首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plasma membrane of yeasts contains an H+-ATPase similar to the other cation transport ATPases of eukaryotic organisms. This enzyme has been purified and shows H+ transport in reconstituted vesicles. In the presence of Mg2+, formycin triphosphate (FTP) is hydrolyzed by the H+-ATPase and supports H+ transport. When combined with terbium ion, FTP (Tb-FTP) and ATP (Tb-ATP) are no longer hydrolyzed. Competition between Mg-ATP and Tb-FTP for ATP hydrolysis indicates that terbium-associated nucleotides bind to the catalytic site of the H+-ATPase. The fluorescent properties of the Tb-FTP complex were used to study the active site of the H+-ATPase. Fluorescence of Tb-FTP is greatly enhanced upon binding into the nucleotide site of H+-ATPase with a dissociation constant of 1 microM. Tb-ATP, Tb-ADP, and Tb-ITP are competitive inhibitors of Tb-FTP binding with Ki = 4.5, 5.0, and 6.0 microM, respectively. Binding of Tb-FTP is observed only in the presence of an excess of Tb3+ with an activation constant Ka = 25 microM for Tb3+. Analysis of the data reveals that the sites for Tb-FTP and Tb3+ binding are independent entities. In standard conditions these sites would be occupied by Mg-ATP and Mg2+, respectively. These findings suggest an important regulatory role of divalent cations on the activity of H+-ATPase. Replacement of H2O by D2O in the medium suggests the existence of two types of nucleotide binding sites differing by the hydration state of the Tb3+ ion in the bound Tb-FTP complex.  相似文献   

2.
1. Fluorescence measurements have shown that formycin triphosphate (FTP) or formycin diphosphate (FDP) bound to (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in Na+-containing media can be displaced by the following ions (listed in order of effectiveness): Tl+, K+, Rb+, NH4+, Cs+. 2. The differences between the nucleotide affinities displayed by the enzyme in predominantly Na+ and predominantly K+ media in the absence of phosphorylation, are thought to reflect changes in enzyme conformation. These changes can therefore be monitored by observing the changes in fluorescence that accompany net binding or net release of formycin nucleotides. 3. The transition from a K+-bound form (E2-(K)) to an Na+-bound form (E1-Na) is remarkably slow at low nucleotide concentrations, but is accelerated if the nucleotide concentration is increased. This suggests that the binding of nucleotide to a low-affinity site on E2-(K) accelerates its conversion to E1-Na; it supports the hypothesis that during the normal working of the pump, ATP, acting at a low affinity site, accelerates the conversion of dephosphoenzyme, newly formed by K+-catalysed hydrolysis of E2P, to a form in which it can be phosphorylated in the presence of Na+. 4. The rate of the reverse transformation, E1-Na to E2-(K), varies roughly linearly with the K+ concentration up to the highest concentration at which the rate can be measured (15 mM). Since much lower concentrations of K+ are sufficient to displace the equilibrium to the K-form, we suggest that the sequence of events is: (i) combination of K+ with low affinity (probably internal) binding sites, followed by (ii) spontaneous conversion of the enzyme to a form, E2-(K), containing occluded K+. 5. Mg2+ or oligomycin slows the rate of conversion of E1-Na to E2-(K) but does not significantly affect the rate of conversion of E2-(K) to E1-Na. 6. In the light of these and previous findings, we propose a model for the sodium pump in which conformational changes alternate with trans-phosphorylations, and the inward and outward fluxes of both Na+ and K+ each involve the transfer of a phosphoryl group as well as a change in conformation between E1 and E2 forms of the enzyme or phosphoenzyme.  相似文献   

