首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cai CZ  Han LY  Ji ZL  Chen YZ 《Proteins》2004,55(1):66-76
One approach for facilitating protein function prediction is to classify proteins into functional families. Recent studies on the classification of G-protein coupled receptors and other proteins suggest that a statistical learning method, Support vector machines (SVM), may be potentially useful for protein classification into functional families. In this work, SVM is applied and tested on the classification of enzymes into functional families defined by the Enzyme Nomenclature Committee of IUBMB. SVM classification system for each family is trained from representative enzymes of that family and seed proteins of Pfam curated protein families. The classification accuracy for enzymes from 46 families and for non-enzymes is in the range of 50.0% to 95.7% and 79.0% to 100% respectively. The corresponding Matthews correlation coefficient is in the range of 54.1% to 96.1%. Moreover, 80.3% of the 8,291 correctly classified enzymes are uniquely classified into a specific enzyme family by using a scoring function, indicating that SVM may have certain level of unique prediction capability. Testing results also suggest that SVM in some cases is capable of classification of distantly related enzymes and homologous enzymes of different functions. Effort is being made to use a more comprehensive set of enzymes as training sets and to incorporate multi-class SVM classification systems to further enhance the unique prediction accuracy. Our results suggest the potential of SVM for enzyme family classification and for facilitating protein function prediction. Our software is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.  相似文献   

2.
Han LY  Cai CZ  Ji ZL  Cao ZW  Cui J  Chen YZ 《Nucleic acids research》2004,32(21):6437-6444
The function of a protein that has no sequence homolog of known function is difficult to assign on the basis of sequence similarity. The same problem may arise for homologous proteins of different functions if one is newly discovered and the other is the only known protein of similar sequence. It is desirable to explore methods that are not based on sequence similarity. One approach is to assign functional family of a protein to provide useful hint about its function. Several groups have employed a statistical learning method, support vector machines (SVMs), for predicting protein functional family directly from sequence irrespective of sequence similarity. These studies showed that SVM prediction accuracy is at a level useful for functional family assignment. But its capability for assignment of distantly related proteins and homologous proteins of different functions has not been critically and adequately assessed. Here SVM is tested for functional family assignment of two groups of enzymes. One consists of 50 enzymes that have no homolog of known function from PSI-BLAST search of protein databases. The other contains eight pairs of homologous enzymes of different families. SVM correctly assigns 72% of the enzymes in the first group and 62% of the enzyme pairs in the second group, suggesting that it is potentially useful for facilitating functional study of novel proteins. A web version of our software, SVMProt, is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi.  相似文献   

3.
In plant genomes, the function of a substantial percentage of the putative protein-coding open reading frames (ORFs) is unknown. These ORFs have no significant sequence similarity to known proteins, which complicates the task of functional study of these proteins. Efforts are being made to explore methods that are complementary to, or may be used in combination with, sequence alignment and clustering methods. A web-based protein functional class prediction software, SVMProt, has shown some capability for predicting functional class of distantly related proteins. Here the usefulness of SVMProt for functional study of novel plant proteins is evaluated. To test SVMProt, 49 plant proteins (without a sequence homolog in the Swiss-Prot protein database, not in the SVMProt training set, and with functional indications provided in the literature) were selected from a comprehensive search of MEDLINE abstracts and Swiss-Prot databases in 1999-2004. These represent unique proteins the function of which, at present, cannot be confidently predicted by sequence alignment and clustering methods. The predicted functional class of 31 proteins was consistent, and that of four other proteins was weakly consistent, with published functions. Overall, the functional class of 71.4% of these proteins was consistent, or weakly consistent, with functional indications described in the literature. SVMProt shows a certain level of ability to provide useful hints about the functions of novel plant proteins with no similarity to known proteins.  相似文献   

