首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Scansite分析软件是近两年建立的一种新的利用因特网,基于蛋白质分子中较短的模序进行蛋白质磷酸化和蛋白质蛋白质相互作用预测的工具。这里综述了Scansite的使用方法、功能介绍及与其他磷酸化分析软件的比较,并展望了Scansite在进行磷酸化预测中面临的问题和应用前景。  相似文献   

2.
WW domains mediate protein-protein interactions through binding to short proline-rich sequences. Two distinct sequence motifs, PPXY and PPLP, are recognized by different classes of WW domains, and another class binds to phospho-Ser-Pro sequences. We now describe a novel Pro-Arg sequence motif recognized by a different class of WW domains using data from oriented peptide library screening, expression cloning, and in vitro binding experiments. The prototype member of this group is the WW domain of formin-binding protein 30 (FBP30), a p53-regulated molecule whose WW domains bind to Pro-Arg-rich cellular proteins. This new Pro-Arg sequence motif re-classifies the organization of WW domains based on ligand specificity, and the Pro-Arg class now includes the WW domains of FBP21 and FE65. A structural model is presented which rationalizes the distinct motifs selected by the WW domains of YAP, Pin1, and FBP30. The Pro-Arg motif identified for WW domains often overlaps with SH3 domain motifs within protein sequences, suggesting that the same extended proline-rich sequence could form discrete SH3 or WW domain complexes to transduce distinct cellular signals.  相似文献   

3.
Li L  Wu C  Huang H  Zhang K  Gan J  Li SS 《Nucleic acids research》2008,36(10):3263-3273
Systematic identification of binding partners for modular domains such as Src homology 2 (SH2) is important for understanding the biological function of the corresponding SH2 proteins. We have developed a worldwide web-accessible computer program dubbed SMALI for scoring matrix-assisted ligand identification for SH2 domains and other signaling modules. The current version of SMALI harbors 76 unique scoring matrices for SH2 domains derived from screening oriented peptide array libraries. These scoring matrices are used to search a protein database for short peptides preferred by an SH2 domain. An experimentally determined cut-off value is used to normalize an SMALI score, therefore allowing for direct comparison in peptide-binding potential for different SH2 domains. SMALI employs distinct scoring matrices from Scansite, a popular motif-scanning program. Moreover, SMALI contains built-in filters for phosphoproteins, Gene Ontology (GO) correlation and colocalization of subject and query proteins. Compared to Scansite, SMALI exhibited improved accuracy in identifying binding peptides for SH2 domains. Applying SMALI to a group of SH2 domains identified hundreds of interactions that overlap significantly with known networks mediated by the corresponding SH2 proteins, suggesting SMALI is a useful tool for facile identification of signaling networks mediated by modular domains that recognize short linear peptide motifs.  相似文献   

4.
5.
The rapid increase in genomic information requires new techniques to infer protein function and predict protein-protein interactions. Bioinformatics identifies modular signaling domains within protein sequences with a high degree of accuracy. In contrast, little success has been achieved in predicting short linear sequence motifs within proteins targeted by these domains to form complex signaling networks. Here we describe a peptide library-based searching algorithm, accessible over the World Wide Web, that identifies sequence motifs likely to bind to specific protein domains such as 14-3-3, SH2, and SH3 domains, or likely to be phosphorylated by specific protein kinases such as Src and AKT. Predictions from database searches for proteins containing motifs matching two different domains in a common signaling pathway provides a much higher success rate. This technology facilitates prediction of cell signaling networks within proteomes, and could aid in the identification of drug targets for the treatment of human diseases.  相似文献   