3.
Lanthanides are useful probes in Ca2+ binding proteins, including sarcoplasmic reticulum (Ca2+,Mg2+)-ATPase. Here, we report that lanthanides compete with Rb+ and Na+ for occlusion in renal (Na+,K+)-ATPase. The lanthanides appear to bind at a single site and act as competitive antagonists, without themselves becoming occluded. All lanthanides tested are effective with the order of potencies Pr greater than Nd greater than La greater than Eu greater than Tb greater than Ho greater than Er, but differences are small. The presence of Mg2+ ions does not affect competition of La3+ with Na+ or K+ suggesting that the effects are not exerted via divalent metal sites. Lanthanides compete with Rb+ and Na+ in membranes digested with trypsin so as to produce 19-kDa and smaller fragments of the alpha-chain (Karlish, S.J.D., Goldshleger, R., and Stein, W. D. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 4566-4570), also suggestive of a direct interaction of lanthanides with Na+ and K+ sites. Effects of lanthanides on conformational changes of fluorescein-labeled (Na+,K+)-ATPase are Na(+)-like. They stabilize the E1 state and compete with K+ ions. The Ki for La3+ is 0.445 microM. The apparent affinity in fluorescence assays is proportional to enzyme concentration (Ki = 32.4*[protein] + 0.445 microM La3+), suggesting that lanthanides are also bound nonspecifically (possibly to phospholipids). Direct assays confirm that Tb3+ binding is nonspecific. Measurements of the rate of various conformational transitions show that the rate of E2(K+)----E1(X) (X = Na+ or La3+) is significantly inhibited by La3+ compared to Na+. La3+ ions also slightly accelerate the rate of the E1----E2(K+) conformational transition. The dissociation rate of La3+ has been measured by monitoring the rate of E1(La3+)----E2(K+). It is 1.741 s-1 at 25 degrees C. Based on this value, it is unlikely that La3+ ions are stably occluded, consistent with the conclusion from occlusion experiments. In the future, lanthanides bound to monovalent cation sites with high affinity may become useful probes for location and characterization of sites, although it will be necessary to take into account the large amount of nonspecific binding.  相似文献   

4.
1. Formycin triphosphate (FTP), a fluorescent analogue of ATP, is a substrate for (Na+ + K+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3), with properties similar to those of ATP. 2. FTP and formycin diphosphate (FDP) bind to the enzyme with high affinity and, on binding, the nucleotide fluorescence is enhanced 3-4-fold. It is therefore possible, with a stopped-flow fluorimeter, to measure the rates of binding and release of FTP and FDP under conditions in which turnover does not occur. 3. When the enzyme-FTP complex is exposed to conditions permitting turnover (Mg2+, Na+ +/- K+), changes in fluorescence occur which can be explained by supposing that they reflect the interconversion of states with or without bound nucleotides. A rapid fall in fluorescence, that we attribute to the rapid release of FDP from newly phosphorylated enzyme, is followed by a steady state in which low fluorescence suggests that little nucleotide is bound. Eventually, exhaustion of FTP allows rebinding of FDP to the enzyme, which is signalled by a rise in fluorescence. 4. The estimated rate of FDP release from newly formed phosphoenzyme is unaffected by the presence of K+ (0-2 mM) or the concentration of FTP (1-20 micron). 5. Experiments with [gamma-32P]FTP show that about 1 mol of 32P is incorporated per mol of enzyme. The rate of phosphorylation of the enzyme by [gamma-32P]FTP has been measured with a rapid-mixing-and-quenching apparatus. 6. Kinetic data from the fluorescence and phosphorylation experiments show that the behaviour of the enzyme, at least at the low nucleotide concentrations employed, is consistent with the Albers-Post model, and is difficult to reconcile with models in which K+ acts at or before the step in which FDP is released during turnover.  相似文献   

