissions to dbSNP will be integrated with other sources of information at NCBI such as GenBank, PubMed, LocusLink and the Human Genome Project data. The complete contents of dbSNP are available to the public at website: http://www.ncbi.nlm.nih.gov/SNP. Submitted SNPs can also be downloaded via anonymous FTP at ftp://ncbi.nlm.nih.gov/snp/ 相似文献
15.
16.
Single nucleotide polymorphism (SNP) detection technologies are used to scan for new polymorphisms and to determine the allele(s) of a known polymorphism in target sequences. SNP detection technologies have evolved from labor intensive, time consuming, and expensive processes to some of the most highly automated, efficient, and relatively inexpensive methods. Driven by the Human Genome Project, these technologies are now maturing and robust strategies are found in both SNP discovery and genotyping areas. The nearly completed human genome sequence provides the reference against which all other sequencing data can be compared. Global SNP discovery is therefore only limited by the amount of funding available for the activity. Local, target, SNP discovery relies mostly on direct DNA sequencing or on denaturing high performance liquid chromatography (dHPLC). The number of SNP genotyping methods has exploded in recent years and many robust methods are currently available. The demand for SNP genotyping is great, however, and no one method is able to meet the needs of all studies using SNPs. Despite the considerable gains over the last decade, new approaches must be developed to lower the cost and increase the speed of SNP detection. 相似文献
17.
Most bioinformatics tools require specialized input formats for sequence comparison and analysis. This is particularly true for molecular phylogeny programs, which accept only certain formats. In addition, it is often necessary to eliminate highly similar sequences among the input, especially when the dataset is large. Moreover, most programs have restrictions upon the sequence name. Here we introduce SeqMaT, a Sequence Manipulation Tool. It has the following functions: data format conversion,sequence name coding and decoding,redundant and highly similar sequence removal, anddata mining utilities. SeqMaT was developed using Java with two versions, web-based and standalone. A standalone program is convenient to manipulate a large number of sequences, while the web version will guarantee wide availability of the tool for researchers and practitioners throughout the Internet. AVAILABILITY: The database is available for free at http://glee.ist.unomaha.edu/seqmat. 相似文献
18.
The internal transcribed spacers ITS1 and ITS2 of the nuclear ribosomal DNA (rDNA) have recently been found to display remarkable intraspecific polymorphism, a feature suggested as limiting their value for phylogenetic reconstructions. A comparative study of oligonucleotide motives and intraindividual nucleotide variability across all species of the tree genus Fagus (beech) shows, however, that this intraspecific ITS polymorphism follows a particular pattern, which can be used to detect reticulation and ancient polymorphism within the genus. Coding ITS polymorphisms as phylogenetically informative characters, moreover, resulted in better‐resolved phylogenies than traditional ‘base‐per‐base’ maximum parsimony and maximum likelihood analyses. 相似文献
19.
Khouangsathiene S Pearson C Street S Ferguson B Dubay C 《Bioinformatics (Oxford, England)》2008,24(22):2645-2646
MonkeySNP is a web-based resource created by the Genetic Resource and Informatics Program at the Oregon National Primate Research Center to facilitate access to non-human primate (NHP) single nucleotide polymorphisms (SNP) data. MonkeySNP is a mirror of the NCBI dbSNP database and contains additional NHP subpopulation genotype data and visual genotype displays to support SNP review and selection. AVAILABILITY: http://monkeysnp.ohsu.edu/snp/ SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. 相似文献
20.
Analysis of single nucleotide polymorphisms (SNPs) has been and will be increasingly utilized in various genetic disciplines, particularly in studying genetic determinants of complex diseases. Such studies will be facilitated by rapid, simple, low cost and high throughput methodologies for SNP genotyping. One such method is reported here, named tetra-primer ARMS-PCR, which employs two primer pairs to amplify, respectively, the two different alleles of a SNP in a single PCR reaction. A computer program for designing primers was developed. Tetra-primer ARMS-PCR was combined with microplate array diagonal gel electrophoresis, gaining the advantage of high throughput for gel-based resolution of tetra-primer ARMS-PCR products. The technique was applied to analyse a number of SNPs and the results were completely consistent with those from an independent method, restriction fragment length polymorphism analysis. 相似文献