4.
Elucidation of the interaction of proteins with different molecules is of significance in the understanding of cellular processes. Computational methods have been developed for the prediction of protein-protein interactions. But insufficient attention has been paid to the prediction of protein-RNA interactions, which play central roles in regulating gene expression and certain RNA-mediated enzymatic processes. This work explored the use of a machine learning method, support vector machines (SVM), for the prediction of RNA-binding proteins directly from their primary sequence. Based on the knowledge of known RNA-binding and non-RNA-binding proteins, an SVM system was trained to recognize RNA-binding proteins. A total of 4011 RNA-binding and 9781 non-RNA-binding proteins was used to train and test the SVM classification system, and an independent set of 447 RNA-binding and 4881 non-RNA-binding proteins was used to evaluate the classification accuracy. Testing results using this independent evaluation set show a prediction accuracy of 94.1%, 79.3%, and 94.1% for rRNA-, mRNA-, and tRNA-binding proteins, and 98.7%, 96.5%, and 99.9% for non-rRNA-, non-mRNA-, and non-tRNA-binding proteins, respectively. The SVM classification system was further tested on a small class of snRNA-binding proteins with only 60 available sequences. The prediction accuracy is 40.0% and 99.9% for snRNA-binding and non-snRNA-binding proteins, indicating a need for a sufficient number of proteins to train SVM. The SVM classification systems trained in this work were added to our Web-based protein functional classification software SVMProt, at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi. Our study suggests the potential of SVM as a useful tool for facilitating the prediction of protein-RNA interactions.  相似文献   

5.
A substantial percentage of the putative protein-encoding open reading frames (ORFs) in bacterial genomes have no homolog of known function, and their function cannot be confidently assigned on the basis of sequence similarity. Methods not based on sequence similarity are needed and being developed. One method, SVMProt (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi), predicts protein functional family irrespective of sequence similarity (Nucleic Acids Res. 2003;31:3692-3697). While it has been tested on a large number of proteins, its capability for non-homologous proteins has so far been evaluated for a relatively small number of proteins, and additional tests are needed to more fully assess SVMProt. In this work, 90 novel bacterial proteins (non-homologous to known proteins) are used to evaluate the capability of SVMProt. These proteins are such that none of their homologs are in the Swiss-Prot database, their functions not clearly described in the literature, and they themselves and their homologs are not included in the training sets of SVMProt. They represent proteins whose function cannot be confidently predicted by sequence similarity methods at present. The predicted functional class of 76.7% of each of these proteins shows various levels of consistency with the literature-described function, compared to the overall accuracy of 87% for the SVMProt functional class assignment of 34,582 proteins that have at least one homolog of known function. Our study suggests that SVMProt is capable of assigning functional class for novel bacterial proteins at a level not too much lower than that of sequence alignment methods for homologous proteins.  相似文献   

6.
The complete genome of severe acute respiratory syndrome coronavirus (SARS-CoV) reveals the existence of putative proteins unique to SARS-CoV. Identification of their function facilitates a mechanistic understanding of SARS infection and drug development for its treatment. The sequence of the majority of these putative proteins has no significant similarity to those of known proteins, which complicates the task of using sequence analysis tools to probe their function. Support vector machines (SVM), useful for predicting the functional class of distantly related proteins, is employed to ascribe a possible functional class to SARS-CoV proteins. Testing results indicate that SVM is able to predict the functional class of 73% of the known SARS-CoV proteins with available sequences and 67% of 18 other novel viral proteins. A combination of the sequence comparison method BLAST and SVMProt can further improve the prediction accuracy of SMVProt such that the functional class of two additional SARS-CoV proteins is correctly predicted. Our study suggests that the SARS-CoV genome possibly contains a putative voltage-gated ion channel, structural proteins, a carbon-oxygen lyase, oxidoreductases acting on the CH-OH group of donors, and an ATP-binding cassette transporter. A web version of our software, SVMProt, is accessible at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi .  相似文献   

7.
Lin HH  Han LY  Cai CZ  Ji ZL  Chen YZ 《Proteins》2006,62(1):218-231
Transporters play key roles in cellular transport and metabolic processes, and in facilitating drug delivery and excretion. These proteins are classified into families based on the transporter classification (TC) system. Determination of the TC family of transporters facilitates the study of their cellular and pharmacological functions. Methods for predicting TC family without sequence alignments or clustering are particularly useful for studying novel transporters whose function cannot be determined by sequence similarity. This work explores the use of a machine learning method, support vector machines (SVMs), for predicting the family of transporters from their sequence without the use of sequence similarity. A total of 10,636 transporters in 13 TC subclasses, 1914 transporters in eight TC families, and 168,341 nontransporter proteins are used to train and test the SVM prediction system. Testing results by using a separate set of 4351 transporters and 83,151 nontransporter proteins show that the overall accuracy for predicting members of these TC subclasses and families is 83.4% and 88.0%, respectively, and that of nonmembers is 99.3% and 96.6%, respectively. The accuracies for predicting members and nonmembers of individual TC subclasses are in the range of 70.7-96.1% and 97.6-99.9%, respectively, and those of individual TC families are in the range of 60.6-97.1% and 91.5-99.4%, respectively. A further test by using 26,139 transmembrane proteins outside each of the 13 TC subclasses shows that 90.4-99.6% of these are correctly predicted. Our study suggests that the SVM is potentially useful for facilitating functional study of transporters irrespective of sequence similarity.  相似文献   