6.
Epstein-Barr virus (EBV) is a human herpesvirus which establishes a lifelong latent infection in B lymphocytes. Latent membrane protein 2A (LMP2A) is expressed in both humans with EBV latent infection and EBV immortalized cell lines grown in culture. Previous studies have shown that the amino terminal domain of LMP2A, which contains eight tyrosines, associates with a variety of cellular proteins via SH2-phosphotyrosine interactions. Also contained within the LMP2A amino terminal domain are five proline-rich regions, three of which possess the PxxP core consensus sequence required for interacting with SH3 domains and two of which possess the PPxY core consensus sequence (PY motif) required for interacting with class I type WW domains. In the current study, the ability of LMP2A to interact with either modular SH3 or WW domains was investigated. The results of these studies indicate that the two LMP2A PY motifs interact strongly with representative class I WW domains, but not with representative class II WW domains. In contrast, no interactions were detected between LMP2A and any of the five different SH3 domains tested. These data demonstrate that a subset of the conserved proline-rich motifs within the amino terminus of LMP2A can potentially mediate interactions with cellular proteins and may play a role in EBV-mediated latency and/or transformation.  相似文献   

7.
src homology 2 (SH2) domains of intracellular signaling molecules such as phospholipase C-gamma and phosphatidylinositol 3'-kinase-associated protein p85 represent recognition motifs for specific phosphotyrosine-containing regions on activated growth factor receptors. The binding of SH2 domains to activated growth factor receptors controls the interaction with signaling molecules and the regulation of their activities. In this report, we describe the kinetic parameters and binding affinities of SH2 domains of p85 toward short phosphotyrosine-containing peptides with the amino acid sequence motif YMXM, derived from a major insulin receptor substrate, IRS-1, by using real time biospecific interaction analysis (BIAcore). Associations were specific and of very high affinity, with dissociation constants of 0.3 to 3 nM, between phosphopeptides and the two separate SH2 domains contained within p85. Nonphosphorylated peptides showed no measurable binding, and the interactions were specific for the primary sequence very close to the phosphotyrosine residue. Moreover, the interactions between phosphopeptides and SH2 domains of other signaling molecules were of much lower affinity. Interestingly, the binding of the SH2 domains to the tyrosine-phosphorylated peptides was of high affinity as a result of a very high on rate, of 3 x 10(7) to 40 x 10(7)/M/s; at the same time, the rate of dissociation, of 0.11 to 0.19/s, was rapid, allowing for rapid exchange of associating proteins with the tyrosine phosphorylation sites.  相似文献   

8.

Background  

Many protein interactions, especially those involved in signaling, involve short linear motifs consisting of 5-10 amino acid residues that interact with modular protein domains such as the SH3 binding domains and the kinase catalytic domains. One straightforward way of identifying these interactions is by scanning for matches to the motif against all the sequences in a target proteome. However, predicting domain targets by motif sequence alone without considering other genomic and structural information has been shown to be lacking in accuracy.  相似文献   

9.
Many aspects of cell signalling, trafficking, and targeting are governed by interactions between globular protein domains and short peptide segments. These domains often bind multiple peptides that share a common sequence pattern, or “linear motif” (e.g., SH3 binding to PxxP). Many domains are known, though comparatively few linear motifs have been discovered. Their short length (three to eight residues), and the fact that they often reside in disordered regions in proteins makes them difficult to detect through sequence comparison or experiment. Nevertheless, each new motif provides critical molecular details of how interaction networks are constructed, and can explain how one protein is able to bind to very different partners. Here we show that binding motifs can be detected using data from genome-scale interaction studies, and thus avoid the normally slow discovery process. Our approach based on motif over-representation in non-homologous sequences, rediscovers known motifs and predicts dozens of others. Direct binding experiments reveal that two predicted motifs are indeed protein-binding modules: a DxxDxxxD protein phosphatase 1 binding motif with a KD of 22 μM and a VxxxRxYS motif that binds Translin with a KD of 43 μM. We estimate that there are dozens or even hundreds of linear motifs yet to be discovered that will give molecular insight into protein networks and greatly illuminate cellular processes.  相似文献   

