首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We are using avian leukosis-sarcoma virus (ALSV) vectors to generate mouse tumor models in transgenic mice expressing TVA, the receptor for subgroup A ALSV. Like other classical retroviruses, ALSV requires cell division to establish a provirus after infection of host cells. In contrast, lentiviral vectors are capable of integrating their viral DNA into the genomes of nondividing cells. With the intention of initiating tumorigenesis in resting, TVA-positive cells, we have developed a system for the preparation of a human immunodeficiency virus type 1 (HIV-1)-based lentiviral vector, pseudotyped with the envelope protein of ALSV subgroup A (EnvA). The HIV(ALSV-A) vector retains the requirement for TVA on the surface of target cells and can be produced at titers of 5 x 10(3) infectious units (IU)/ml. By inserting the central polypurine tract (cPPT) from the HIV-1 pol gene and removing the cytoplasmic tail of EnvA, the pseudotype can be produced at titers approaching 10(5) IU/ml and can be concentrated by ultracentrifugation to titers of 10(7) IU/ml. HIV(ALSV-A) also infects embryonic fibroblasts derived from transgenic mice in which TVA expression is driven by the beta-actin promoter. In addition, this lentivirus pseudotype efficiently infects these fibroblasts after cell cycle arrest, when they are resistant to infection by ALSV vectors. This system may be useful for introducing genes into somatic cells in adult TVA transgenic animals and allows evaluation of the effects of altered gene expression in differentiated cell types in vivo.  相似文献   

2.
J A Young  P Bates    H E Varmus 《Journal of virology》1993,67(4):1811-1816
We used a genetic strategy to isolate the chicken gene believed to encode the receptor for subgroup A avian leukosis and sarcoma viruses (ALSV-A). Chicken genomic DNA was transfected into monkey COS-7 cells, and two independent primary transfectants susceptible to ALSV-A infection were identified by using ALSV-A vectors containing a hygromycin B resistance gene. A second round of transfection and selection in mouse BALB/3T3 fibroblasts again led to isolation of a transfectant susceptible to infection by ALSV-A. Plasmid DNA sequences linked to chicken DNA during the primary transfection segregated with chicken DNA in the secondary transfectant and served as a molecular tag to clone the gene conferring susceptibility. Expression of the cloned gene in mouse BALB/3T3 cells conferred susceptibility to infection by ALSV-A but not by ALSV-B. Therefore the cloned gene most probably represents the tv-a locus, the genetically defined receptor gene for ALSV-A.  相似文献   

3.
The extracellular domain of the subgroup A avian sarcoma and leukemia virus (ALSV-A) receptor contains a region that is related in sequence to the ligand-binding motifs of the low-density lipoprotein receptor (LDLR). This domain contains six cysteines that are highly conserved between different members of the LDLR protein superfamily, and these residues are presumed to participate in intrachain disulfide bonds. To assess the importance of each cysteine in the ALSV-A receptor, individual or multiple cysteines were mutated to alanines and the altered receptors were tested for the ability to confer susceptibility to viral infection. Receptors bearing single mutations allowed subgroup A viral entry, albeit at less than wild-type levels. Receptors containing two or three substitutions were completely inactive if one of the changed residues was Cys-35 or Cys-50. Of the altered receptors tested, the only exception to this rule was a functional receptor which lacked both Cys-35 and Cys-50, an activity that was dependent on the presence of other cysteines in this protein. Most interestingly, a receptor containing both Cys-35 and Cys-50 but lacking the other four cysteines was completely functional. These results demonstrate the importance of Cys-35 and Cys-50 for viral entry mediated by the ALSV-A receptor and show that in the presence of these two residues, all of the other cysteines in this protein can be removed without loss of this function.  相似文献   

4.
The putative subgroup A avian leukosis-sarcoma virus (ALSV) receptor (Tva) was recently cloned by gene transfer (P. Bates, J. A. Young, and H. E. Varmus, Cell 74:1043-1051, 1993; J. A. T. Young, P. Bates, and H. E. Varmus, J. Virol. 67:1811-1816, 1993). Susceptibility to infection by subgroup A ALSV is conferred on cells upon transfection with cDNAs encoding tva. The hypothesis that tva encodes a specific receptor for subgroup A ALSV predicts that the Tva protein should bind to subgroup A, but not to subgroup C, envelope glycoprotein. In this study, we examined this prediction by using several biochemical assays. We established stable NIH 3T3 cell lines expressing either Tva, the subgroup A envelope glycoprotein (Env-A), or the subgroup C envelop glycoprotein (Env-C) and used them in conjunction with soluble forms of these molecules to demonstrate specific binding. When cell lysates containing Tva were mixed with lysates of either Env-A or Env-C, an immunoprecipitable complex formed between Tva and Env-A but not between Tva and Env-C. A soluble, oligomeric form, of Env-A, not Env-C, binds to cells expressing Tva. Reciprocally, a secreted form of Tva can bind to cells expressing Env-A but not to cells expressing Env-C. A specific and stable complex formed between soluble Env-A and secreted Tva as demonstrated by sucrose density gradient centrifugation. Thus, by three kinds of assays, Tva appears to bind specifically to Env-A, which is consistent with genetic evidence that it serves as the cell surface receptor of subgroup A ALSV and the main determinant of subgroup specificity.  相似文献   