8.
Protein function classification via support vector machine approach   总被引:2,自引:0,他引:2  
Support vector machine (SVM) is introduced as a method for the classification of proteins into functionally distinguished classes. Studies are conducted on a number of protein classes including RNA-binding proteins; protein homodimers, proteins responsible for drug absorption, proteins involved in drug distribution and excretion, and drug metabolizing enzymes. Testing accuracy for the classification of these protein classes is found to be in the range of 84-96%. This suggests the usefulness of SVM in the classification of protein functional classes and its potential application in protein function prediction.  相似文献   

9.
An efficient algorithm for large-scale detection of protein families   总被引:6,自引:0,他引:6  
Detection of protein families in large databases is one of the principal research objectives in structural and functional genomics. Protein family classification can significantly contribute to the delineation of functional diversity of homologous proteins, the prediction of function based on domain architecture or the presence of sequence motifs as well as comparative genomics, providing valuable evolutionary insights. We present a novel approach called TRIBE-MCL for rapid and accurate clustering of protein sequences into families. The method relies on the Markov cluster (MCL) algorithm for the assignment of proteins into families based on precomputed sequence similarity information. This novel approach does not suffer from the problems that normally hinder other protein sequence clustering algorithms, such as the presence of multi-domain proteins, promiscuous domains and fragmented proteins. The method has been rigorously tested and validated on a number of very large databases, including SwissProt, InterPro, SCOP and the draft human genome. Our results indicate that the method is ideally suited to the rapid and accurate detection of protein families on a large scale. The method has been used to detect and categorise protein families within the draft human genome and the resulting families have been used to annotate a large proportion of human proteins.  相似文献   

10.
Function prediction by homology is widely used to provide preliminary functional annotations for genes for which experimental evidence of function is unavailable or limited. This approach has been shown to be prone to systematic error, including percolation of annotation errors through sequence databases. Phylogenomic analysis avoids these errors in function prediction but has been difficult to automate for high-throughput application. To address this limitation, we present a computationally efficient pipeline for phylogenomic classification of proteins. This pipeline uses the SCI-PHY (Subfamily Classification in Phylogenomics) algorithm for automatic subfamily identification, followed by subfamily hidden Markov model (HMM) construction. A simple and computationally efficient scoring scheme using family and subfamily HMMs enables classification of novel sequences to protein families and subfamilies. Sequences representing entirely novel subfamilies are differentiated from those that can be classified to subfamilies in the input training set using logistic regression. Subfamily HMM parameters are estimated using an information-sharing protocol, enabling subfamilies containing even a single sequence to benefit from conservation patterns defining the family as a whole or in related subfamilies. SCI-PHY subfamilies correspond closely to functional subtypes defined by experts and to conserved clades found by phylogenetic analysis. Extensive comparisons of subfamily and family HMM performances show that subfamily HMMs dramatically improve the separation between homologous and non-homologous proteins in sequence database searches. Subfamily HMMs also provide extremely high specificity of classification and can be used to predict entirely novel subtypes. The SCI-PHY Web server at http://phylogenomics.berkeley.edu/SCI-PHY/ allows users to upload a multiple sequence alignment for subfamily identification and subfamily HMM construction. Biologists wishing to provide their own subfamily definitions can do so. Source code is available on the Web page. The Berkeley Phylogenomics Group PhyloFacts resource contains pre-calculated subfamily predictions and subfamily HMMs for more than 40,000 protein families and domains at http://phylogenomics.berkeley.edu/phylofacts/.  相似文献   