10.
Modern proteomic techniques have identified hundreds of proteins that bind 14-3-3s, the most widespread eukaryotic phosphoserine/threonine sensors, but accurate prediction of the target phospho-sites is difficult. Here we describe a systematic approach using synthetic peptides that tests large numbers of potential binding sites in parallel for human 14-3-3. By profiling the sequence requirements for three diverse 14-3-3 binding sites (from IRS-1, IRSp53 and GIT2), we have generated enhanced bioinformatics tools to score sites and allow more tractable testing by co-immunoprecipitation. This approach has allowed us to identify two additional sites other than Ser216 in the widely studied cell division cycle (Cdc) protein 25C, whose function depends on 14-3-3 binding. These Ser247 and Ser263 sites in human Cdc25C, which were not predicted by the existing Scansite search, are conserved across species and flank the nuclear localization region. Furthermore, we found strong interactions between 14-3-3 and peptides with the sequence Rxx[S/T]xR typical for PKC sites, and which is as abundant as the canonical Rxx[S/T]xP motif in the proteome. Two such sites are required for 14-3-3 binding in the polarity protein Numb. A recent survey of >200 reported sites identified only a handful containing this motif, suggesting that it is currently under-appreciated as a candidate binding site. This approach allows one to rapidly map 14-3-3 binding sites and has revealed alternate motifs.  相似文献   

11.
Many protein-protein interactions are mediated by domain-motif interaction, where a domain in one protein binds a short linear motif in its interacting partner. Such interactions are often involved in key cellular processes, necessitating their tight regulation. A common strategy of the cell to control protein function and interaction is by post-translational modifications of specific residues, especially phosphorylation. Indeed, there are motifs, such as SH2-binding motifs, in which motif phosphorylation is required for the domain-motif interaction. On the contrary, there are other examples where motif phosphorylation prevents the domain-motif interaction. Here we present a large-scale integrative analysis of experimental human data of domain-motif interactions and phosphorylation events, demonstrating an intriguing coupling between the two. We report such coupling for SH3, PDZ, SH2 and WW domains, where residue phosphorylation within or next to the motif is implied to be associated with switching on or off domain binding. For domains that require motif phosphorylation for binding, such as SH2 domains, we found coupled phosphorylation events other than the ones required for domain binding. Furthermore, we show that phosphorylation might function as a double switch, concurrently enabling interaction of the motif with one domain and disabling interaction with another domain. Evolutionary analysis shows that co-evolution of the motif and the proximal residues capable of phosphorylation predominates over other evolutionary scenarios, in which the motif appeared before the potentially phosphorylated residue, or vice versa. Our findings provide strengthening evidence for coupled interaction-regulation units, defined by a domain-binding motif and a phosphorylated residue.  相似文献   

12.
SH3 domains mediate intracellular protein-protein interactions through the recognition of proline-rich sequence motifs on cellular proteins. Structural analysis of the Src SH3 domain (Src SH3) complexed with proline-rich peptide ligands revealed three binding sites involved in this interaction: two hydrophobic interactions (between aliphatic proline dipeptides in the SH3 ligand and highly conserved aromatic residues on the surface of the SH3 domain), and one salt bridge (between Asp-99 of Src and an Arg three residues upstream of the conserved Pro-X-X-Pro motif in the ligand). We examined the importance of the arginine binding site of SH3 domains by comparing the binding properties of wild-type Src SH3 and Abl SH3 with those of a Src SH3 mutant containing a mutated arginine binding site (D99N) and Abl SH3 mutant constructs engineered to contain an arginine binding site (T98D and T98D/F91Y). We found that the D99N mutation diminished binding to most Src SH3-binding proteins in whole cell extracts; however, there was only a moderate reduction in binding to a small subset of Src SH3-binding proteins (including the Src substrate p68). p68 was shown to contain two Arg-containing Asp-99-dependent binding sites and one Asp-99-independent binding site which lacks an Arg. Moreover, substitution of Asp for Thr-98 in Abl SH3 changed the binding specificity of this domain and conferred the ability to recognize Arg-containing ligands. These results indicate that Asp-99 is important for Src SH3 binding specificity and that Asp-99-dependent binding interactions play a dominant role in Src SH3 recognition of cellular binding proteins, and they suggest the existence of two Src SH3 binding mechanisms, one requiring Asp-99 and the other independent of this residue.  相似文献   