5.
The lanthanide ions Lu3+ (diamagnetic) and Gd3+ (paramagnetic broadening probe) were used to displace Ca2+ from the high-affinity cation binding site on G-actin. The effects of these higher-affinity ions on the proton nuclear magnetic resonance spectrum of actin were recorded. The aliphatic proton envelope in the Gd-actin sample exhibited a complex array of changes due to the proximity of Gd to several aliphatic residues. No such changes were observed in the diamagnetic Lu-actin control spectrum. By contrast, the aromatic proton envelope remained largely unaffected in both Gd-actin and Lu-actin samples. However, the adenosine moiety on the actin-bound ATP became increasingly mobilized without the triphosphate chain being released from the ATP binding site. Maximum adenosine mobilization occurred with approximately 1 mol of lanthanide ion bound per mol of actin. The absence of changes in the aromatic proton envelope suggests that the high-affinity cation binding site is in a region well removed from the adenosine moiety of bound ATP as well as any aromatic side-chains. The separation of the ATP and cation sites was further explored using the fluorescent ATP analogues FTP and epsilon-ATP. Tb3+ bound to the high-affinity cation site was found to be separated by 16 A from the FTP chromophore bound to the nucleotide binding site on actin. Since this distance is greater than can be accommodated on a model of the Tb-ATP complex, we conclude that the sites are physically separate. This conclusion was further reinforced by experiments involving the quenching of epsilon-ATP fluorescence by Mn2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Gd3+ binding sites on the purified Ca(2+)-ATPase of sarcoplasmic reticulum were characterized at 2 and 6 degrees C and pH 7.0 under conditions in which 45Ca2+ and 54Mn2+ specifically labeled the calcium transport site and the catalytic site of the enzyme, respectively. We detected several classes of Gd3+ binding sites that affected enzyme function: (a) Gd3+ exchanged with 54Mn2+ of the 54MnATP complex bound at the catalytic site. This permitted slow phosphorylation of the enzyme when two Ca2+ ions were bound at the transport site. The Gd3+ ion bound at the catalytic site inhibited decomposition of the ADP-sensitive phosphoenzyme. (b) High-affinity binding of Gd3+ to site(s) distinct from both the transport site and the catalytic site inhibited the decomposition of the ADP-sensitive phosphoenzyme. (c) Gd3+ enhanced 4-nitro-2,1,3-benzoxadiazole (NBD) fluorescence in NBD-modified enzyme by probably binding to the Mg2+ site that is distinct from both the transport site and the catalytic site. (d) Gd3+ inhibited high-affinity binding of 45Ca2+ to the transport site not by directly competing with Ca2+ for the transport site but by occupying site(s) other than the transport site. This conclusion was based mainly on the result of kinetic analysis of displacement of the enzyme-bound 45Ca2+ ions by Gd3+ and vice versa, and the inability of Gd3+ to phosphorylate the enzyme under conditions in which GdATP served as a substrate. These results strongly suggest that Ln3+ ions cannot be used as probes to structurally and functionally characterize the calcium transport site on the Ca(2+)-ATPase.  相似文献   

7.
We attempted to establish whether lanthanide ions, when added to sarcoplasmic reticulum (SR) membranes in the absence of nucleotide, compete with Ca2+ for binding to the transport sites of the Ca(2+)-ATPase in these membranes, or whether they bind to different sites. Equilibrium measurements of the effect of lanthanide ions on the intrinsic fluorescence of SR ATPase and on 45Ca2+ binding to it were performed either at neutral pH (pH 6.8), i.e. when endogenous or contaminating Ca2+ was sufficient to nearly saturate the ATPase transport sites, or at acid pH (pH 5.5), which greatly reduced the affinity of calcium for its sites on the ATPase. These measurements did reveal apparent competition between Ca2+ and the lanthanide ions La3+, Gd3+, Pr3+, and Tb3+, which all behaved similarly, but this competition displayed unexpected features: lanthanide ions displaced Ca2+ with a moderate affinity and in a noncooperative way, and the pH dependence of this displacement was smaller than that of the Ca2+ binding to its own sites. Simultaneously, we directly measured the amount of Tb3+ bound to the ATPase relative to the amount of Ca2+ and found that Tb3+ ions only reduced significantly the amount of Ca2+ bound after a considerable number of Tb3+ ions had bound. Furthermore, when we tested the effect of Ca2+ on the amount of Tb3+ bound to the SR membranes, we found that the Tb3+ ions which bound at low Tb3+ concentrations were not displaced when Ca2+ was added at concentrations which saturated the Ca2+ transport sites. We conclude that the sites on SR ATPase to which lanthanide ions bind with the highest affinity are not the high affinity Ca2+ binding and transport sites. At higher concentrations, lanthanide ions did not appear to be able to replace Ca2+ ions and preserve the native structure of their binding pocket, as evaluated in rapid filtration measurements from the effect of moderate concentrations of lanthanide ions on the kinetics of Ca2+ dissociation. Thus, the presence of lanthanide ions slowed down the dissociation from its binding site of the first, superficially bound 45Ca2+ ion, instead of specifically preventing the dissociation of the deeply bound 45Ca2+ ion. These results highlight the need for caution when interpreting, in terms of calcium sites, experimental data collected using lanthanide ions as spectroscopic probes on SR membrane ATPase.  相似文献   

