首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MOTIVATION: Many computerized methods for RNA secondary structure prediction have been developed. Few of these methods, however, employ an evolutionary model, thus relevant information is often left out from the structure determination. This paper introduces a method which incorporates evolutionary history into RNA secondary structure prediction. The method reported here is based on stochastic context-free grammars (SCFGs) to give a prior probability distribution of structures. RESULTS: The phylogenetic tree relating the sequences can be found by maximum likelihood (ML) estimation from the model introduced here. The tree is shown to reveal information about the structure, due to mutation patterns. The inclusion of a prior distribution of RNA structures ensures good structure predictions even for a small number of related sequences. Prediction is carried out using maximum a posteriori estimation (MAP) estimation in a Bayesian approach. For small sequence sets, the method performs very well compared to current automated methods.  相似文献   

2.
RNA pseudoknot prediction in energy-based models.   总被引:11,自引:0,他引:11  
RNA molecules are sequences of nucleotides that serve as more than mere intermediaries between DNA and proteins, e.g., as catalytic molecules. Computational prediction of RNA secondary structure is among the few structure prediction problems that can be solved satisfactorily in polynomial time. Most work has been done to predict structures that do not contain pseudoknots. Allowing pseudoknots introduces modeling and computational problems. In this paper we consider the problem of predicting RNA secondary structures with pseudoknots based on free energy minimization. We first give a brief comparison of energy-based methods for predicting RNA secondary structures with pseudoknots. We then prove that the general problem of predicting RNA secondary structures containing pseudoknots is NP complete for a large class of reasonable models of pseudoknots.  相似文献   

3.
We propose a new method for detecting conserved RNA secondary structures in a family of related RNA sequences. Our method is based on a combination of thermodynamic structure prediction and phylogenetic comparison. In contrast to purely phylogenetic methods, our algorithm can be used for small data sets of approximately 10 sequences, efficiently exploiting the information contained in the sequence variability. The procedure constructs a prediction only for those parts of sequences that are consistent with a single conserved structure. Our implementation produces reasonable consensus structures without user interference. As an example we have analysed the complete HIV-1 and hepatitis C virus (HCV) genomes as well as the small segment of hantavirus. Our method confirms the known structures in HIV-1 and predicts previously unknown conserved RNA secondary structures in HCV.  相似文献   

4.
Vienna RNA secondary structure server   总被引:1,自引:0,他引:1       下载免费PDF全文
The Vienna RNA secondary structure server provides a web interface to the most frequently used functions of the Vienna RNA software package for the analysis of RNA secondary structures. It currently offers prediction of secondary structure from a single sequence, prediction of the consensus secondary structure for a set of aligned sequences and the design of sequences that will fold into a predefined structure. All three services can be accessed via the Vienna RNA web server at http://rna.tbi.univie.ac.at/.  相似文献   

5.
Hu YJ 《Nucleic acids research》2002,30(17):3886-3893
Given a set of homologous or functionally related RNA sequences, the consensus motifs may represent the binding sites of RNA regulatory proteins. Unlike DNA motifs, RNA motifs are more conserved in structures than in sequences. Knowing the structural motifs can help us gain a deeper insight of the regulation activities. There have been various studies of RNA secondary structure prediction, but most of them are not focused on finding motifs from sets of functionally related sequences. Although recent research shows some new approaches to RNA motif finding, they are limited to finding relatively simple structures, e.g. stem-loops. In this paper, we propose a novel genetic programming approach to RNA secondary structure prediction. It is capable of finding more complex structures than stem-loops. To demonstrate the performance of our new approach as well as to keep the consistency of our comparative study, we first tested it on the same data sets previously used to verify the current prediction systems. To show the flexibility of our new approach, we also tested it on a data set that contains pseudoknot motifs which most current systems cannot identify. A web-based user interface of the prediction system is set up at http://bioinfo. cis.nctu.edu.tw/service/gprm/.  相似文献   