13.
Postsynaptic density-95 (PSD-95/SAP-90) is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins that assemble protein complexes at synapses and other cell junctions. MAGUKs comprise multiple protein-protein interaction motifs including PDZ, SH3 and guanylate kinase (GK) domains, and these binding sites mediate the scaffolding function of MAGUK proteins. Synaptic binding partners for the PDZ and GK domains of PSD-95 have been identified, but the role of the SH3 domain remains elusive. We now report that the SH3 domain of PSD-95 mediates a specific interaction with the GK domain. The GK domain lacks a poly-proline motif that typically binds to SH3 domains; instead, SH3/GK binding is a bi-domain interaction that requires both intact motifs. Although isolated SH3 and GK domains can bind in trans, experiments with intact PSD-95 molecules indicate that intramolecular SH3/GK binding dominates and prevents intermolecular associations. SH3/GK binding is conserved in the related Drosophila MAGUK protein DLG but is not detectable for Caenorhabditis elegans LIN-2. Many previously identified genetic mutations of MAGUKs in invertebrates occur in the SH3 or GK domains, and all of these mutations disrupt intramolecular SH3/GK binding.  相似文献   

14.
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well.  相似文献   

15.
M T Bedford  D C Chan    P Leder 《The EMBO journal》1997,16(9):2376-2383
WW domains are conserved protein motifs of 38-40 amino acids found in a broad spectrum of proteins. They mediate protein-protein interactions by binding proline-rich modules in ligands. A 10 amino acid proline-rich portion of the morphogenic protein, formin, is bound in vitro by both the WW domain of the formin-binding protein 11 (FBP11) and the SH3 domain of Abl. To explore whether the FBP11 WW domain and Abl SH3 domain bind to similar ligands, we screened a mouse limb bud expression library for putative ligands of the FBP11 WW domain. In so doing, we identified eight ligands (WBP3 through WBP10), each of which contains a proline-rich region or regions. Peptide sequence comparisons of the ligands revealed a conserved motif of 10 amino acids that acts as a modular sequence binding the FBP11 WW domain, but not the WW domain of the putative signal transducing factor, hYAP65. Interestingly, the consensus ligand for the FBP11 WW domain contains residues that are also required for binding by the Abl SH3 domain. These findings support the notion that the FBP11 WW domain and the Abl SH3 domain can compete for the same proline-rich ligands and suggest that at least two subclasses of WW domains exist, namely those that bind a PPLP motif, and those that bind a PPXY motif.  相似文献   

16.
Although some exceptional motifs have been identified, it is well known that the PXXP motif is the motif of ligand proteins generally recognized by the Src homology 3 (SH3) domain. SH3-ligand interactions are usually weak, with ordinary KD approximately 10 microM. The structural basis for a tight and specific association (KD = 0.24 microm) between Gads SH3 and a novel motif, PX(V/I)(D/N)RXXKP, was revealed in a previous structural analysis of the complex formed between them. In this paper, we report the crystal structure of the signal transducing adaptor molecule-2 (STAM2) SH3 domain in complex with a peptide with a novel motif derived from a ligand protein, UBPY. The derived KD value for this complex is 27 microM. The notable difference in affinity for these parallel complexes may be explained because the STAM2 SH3 structure does not provide a specificity pocket for binding, whereas the Gads SH3 structure does. Instead, the structure of STAM2 SH3 is analogous to that of Grb2 SH3 which, in addition to normal PXXP ligands, has also been shown to moderately recognize the novel motif discussed herein. Thus, the extremely tight interaction observed between Gads SH3 and the novel motif is caused not by an innate ability of the novel motif but rather by an evolutionary change in the Gads SH3 domain. Instead, SH3 domains of STAM2 and Grb2 retain the moderate characteristics of recognizing their ligand proteins like other SH3 domains for appropriate transient interactions between signaling molecules.  相似文献   