8.
The interaction of Ca2+ and vanadate with fluorescein isothiocyanate (FITC) labeled sarcoplasmic reticulum (SR) Ca2+-ATPase has been studied by following the kinetics of changes in the reporter group fluorescence and equilibrium fluorescence levels. The vanadate species bound to the enzyme is clearly monomeric orthovanadate, probably H2VO4-. Vanadate binding is noncooperative, suggesting an absence of interactions between the Ca2+-ATPase subunits. The fluorescence experiments confirm the existence of a calcium-enzyme-vanadate complex (in the presence of magnesium). On the basis of the fluorescence properties of this complex, it is similar in its conformation to the calcium-enzyme complex, i.e., "E1-like" rather than "E2-like". However, Ca2+ binds to the enzyme-vanadate complex via sites that are only accessible from the interior of the SR vesicles. The complex Ca2E*Van, which is rapidly formed, isomerizes very slowly (t1/2 approximately 1 min) to the stable ternary complex. The mutual destabilization between bound vanadate and two bound Ca2+ ions is only 1.6 kcal/mol, much smaller than that produced by the interaction of calcium and phosphate.  相似文献   

9.
The mechanism of inhibition of the sarcoplamc reticulum (SR) Ca(2+)-ATPase by the fluoroaluminate complexes was investigated. First, AlF4- was shown to bind to the Ca(2+)-free conformation of the enzyme by a slow quasi-irreversible process. The rate constants of the reaction are k+ = 16 x 10(3) M-1 s-1 and k- < 1.5 10(-3) s-1. We directly measured a stoichiometry of about 4.8 nmol of AlF4- bound/mg of protein. Mg2+ was a necessary cofactor for the reaction with a dissociation constant of 3 mM. It was demonstrated (Dupont, Y., and Pougeois, R. (1983) FEBS Lett. 156, 93-98) that phosphorylation by P(i) induced a dehydration of the catalytic site. The same process has been shown here to occur upon AlF4- binding either by the use of Me2SO or by demonstration of an increase of bound 2',3'-O-(2,4,6-trinitrocyclohexadienyldene)adenosine triphosphate fluorescence. Phosphorylation by P(i) is inhibited by the binding of AlF4-. Second, a fluoroaluminate complex, presumably AlF4-, was also shown to bind to the Ca(2+)-bound conformation of the Ca(2+)-ATPase in the presence of ADP and stabilize a E1.Ca2.ADP.AlFx complex. The dissociation constant of the nucleotidic site for ADP was shifted to the micromolar range. The Ca2+ ions bound on the external high affinity sites became occluded upon binding of (ADP + AlFx). We propose that AlF4- mimics P(i) binding to the Ca(2+)-free conformation of the ATPase and stabilizes an intermediate similar to the acyl-phosphate derivative; it also acts as an analogue of the gamma-phosphate of ATP and stabilizes an E1.[Ca2].ADP.AlF4 complex where the Ca2+ ions are occluded.  相似文献   

10.
The effects of Ca2+, lanthanide ions (Gd3+, La3+ and Pr3+) and membrane potential on the fluorescence of tryptophan and covalently bound fluorescein were analysed in native and fluorescein isothiocyanate (FITC)-labelled sarcoplasmic reticulum vesicles. The binding of Ca2+ and lanthanides to the Ca2+-ATPase increases the fluorescence intensity of tryptophan and decreases the fluorescence intensity of FITC; the dependence of these effects on cation concentration is consistent with the involvement of the high-affinity Ca2+-binding sites of the Ca2+-ATPase in the cation-induced fluorescence changes. The fluorescence of FITC-labelled sarcoplasmic reticulum vesicles is also influenced by membrane potential changes induced by ion substitution. Inside positive potential increases, while inside negative potential decreases, the fluorescence of bound FITC. Smaller potential-dependent changes in tryptophan fluorescence were also observed. The effects of Ca2+, lanthanides and membrane potential on the fluorescence of tryptophan and FITC are discussed in terms of the two major conformations of the Ca2+-ATPase (E1 and E2), that are assumed to alternate during Ca2+ transport. The observations support the suggestion [Dux, Taylor, Ting-Beall & Martonosi (1985) J. Biol. Chem. 260, 11730-11743] that the vanadate-induced crystals of Ca2+-ATPase represent the E2, while the Ca2+ and lanthanide-induced crystals the E1, conformation of the enzyme.  相似文献   