6.
BACKGROUND: With the ever-increasing number of sequenced RNAs and the establishment of new RNA databases, such as the Comparative RNA Web Site and Rfam, there is a growing need for accurately and automatically predicting RNA structures from multiple alignments. Since RNA secondary structure is often conserved in evolution, the well known, but underused, mutual information measure for identifying covarying sites in an alignment can be useful for identifying structural elements. This article presents MIfold, a MATLAB toolbox that employs mutual information, or a related covariation measure, to display and predict conserved RNA secondary structure (including pseudoknots) from an alignment. RESULTS: We show that MIfold can be used to predict simple pseudoknots, and that the performance can be adjusted to make it either more sensitive or more selective. We also demonstrate that the overall performance of MIfold improves with the number of aligned sequences for certain types of RNA sequences. In addition, we show that, for these sequences, MIfold is more sensitive but less selective than the related RNAalifold structure prediction program and is comparable with the COVE structure prediction package. CONCLUSION: MIfold provides a useful supplementary tool to programs such as RNA Structure Logo, RNAalifold and COVE, and should be useful for automatically generating structural predictions for databases such as Rfam.  相似文献   

7.
As one of the earliest problems in computational biology, RNA secondary structure prediction (sometimes referred to as "RNA folding") problem has attracted attention again, thanks to the recent discoveries of many novel non-coding RNA molecules. The two common approaches to this problem are de novo prediction of RNA secondary structure based on energy minimization and the consensus folding approach (computing the common secondary structure for a set of unaligned RNA sequences). Consensus folding algorithms work well when the correct seed alignment is part of the input to the problem. However, seed alignment itself is a challenging problem for diverged RNA families. In this paper, we propose a novel framework to predict the common secondary structure for unaligned RNA sequences. By matching putative stacks in RNA sequences, we make use of both primary sequence information and thermodynamic stability for prediction at the same time. We show that our method can predict the correct common RNA secondary structures even when we are given only a limited number of unaligned RNA sequences, and it outperforms current algorithms in sensitivity and accuracy.  相似文献   

8.
This work investigates whether mRNA has a lower estimated folding free energy than random sequences. The free energy estimates are calculated by the mfold program for prediction of RNA secondary structures. For a set of 46 mRNAs it is shown that the predicted free energy is not significantly different from random sequences with the same dinucleotide distribution. For random sequences with the same mononucleotide distribution it has previously been shown that the native mRNA sequences have a lower predicted free energy, which indicates a more stable structure than random sequences. However, dinucleotide content is important when assessing the significance of predicted free energy as the physical stability of RNA secondary structure is known to depend on dinucleotide base stacking energies. Even known RNA secondary structures, like tRNAs, can be shown to have predicted free energies indistinguishable from randomized sequences. This suggests that the predicted free energy is not always a good determinant for RNA folding.  相似文献   

9.
In functional, noncoding RNA, structure is often essential to function. While the full 3D structure is very difficult to determine, the 2D structure of an RNA molecule gives good clues to its 3D structure, and for molecules of moderate length, it can be predicted with good reliability. Structure comparison is, in analogy to sequence comparison, the essential technique to infer related function. We provide a method for computing multiple alignments of RNA secondary structures under the tree alignment model, which is suitable to cluster RNA molecules purely on the structural level, i.e., sequence similarity is not required. We give a systematic generalization of the profile alignment method from strings to trees and forests. We introduce a tree profile representation of RNA secondary structure alignments which allows reasonable scoring in structure comparison. Besides the technical aspects, an RNA profile is a useful data structure to represent multiple structures of RNA sequences. Moreover, we propose a visualization of RNA consensus structures that is enriched by the full sequence information.  相似文献   

10.

Background

The prediction of secondary structure, i.e. the set of canonical base pairs between nucleotides, is a first step in developing an understanding of the function of an RNA sequence. The most accurate computational methods predict conserved structures for a set of homologous RNA sequences. These methods usually suffer from high computational complexity. In this paper, TurboFold, a novel and efficient method for secondary structure prediction for multiple RNA sequences, is presented.

Results

TurboFold takes, as input, a set of homologous RNA sequences and outputs estimates of the base pairing probabilities for each sequence. The base pairing probabilities for a sequence are estimated by combining intrinsic information, derived from the sequence itself via the nearest neighbor thermodynamic model, with extrinsic information, derived from the other sequences in the input set. For a given sequence, the extrinsic information is computed by using pairwise-sequence-alignment-based probabilities for co-incidence with each of the other sequences, along with estimated base pairing probabilities, from the previous iteration, for the other sequences. The extrinsic information is introduced as free energy modifications for base pairing in a partition function computation based on the nearest neighbor thermodynamic model. This process yields updated estimates of base pairing probability. The updated base pairing probabilities in turn are used to recompute extrinsic information, resulting in the overall iterative estimation procedure that defines TurboFold. TurboFold is benchmarked on a number of ncRNA datasets and compared against alternative secondary structure prediction methods. The iterative procedure in TurboFold is shown to improve estimates of base pairing probability with each iteration, though only small gains are obtained beyond three iterations. Secondary structures composed of base pairs with estimated probabilities higher than a significance threshold are shown to be more accurate for TurboFold than for alternative methods that estimate base pairing probabilities. TurboFold-MEA, which uses base pairing probabilities from TurboFold in a maximum expected accuracy algorithm for secondary structure prediction, has accuracy comparable to the best performing secondary structure prediction methods. The computational and memory requirements for TurboFold are modest and, in terms of sequence length and number of sequences, scale much more favorably than joint alignment and folding algorithms.