17.
Numerous signaling proteins use multivalent binding to increase the specificity and affinity of their interactions within the cell. Enhancement arises because the effective binding constant for multivalent binding is larger than the binding constants for each individual interaction. We seek to gain both qualitative and quantitative understanding of the multivalent interactions of an adaptor protein, growth factor receptor bound protein-2 (Grb2), containing two SH3 domains interacting with the nucleotide exchange factor son-of-sevenless 1 (Sos1) containing multiple polyproline motifs separated by flexible unstructured regions. Grb2 mediates the recruitment of Sos1 from the cytosol to the plasma membrane where it activates Ras by inducing the exchange of GDP for GTP. First, using a combination of evolutionary information and binding energy calculations, we predict an additional polyproline motif in Sos1 that binds to the SH3 domains of Grb2. This gives rise to a total of five polyproline motifs in Sos1 that are capable of binding to the two SH3 domains of Grb2. Then, using a hybrid method combining molecular dynamics simulations and polymer models, we estimate the enhancement in local concentration of a polyproline motif on Sos1 near an unbound SH3 domain of Grb2 when its other SH3 domain is bound to a different polyproline motif on Sos1. We show that the local concentration of the Sos1 motifs that a Grb2 SH3 domain experiences is approximately 1000 times greater than the cellular concentration of Sos1. Finally, we calculate the intramolecular equilibrium constants for the crosslinking of Grb2 on Sos1 and use thermodynamic modeling to calculate the stoichiometry. With these equilibrium constants, we are able to predict the distribution of complexes that form at physiological concentrations. We believe this is the first systematic analysis that combines sequence, structure, and thermodynamic analyses to determine the stoichiometry of the complexes that are dominant in the cellular environment.  相似文献   

18.
Determination of the binding motif and identification of interaction partners of the modular domains such as SH2 domains can enhance our understanding of the regulatory mechanism of protein-protein interactions. We propose here a new computational method to achieve this goal by integrating the orthogonal information obtained from binding free energy estimation and peptide sequence analysis. We performed a proof-of-concept study on the SH2 domains of SAP and Grb2 proteins. The method involves the following steps: (1) estimating the binding free energy of a set of randomly selected peptides along with a sample of known binders; (2) clustering all these peptides using sequence and energy characteristics; (3) extracting a sequence motif, which is represented by a hidden Markov model (HMM), from the cluster of peptides containing the sample of known binders; and (4) scanning the human proteome to identify binding sites of the domain. The binding motifs of the SAP and Grb2 SH2 domains derived by the method agree well with those determined through experimental studies. Using the derived binding motifs, we have predicted new possible interaction partners for the Grb2 and SAP SH2 domains as well as possible interaction sites for interaction partners already known. We also suggested novel roles for the proteins by reviewing their top interaction candidates.  相似文献   

19.
Specific interactions of transmembrane helices play a pivotal role in the folding and oligomerization of integral membrane proteins. The helix-helix interfaces frequently depend on specific amino acid patterns. In this study, a heptad repeat pattern was randomized with all naturally occurring amino acids to uncover novel sequence motifs promoting transmembrane domain interactions. Self-interacting transmembrane domains were selected from the resulting combinatorial library by means of the ToxR/POSSYCCAT system. A comparison of the amino acid composition of high-and low-affinity sequences revealed that high-affinity transmembrane domains exhibit position-specific enrichment of histidine. Further, sequences containing His preferentially display Gly, Ser, and/or Thr residues at flanking positions and frequently contain a C-terminal GxxxG motif. Mutational analysis of selected sequences confirmed the importance of these residues in homotypic interaction. Probing heterotypic interaction indicated that His interacts in trans with hydroxylated residues. Reconstruction of minimal interaction motifs within the context of an oligo-Leu sequence confirmed that His is part of a hydrogen bonded cluster that is brought into register by the GxxxG motif. Notably, a similar motif contributes to self-interaction of the BNIP3 transmembrane domain.  相似文献   

20.
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号