11.
Lipid binding proteins play important roles in signaling, regulation, membrane trafficking, immune response, lipid metabolism, and transport. Because of their functional and sequence diversity, it is desirable to explore additional methods for predicting lipid binding proteins irrespective of sequence similarity. This work explores the use of support vector machines (SVMs) as such a method. SVM prediction systems are developed using 14,776 lipid binding and 133,441 nonlipid binding proteins and are evaluated by an independent set of 6,768 lipid binding and 64,761 nonlipid binding proteins. The computed prediction accuracy is 78.9, 79.5, 82.2, 79.5, 84.4, 76.6, 90.6, 79.0, and 89.9% for lipid degradation, lipid metabolism, lipid synthesis, lipid transport, lipid binding, lipopolysaccharide biosynthesis, lipoprotein, lipoyl, and all lipid binding proteins, respectively. The accuracy for the nonmember proteins of each class is 99.9, 99.2, 99.6, 99.8, 99.9, 99.8, 98.5, 99.9, and 97.0%, respectively. Comparable accuracies are obtained when homologous proteins are considered as one, or by using a different SVM kernel function. Our method predicts 86.8% of the 76 lipid binding proteins nonhomologous to any protein in the Swiss-Prot database and 89.0% of the 73 known lipid binding domains as lipid binding. These findings suggest the usefulness of SVMs for facilitating the prediction of lipid binding proteins. Our software can be accessed at the SVMProt server (http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi).  相似文献   

12.
TIGRFAMs is a collection of protein families featuring curated multiple sequence alignments, hidden Markov models and associated information designed to support the automated functional identification of proteins by sequence homology. We introduce the term 'equivalog' to describe members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families where possible, and otherwise into protein families with other hierarchically defined homology types. TIGRFAMs currently contains over 800 protein families, available for searching or downloading at www.tigr.org/TIGRFAMs. Classification by equivalog family, where achievable, complements classification by orthology, superfamily, domain or motif. It provides the information best suited for automatic assignment of specific functions to proteins from large-scale genome sequencing projects.  相似文献   

13.
The increasing number and diversity of protein sequence families requires new methods to define and predict details regarding function. Here, we present a method for analysis and prediction of functional sub-types from multiple protein sequence alignments. Given an alignment and set of proteins grouped into sub-types according to some definition of function, such as enzymatic specificity, the method identifies positions that are indicative of functional differences by comparison of sub-type specific sequence profiles, and analysis of positional entropy in the alignment. Alignment positions with significantly high positional relative entropy correlate with those known to be involved in defining sub-types for nucleotidyl cyclases, protein kinases, lactate/malate dehydrogenases and trypsin-like serine proteases. We highlight new positions for these proteins that suggest additional experiments to elucidate the basis of specificity. The method is also able to predict sub-type for unclassified sequences. We assess several variations on a prediction method, and compare them to simple sequence comparisons. For assessment, we remove close homologues to the sequence for which a prediction is to be made (by a sequence identity above a threshold). This simulates situations where a protein is known to belong to a protein family, but is not a close relative of another protein of known sub-type. Considering the four families above, and a sequence identity threshold of 30 %, our best method gives an accuracy of 96 % compared to 80 % obtained for sequence similarity and 74 % for BLAST. We describe the derivation of a set of sub-type groupings derived from an automated parsing of alignments from PFAM and the SWISSPROT database, and use this to perform a large-scale assessment. The best method gives an average accuracy of 94 % compared to 68 % for sequence similarity and 79 % for BLAST. We discuss implications for experimental design, genome annotation and the prediction of protein function and protein intra-residue distances.  相似文献   

14.
15.
Genomics has posed the challenge of determination of protein function from sequence and/or 3-D structure. Functional assignment from sequence relationships can be misleading, and structural similarity does not necessarily imply functional similarity. Proteins in the DJ-1 family, many of which are of unknown function, are examples of proteins with both sequence and fold similarity that span multiple functional classes. THEMATICS (theoretical microscopic titration curves), an electrostatics-based computational approach to functional site prediction, is used to sort proteins in the DJ-1 family into different functional classes. Active site residues are predicted for the eight distinct DJ-1 proteins with available 3-D structures. Placement of the predicted residues onto a structural alignment for six of these proteins reveals three distinct types of active sites. Each type overlaps only partially with the others, with only one residue in common across all six sets of predicted residues. Human DJ-1 and YajL from Escherichia coli have very similar predicted active sites and belong to the same probable functional group. Protease I, a known cysteine protease from Pyrococcus horikoshii, and PfpI/YhbO from E. coli, a hypothetical protein of unknown function, belong to a separate class. THEMATICS predicts a set of residues that is typical of a cysteine protease for Protease I; the prediction for PfpI/YhbO bears some similarity. YDR533Cp from Saccharomyces cerevisiae, of unknown function, and the known chaperone Hsp31 from E. coli constitute a third group with nearly identical predicted active sites. While the first four proteins have predicted active sites at dimer interfaces, YDR533Cp and Hsp31 both have predicted sites contained within each subunit. Although YDR533Cp and Hsp31 form different dimers with different orientations between the subunits, the predicted active sites are superimposable within the monomer structures. Thus, the three predicted functional classes form four different types of quaternary structures. The computational prediction of the functional sites for protein structures of unknown function provides valuable clues for functional classification.  相似文献   