Conclusions

TurboFold is an iterative probabilistic method for predicting secondary structures for multiple RNA sequences that efficiently and accurately combines the information from the comparative analysis between sequences with the thermodynamic folding model. Unlike most other multi-sequence structure prediction methods, TurboFold does not enforce strict commonality of structures and is therefore useful for predicting structures for homologous sequences that have diverged significantly. TurboFold can be downloaded as part of the RNAstructure package at http://rna.urmc.rochester.edu.  相似文献   

11.
A complete set of nearest neighbor parameters to predict the enthalpy change of RNA secondary structure formation was derived. These parameters can be used with available free energy nearest neighbor parameters to extend the secondary structure prediction of RNA sequences to temperatures other than 37°C. The parameters were tested by predicting the secondary structures of sequences with known secondary structure that are from organisms with known optimal growth temperatures. Compared with the previous set of enthalpy nearest neighbor parameters, the sensitivity of base pair prediction improved from 65.2 to 68.9% at optimal growth temperatures ranging from 10 to 60°C. Base pair probabilities were predicted with a partition function and the positive predictive value of structure prediction is 90.4% when considering the base pairs in the lowest free energy structure with pairing probability of 0.99 or above. Moreover, a strong correlation is found between the predicted melting temperatures of RNA sequences and the optimal growth temperatures of the host organism. This indicates that organisms that live at higher temperatures have evolved RNA sequences with higher melting temperatures.  相似文献   

12.
MOTIVATION: Non-coding RNA genes and RNA structural regulatory motifs play important roles in gene regulation and other cellular functions. They are often characterized by specific secondary structures that are critical to their functions and are often conserved in phylogenetically or functionally related sequences. Predicting common RNA secondary structures in multiple unaligned sequences remains a challenge in bioinformatics research. Methods and RESULTS: We present a new sampling based algorithm to predict common RNA secondary structures in multiple unaligned sequences. Our algorithm finds the common structure between two sequences by probabilistically sampling aligned stems based on stem conservation calculated from intrasequence base pairing probabilities and intersequence base alignment probabilities. It iteratively updates these probabilities based on sampled structures and subsequently recalculates stem conservation using the updated probabilities. The iterative process terminates upon convergence of the sampled structures. We extend the algorithm to multiple sequences by a consistency-based method, which iteratively incorporates and reinforces consistent structure information from pairwise comparisons into consensus structures. The algorithm has no limitation on predicting pseudoknots. In extensive testing on real sequence data, our algorithm outperformed other leading RNA structure prediction methods in both sensitivity and specificity with a reasonably fast speed. It also generated better structural alignments than other programs in sequences of a wide range of identities, which more accurately represent the RNA secondary structure conservations. AVAILABILITY: The algorithm is implemented in a C program, RNA Sampler, which is available at http://ural.wustl.edu/software.html  相似文献   