11.
Using terbium ions as fluorescence probes of calcium-binding sites and osmotic shock to induce trapping of Tb3+ in the vesicle interior, direct binding assays have been developed to study the competition between calcium and local anesthetics for binding sites at the cytoplasmic surface of axonal membrane vesicles. Pharmacologically active concentrations of the membrane-permeable local anesthetic, lidocaine, competitively displace bound Tb3+ in the vesicles, while QX-314, a quaternary ammonium analog of lidocaine that has poor access to the vesicle interior, exhibits no significant displacement of osmotically-loaded, internally-bound Tb3+. These experiments support the hypothesis that local anesthetics may function by displacing Ca2+ from a functionally specific binding site in nerve membranes.  相似文献   

12.
Magnesium ions in the reaction medium at 37 degrees C increased up to 222 s-1 the kapp for phosphorylation by ATP of the Ca2(+)-ATPase of pig red cell membranes. This effect was observed after partial proteolysis with trypsin which makes the enzyme behave like the E1 conformer during phosphorylation. These findings lead to the conclusion that Mg2+ increased the rate of phosphorylation of the Ca2(+)-ATPase by acting directly on this reaction. The apparent dissociation constant of Mg2+ for this effect was 44 microM whereas the apparent dissociation constant for Mg2+ to accelerate the shift E2----E1 between conformers measured on the intact enzyme was 50 microM. This suggests that Mg2+ accelerated both reactions from a single class of site.  相似文献   

13.
Sarcoplasmic reticulum vesicles were noncovalently labeled at micromolar concentrations with the polycationic fluorescent reagent 4',6-diamidino-2-phenylindole (DAPI), and changes in the fluorescence intensity of the membrane-bound dye associated with functions of the Ca2+ pump and Ca2+ release were investigated. It was found that 1) DAPI fluorescence changed in the [Ca2+] range in which high affinity Ca2+ binding to the Ca2+-ATPase takes place. The time course of the Ca2+-induced changes of DAPI fluorescence was essentially the mirror image of that of tryptophan fluorescence. 2) The fluorescence intensity of bound DAPI decreased upon increase of the intravesicular [Ca2+] by either ATP-dependent Ca2+ accumulation or incubation with millimolar Ca2+ in the presence of a calcium ionophore. 3) Upon induction of Ca2+ release by adding caffeine after the completion of Ca2+ uptake, DAPI fluorescence showed transient changes. Two classes of binding sites of the sarcoplasmic reticulum membrane for DAPI were clearly distinguishable: a high affinity site (Ka = 3.0 X 10(5) M-1) with a capacity of about 1 mol/mol of Ca2+-ATPase (8.0 nmol/mg of protein) and low affinity sites with about 20-fold lower affinity and 10-fold larger capacity. The partially purified Ca2+-ATPase showed similar characteristics of high affinity DAPI binding, suggesting that DAPI bound to its high affinity site on the Ca2+-ATPase monitors the enzyme conformational changes coupled with the events described above. The high affinity binding of DAPI to the enzyme led to an increase of the initial rate of Ca2+ uptake and the inhibition of Ca2+ release induced by caffeine or ionic replacement. These results suggest that the Ca2+-ATPase is involved in some steps of the Ca2+ release mechanism.  相似文献   