16.
In the recent past, there has been a resurgence of interest in Chikungunya virus (CHIKV) attributed to massive outbreaks of Chikungunya fever in the South-East Asia Region. This has reflected in substantial increase in submission of CHIKV genome sequences to NCBI (National Center for Biotechnology Information) database. Hereby we submit a database "CHIKVPRO" containing structural and functional annotation of Chikungunya virus proteins (25 strains) submitted in the NCBI repository. The CHIKV genome encodes for 9 proteins:4 non-structural and 5 structural. The CHIKVPRO database aims to provide the virology community with a single accession authoritative resource for CHIKV proteome- with reference to physiochemical and molecular properties, proteolytic cleavage sites, hydrophobicity, transmembrane prediction, and classification into functional families using SVMProt and other Expasy tools. AVAILABILITY: The database is freely available at http://www.chikvpro.info/  相似文献   

17.
18.
Nucleic acid sequences from genome sequencing projects are submitted as raw data, from which biologists attempt to elucidate the function of the predicted gene products. The protein sequences are stored in public databases, such as the UniProt Knowledgebase (UniProtKB), where curators try to add predicted and experimental functional information. Protein function prediction can be done using sequence similarity searches, but an alternative approach is to use protein signatures, which classify proteins into families and domains. The major protein signature databases are available through the integrated InterPro database, which provides a classification of UniProtKB sequences. As well as characterization of proteins through protein families, many researchers are interested in analyzing the complete set of proteins from a genome (i.e. the proteome), and there are databases and resources that provide non-redundant proteome sets and analyses of proteins from organisms with completely sequenced genomes. This article reviews the tools and resources available on the web for single and large-scale protein characterization and whole proteome analysis.  相似文献   

19.
MOTIVATION: The completion of the Arabidopsis genome offers the first opportunity to analyze all of the membrane protein sequences of a plant. The majority of integral membrane proteins including transporters, channels, and pumps contain hydrophobic alpha-helices and can be selected based on TransMembrane Spanning (TMS) domain prediction. By clustering the predicted membrane proteins based on sequence, it is possible to sort the membrane proteins into families of known function, based on experimental evidence or homology, or unknown function. This provides a way to identify target sequences for future functional analysis. RESULTS: An automated approach was used to select potential membrane protein sequences from the set of all predicted proteins and cluster the sequences into related families. The recently completed sequence of Arabidopsis thaliana, a model plant, was analyzed. Of the 25,470 predicted protein sequences 4589 (18%) were identified as containing two or more membrane spanning domains. The membrane protein sequences clustered into 628 distinct families containing 3208 sequences. Of these, 211 families (1764 sequences) either contained proteins of known function or showed homology to proteins of known function in other species. However, 417 families (1444 sequences) contained only sequences with no known function and no homology to proteins of known function. In addition, 1381 sequences did not cluster with any family and no function could be assigned to 1337 of these.  相似文献   

20.
ProClass is a protein family database that organizes non-redundant sequence entries into families defined collectively by PIR superfamilies and PROSITE patterns. By combining global similarities and functional motifs into a single classification scheme, ProClass helps to reveal domain and family relationships and classify multi-domain proteins. The database currently consists of >155 000 sequence entries retrieved from both PIR-International and SWISS-PROT databases. Approximately 92 000 or 60% of the ProClass entries are classified into approximately 6000 families, including a large number of new members detected by our GeneFIND family identification system. The ProClass motif collection contains approximately 72 000 motif sequences and >1300 multiple alignments for all PROSITE patterns, including >21 000 matches not listed in PROSITE and mostly detected from unique PIR sequences. To maximize family information retrieval, the database provides links to various protein family, domain, alignment and structural class databases. With its high classification rate and comprehensive family relationships, ProClass can be used to support full-scale genomic annotation. The database, now being implemented in an object-relational database management system, is available for online sequence search and record retrieval from our WWW server at http://pir.georgetown.edu/gfserver/proclass.html  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号