13.
Lorenz WA  Clote P 《PloS one》2011,6(1):e16178
An RNA secondary structure is locally optimal if there is no lower energy structure that can be obtained by the addition or removal of a single base pair, where energy is defined according to the widely accepted Turner nearest neighbor model. Locally optimal structures form kinetic traps, since any evolution away from a locally optimal structure must involve energetically unfavorable folding steps. Here, we present a novel, efficient algorithm to compute the partition function over all locally optimal secondary structures of a given RNA sequence. Our software, RNAlocopt runs in O(n3) time and O(n2) space. Additionally, RNAlocopt samples a user-specified number of structures from the Boltzmann subensemble of all locally optimal structures. We apply RNAlocopt to show that (1) the number of locally optimal structures is far fewer than the total number of structures--indeed, the number of locally optimal structures approximately equal to the square root of the number of all structures, (2) the structural diversity of this subensemble may be either similar to or quite different from the structural diversity of the entire Boltzmann ensemble, a situation that depends on the type of input RNA, (3) the (modified) maximum expected accuracy structure, computed by taking into account base pairing frequencies of locally optimal structures, is a more accurate prediction of the native structure than other current thermodynamics-based methods. The software RNAlocopt constitutes a technical breakthrough in our study of the folding landscape for RNA secondary structures. For the first time, locally optimal structures (kinetic traps in the Turner energy model) can be rapidly generated for long RNA sequences, previously impossible with methods that involved exhaustive enumeration. Use of locally optimal structure leads to state-of-the-art secondary structure prediction, as benchmarked against methods involving the computation of minimum free energy and of maximum expected accuracy. Web server and source code available at http://bioinformatics.bc.edu/clotelab/RNAlocopt/.  相似文献   

14.

Background  

The secondary structure of an RNA must be known before the relationship between its structure and function can be determined. One way to predict the secondary structure of an RNA is to identify covarying residues that maintain the pairings (Watson-Crick, Wobble and non-canonical pairings). This "comparative approach" consists of identifying mutations from homologous sequence alignments. The sequences must covary enough for compensatory mutations to be revealed, but comparison is difficult if they are too different. Thus the choice of homologous sequences is critical. While many possible combinations of homologous sequences may be used for prediction, only a few will give good structure predictions. This can be due to poor quality alignment in stems or to the variability of certain sequences. This problem of sequence selection is currently unsolved.  相似文献   

15.
MOTIVATION: Function derives from structure, therefore, there is need for methods to predict functional RNA structures. RESULTS: The Dynalign algorithm, which predicts the lowest free energy secondary structure common to two unaligned RNA sequences, is extended to the prediction of a set of low-energy structures. Dot plots can be drawn to show all base pairs in structures within an energy increment. Dynalign predicts more well-defined structures than structure prediction using a single sequence; in 5S rRNA sequences, the average number of base pairs in structures with energy within 20% of the lowest energy structure is 317 using Dynalign, but 569 using a single sequence. Structure prediction with Dynalign can also be constrained according to experiment or comparative analysis. The accuracy, measured as sensitivity and positive predictive value, of Dynalign is greater than predictions with a single sequence. AVAILABILITY: Dynalign can be downloaded at http://rna.urmc.rochester.edu  相似文献   

16.
Prediction of RNA secondary structure based on helical regions distribution   总被引:5,自引:0,他引:5  
MOTIVATION: RNAs play an important role in many biological processes and knowing their structure is important in understanding their function. Due to difficulties in the experimental determination of RNA secondary structure, the methods of theoretical prediction for known sequences are often used. Although many different algorithms for such predictions have been developed, this problem has not yet been solved. It is thus necessary to develop new methods for predicting RNA secondary structure. The most-used at present is Zuker's algorithm which can be used to determine the minimum free energy secondary structure. However many RNA secondary structures verified by experiments are not consistent with the minimum free energy secondary structures. In order to solve this problem, a method used to search a group of secondary structures whose free energy is close to the global minimum free energy was developed by Zuker in 1989. When considering a group of secondary structures, if there is no experimental data, we cannot tell which one is better than the others. This case also occurs in combinatorial and heuristic methods. These two kinds of methods have several weaknesses. Here we show how the central limit theorem can be used to solve these problems. RESULTS: An algorithm for predicting RNA secondary structure based on helical regions distribution is presented, which can be used to find the most probable secondary structure for a given RNA sequence. It consists of three steps. First, list all possible helical regions. Second, according to central limit theorem, estimate the occurrence probability of every helical region based on the Monte Carlo simulation. Third, add the helical region with the biggest probability to the current structure and eliminate the helical regions incompatible with the current structure. The above processes can be repeated until no more helical regions can be added. Take the current structure as the final RNA secondary structure. In order to demonstrate the confidence of the program, a test on three RNA sequences: tRNAPhe, Pre-tRNATyr, and Tetrahymena ribosomal RNA intervening sequence, is performed. AVAILABILITY: The program is written in Turbo Pascal 7.0. The source code is available upon request. CONTACT: Wujj@nic.bmi.ac.cn or Liwj@mail.bmi.ac.cn   相似文献   

17.