14.
The kinetics of interaction of formycin nucleotides with scallop myosin subfragments were investigated by exploiting the fluorescence signal of the ligand. Formycin triphosphate gives a 5-fold enhancement of the emission intensity on binding to heavy meromyosin, and the profile indicates that the kinetics of binding are Ca2+-insensitive. In contrast, the subsequent product-release steps show a marked degree of regulation by Ca2+. In the absence of Ca2+ formycin triphosphate turnover by the unregulated and the regulated heavy meromyosin fractions are clearly resolved, the latter showing a fluorescence decay rate of 0.002 s-1, corresponding to the Pi-release step. In the presence of Ca2+ this step is activated 50-fold. Formycin diphosphate release is also regulated by Ca2+, being activated from 0.008 s-1 to 5 s-1. In contrast with protein tryptophan fluorescence [Jackson & Bagshaw (1988) Biochem. J. 251, 515-526], formycin fluorescence is sensitive to conformational changes that occur subsequent to the binding step and demonstrate, directly, an effect of Ca2+ on both forward and reverse rate constants. Apart from a decrease in the apparent second-order association rate constants, formycin derivatives appear to mimic adenosine nucleotides closely in their interaction with scallop heavy meromyosin and provide a spectroscopic handle on steps that are optically silent with respect to protein fluorescence. A novel mechanism is discussed in which regulation of the formycin triphosphate activity by Ca2+ involves kinetic trapping of product complexes.  相似文献   

15.
The plasma membrane of Schizosaccharomyces pombe contains an H(+)-ATPase similar to the cation transport ATPases of other eukaryotic organisms. The fluorescence excitation and emission spectra of the purified H(+)-ATPase are characteristic of tryptophan residues. pH reduction from 7.5 to 5.7 produces a 4% decrease in fluorescence intensity, while a further reduction to pH 5.0 leads to an increase of fluorescence. A close correlation is observed between the pH dependence of the intrinsic fluorescence and the pH dependence of (i) ATPase activity, (ii) the fluorescence of Tb-formycin triphosphate bound to the active site, and (iii) inhibition by vanadate of ATPase activity. It is proposed that the effect of pH on intrinsic fluorescence reveals the existence of an H+ induced conformational change of the H(+)-ATPase similar to the E1----E2 transition of the other plasma membrane cation transport ATPases.  相似文献   

16.
The purpose of this study was to probe the regulatory nucleotide site of the Ca2+-ATPase of sarcoplasmic reticulum and to study its relationship with the catalytic nucleotide site. Our approach was to use the nucleotide analogue 2'(3')-O-(2,4,6-trinitrocyclohexadienylidene)adenosine 5'-phosphate (TNP-AMP), which is known to bind the Ca2+-ATPase with high affinity and to undergo a manyfold increase in fluorescence upon enzyme phosphorylation with ATP in the presence of Ca2+. TNP-AMP was shown to bind the regulatory site in that it competitively inhibited (Ki = 0.6 microM) the secondary activation of turnover induced by millimolar ATP, thus providing a high affinity probe for the site. Observation of the high phosphoenzyme-dependent fluorescence upon monomerization of the enzyme without an increase in phosphoenzyme levels showed the regulatory site to be on the same subunit as the catalytic site and excluded an uncovering of "silent" nucleotide sites resulting from dissociation of enzyme subunits. Identical stoichiometric levels of [3H]TNP-AMP binding (4 nmol/mg of protein) to either the free enzyme or the enzyme phosphorylated with 250 microM ATP excluded models of two nucleotide sites per subunit. Finally, transient kinetic experiments in which TNP-AMP was found to block the ADP-induced burst of phosphoenzyme decomposition showed that TNP-AMP was bound to the phosphorylated catalytic site. We conclude that the regulatory nucleotide site is not a separate and distinct site on the Ca2+-ATPase but, rather, results from the nucleotide catalytic site following formation of the phosphorylated enzyme intermediate.  相似文献   

17.
Raman spectra of active Na+,K+-ATPase from pig kidney in media containing Na+ (E1), K+ (E2) or without exogenous ions (E1 conformation) were recorded in order to calculate the changes in the enzyme's secondary structure induced by binding of monovalent cations. It is demonstrated that: (i) K+ binding to the E1 form of the enzyme leads to conversion of approximately 100 peptide groups from the beta-structure to alpha-helical conformation; (ii) the transition is reversible and fully reproducible in the E1----E2----E1 and E2----E1----E2 experimental schemes. Predictional calculations revealed polypeptide chain segments involved in the alpha----beta transformations. These segments reside mainly in the two highly conserved regions of the alpha-subunit in the cytoplasmic domain of Na+,K+-ATPase. A possible role for the beta-subunit is discussed.  相似文献   