Background

Ribonucleic acid (RNA) molecules play important roles in many biological processes including gene expression and regulation. Their secondary structures are crucial for the RNA functionality, and the prediction of the secondary structures is widely studied. Our previous research shows that cutting long sequences into shorter chunks, predicting secondary structures of the chunks independently using thermodynamic methods, and reconstructing the entire secondary structure from the predicted chunk structures can yield better accuracy than predicting the secondary structure using the RNA sequence as a whole. The chunking, prediction, and reconstruction processes can use different methods and parameters, some of which produce more accurate predictions than others. In this paper, we study the prediction accuracy and efficiency of three different chunking methods using seven popular secondary structure prediction programs that apply to two datasets of RNA with known secondary structures, which include both pseudoknotted and non-pseudoknotted sequences, as well as a family of viral genome RNAs whose structures have not been predicted before. Our modularized MapReduce framework based on Hadoop allows us to study the problem in a parallel and robust environment.

Results

On average, the maximum accuracy retention values are larger than one for our chunking methods and the seven prediction programs over 50 non-pseudoknotted sequences, meaning that the secondary structure predicted using chunking is more similar to the real structure than the secondary structure predicted by using the whole sequence. We observe similar results for the 23 pseudoknotted sequences, except for the NUPACK program using the centered chunking method. The performance analysis for 14 long RNA sequences from the Nodaviridae virus family outlines how the coarse-grained mapping of chunking and predictions in the MapReduce framework exhibits shorter turnaround times for short RNA sequences. However, as the lengths of the RNA sequences increase, the fine-grained mapping can surpass the coarse-grained mapping in performance.

Conclusions

By using our MapReduce framework together with statistical analysis on the accuracy retention results, we observe how the inversion-based chunking methods can outperform predictions using the whole sequence. Our chunk-based approach also enables us to predict secondary structures for very long RNA sequences, which is not feasible with traditional methods alone.
  相似文献   

18.
MOTIVATION: The functions of non-coding RNAs are strongly related to their secondary structures, but it is known that a secondary structure prediction of a single sequence is not reliable. Therefore, we have to collect similar RNA sequences with a common secondary structure for the analyses of a new non-coding RNA without knowing the exact secondary structure itself. Therefore, the sequence comparison in searching similar RNAs should consider not only their sequence similarities but also their potential secondary structures. Sankoff's algorithm predicts the common secondary structures of the sequences, but it is computationally too expensive to apply to large-scale analyses. Because we often want to compare a large number of cDNA sequences or to search similar RNAs in the whole genome sequences, much faster algorithms are required. RESULTS: We propose a new method of comparing RNA sequences based on the structural alignments of the fixed-length fragments of the stem candidates. The implemented software, SCARNA (Stem Candidate Aligner for RNAs), is fast enough to apply to the long sequences in the large-scale analyses. The accuracy of the alignments is better or comparable with the much slower existing algorithms. AVAILABILITY: The web server of SCARNA with graphical structural alignment viewer is available at http://www.scarna.org/.  相似文献   

19.
Functional RNA structures tend to be conserved during evolution. This finding is, for example, exploited by comparative methods for RNA secondary structure prediction that currently provide the state-of-art in terms of prediction accuracy. We here provide strong evidence that homologous RNA genes not only fold into similar final RNA structures, but that their folding pathways also share common transient structural features that have been evolutionarily conserved. For this, we compile and investigate a non-redundant data set of 32 sequences with known transient and final RNA secondary structures and devise a dedicated computational analysis pipeline.  相似文献   

20.
Fang X  Luo Z  Yuan B  Wang J 《Bioinformation》2007,2(5):222-229
The prediction of RNA secondary structure can be facilitated by incorporating with comparative analysis of homologous sequences. However, most of existing comparative methods are vulnerable to alignment errors and thus are of low accuracy in practical application. Here we improve the prediction of RNA secondary structure by detecting and assessing conserved stems shared by all sequences in the alignment. Our method can be summarized by: 1) we detect possible stems in single RNA sequence using the so-called position matrix with which some possibly paired positions can be uncovered; 2) we detect conserved stems across multiple RNA sequences by multiplying the position matrices; 3) we assess the conserved stems using the Signal-to-Noise; 4) we compute the optimized secondary structure by incorporating the so-called reliable conserved stems with predictions by RNAalifold program. We tested our method on data sets of RNA alignments with known secondary structures. The accuracy, measured as sensitivity and specificity, of our method is greater than predictions by RNAalifold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号