18.
The sarcoplasmic reticulum Ca2(+)-ATPase of skeletal muscle has two high affinity calcium sites, one of fast access ("f" site) and one of slow access ("s" site). In addition to Ca2+ these sites are able to interact with other cations like Mg2+ or K+. We have studied with a stopped-flow method the modifications produced by Mg2+ and K+ on the kinetics of the intrinsic fluorescence changes produced by Ca2+ binding to and dissociation from the Ca2(+)-ATPase of sarcoplasmic reticulum. The presence of Mg2+ ions (K1/2 = 0.5 mM at pH 7.2) leads to the appearance of a rapid phase in the Ca2+ binding, which represents half of the signal amplitude at optimal Mg2+. The presence of K+ greatly accelerates both the Ca2+ binding and the Ca2+ dissociation reactions, giving, respectively, a 4- and 8-fold increase of the rate constant of the induced fluorescence change. K+ ions also increase the rate of the 45Ca/40Ca exchange reaction at the s site measured by rapid filtration. These results lead us to build up a model for the Ca2(+)-binding mechanism of the sarcoplasmic reticulum Ca2(+)-ATPase in which Mg2+ and K+ participate at particular steps of the reaction. Moreover, we propose that, in the absence of Ca2+, this enzyme may be the pathway for monovalent ion fluxes across the sarcoplasmic reticulum membrane.  相似文献   

19.
Studies of the kinetics of association and dissociation of the formycin nucleotides FTP and FDP with CF1 were carried out using the enhancement of formycin fluorescence. The protein used, derived from lettuce chloroplasts by chloroform induced release, contains only 4 types of subunit and has a molecular weight of 280 000. In the presence of 1.25 mM MgCl2, 1 mol of ATP or FTP is bound to the latent enzyme, with Kd = 10(-7) or 2 . 10(-7), respectively. The fluorescence emission (lambdamax 340 nm) of FTP is enhanced 3-fold upon binding, and polarization of fluorescence is markedly increased. The fluorescence changes have been used to follow FTP binding, which behaves as a bimolecular process with k1 = 2.4 . 10(4) M-1 . s-1. FTP is displaced by ATP in a process apparently involving unimolecular dissociation of FTP with K-1 = 3 . 10(-3) S-1. The ratio of rates is comparable to the equilibrium constant and no additional steps have been observed. The protein has 3 sites for ADP binding. Rates of ADP binding are similar in magnitude to those for FTP. ADP and ATP sites are at least partly competitive with one another. The kinetics of nucleotide binding are strikingly altered upon activation of the protein as an ATPase. The rate of FTP binding increases to at least 10(6) M-1 . s-1. This suggests that activation involves lowering of the kinetic barriers to substrate and product binding-dissociation and has implications for the mechanism of energy transduction in photophosphorylation.  相似文献   

20.
We examined the tryptophan decay kinetics of sarcoplasmic reticulum Ca2+-ATPase using frequency-domain fluorescence. Consistent with earlier reports on steady-state fluorescence intensity, our intensity decays reveal a reproducible and statistically significant 2% increase in the mean decay time due to calcium binding to specific sites involved in enzyme activation. This Ca2+ effect could not be eliminated with acrylamide quenching, which suggests a global effect of calcium on the Ca2+-ATPase, as opposed to a specific effect on a single water-accessible tryptophan residue. The tryptophan anisotropy decays indicate substantial rapid loss of anisotropy, which can be the result of either intramolecular energy transfer or a change in segmental flexibility of the ATPase protein. Energy transfer from tryptophan to TNP-ATP in the nucleotide binding domain, or to IEADANS on Cys-670 and -674, indicates that most tryptophan residues are 30 A or further away from these sites and that this distance is not decreased by Ca2+. In light of known structural features of the Ca2+-ATPase, the tryptophan fluorescence changes are attributed to stabilization of clustered transmembrane helices resulting from calcium binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号