5.
The transmembrane subunit (TM) of the avian leukosis and sarcoma virus (ALSV) envelope glycoprotein (Env) contains a stretch of conserved hydrophobic amino acids internal to its amino terminus (residues 21 to 42). By analogy with similar sequences in other viral envelope glycoproteins, this region has been proposed to be a fusion peptide. We investigated the role of this region by changing each of three hydrophobic residues (Ile-21, Val-30, and Ile-39) to glutamatic acid and lysine in the ALSV subgroup A Env. Like wild-type (wt) Env, all six mutant Env proteins were proteolytically processed, oligomerized, and expressed at the cell surface in a form that bound Tva, the ALSV subgroup A receptor. Like wt Env, Ile21Glu, Ile21Lys, Val30Glu, and Val30Lys changed conformation upon binding Tva, as assayed by sensitivity to thermolysin. Ile39Glu and Ile39Lys were cleaved by thermolysin in both the absence and presence of Tva. Although incorporated into virus particles at approximately equal levels, all mutant Envs were compromised in their ability to support infection. The mutants at residues 21 and 30 showed levels of infection 2 to 3 orders of magnitude lower than that of wt Env. The mutants at residue 39 were noninfectious. Furthermore, none of the mutants displayed activity in a cell-cell fusion assay. Our results support the contention that residues 21 to 42 of ALSV subgroup A Env constitute its fusion peptide.  相似文献   

6.
The interactions between the subgroup A avian leukosis virus [ALV(A)] envelope glycoproteins and soluble forms of the ALV(A) receptor Tva were analyzed both in vitro and in vivo by quantitating the ability of the soluble Tva proteins to inhibit ALV(A) entry into susceptible cells. Two soluble Tva proteins were tested: the 83-amino-acid Tva extracellular region fused to two epitope tags (sTva) or fused to the constant region of the mouse immunoglobulin G heavy chain (sTva-mIgG). Replication-competent ALV-based retroviral vectors with subgroup B or C env were used to deliver and express the two soluble tv-a (stva) genes in avian cells. In vitro, chicken embryo fibroblasts or DF-1 cells expressing sTva or sTva-mIgG proteins were much more resistant to infection by ALV(A) ( approximately 200-fold) than were control cells infected by only the vector. The antiviral effect was specific for ALV(A), which is consistent with a receptor interference mechanism. The antiviral effect of sTva-mIgG was positively correlated with the amount of sTva-mIgG protein. In vivo, the stva genes were delivered and expressed in line 0 chicken embryos by the ALV(B)-based vector RCASBP(B). Viremic chickens expressed relatively high levels of stva and stva-mIgG RNA in a broad range of tissues. High levels of sTva-mIgG protein were detected in the sera of chickens infected with RCASBP(B)stva-mIgG. Viremic chickens infected with RCASBP(B) alone, RCASBP(B)stva, or RCASBP(B)stva-mIgG were challenged separately with ALV(A) and ALV(C). Both sTva and sTva-mIgG significantly inhibited infection by ALV(A) (95 and 100% respectively) but had no measurable effect on ALV(C) infection. The results of this study indicate that a soluble receptor can effectively block infection of at least some retroviruses and demonstrates the utility of the ALV experimental system in characterizing the mechanism(s) of viral entry.  相似文献   

7.
Mucosotropic, high-risk human papillomaviruses (HPV) are sexually transmitted viruses that are causally associated with the development of cervical cancer. The most common high-risk genotype, HPV16, is an obligatory intracellular virus that must gain entry into host epithelial cells and deliver its double stranded DNA to the nucleus. HPV capsid proteins play a vital role in these steps. Despite the critical nature of these capsid protein-host cell interactions, the precise cellular components necessary for HPV16 infection of epithelial cells remains unknown. Several neutralizing epitopes have been identified for the HPV16 L2 minor capsid protein that can inhibit infection after initial attachment of the virus to the cell surface, which suggests an L2-specific secondary receptor or cofactor is required for infection, but so far no specific L2-receptor has been identified. Here, we demonstrate that the annexin A2 heterotetramer (A2t) contributes to HPV16 infection and co-immunoprecipitates with HPV16 particles on the surface of epithelial cells in an L2-dependent manner. Inhibiting A2t with an endogenous annexin A2 ligand, secretory leukocyte protease inhibitor (SLPI), or with an annexin A2 antibody significantly reduces HPV16 infection. With electron paramagnetic resonance, we demonstrate that a previously identified neutralizing epitope of L2 (aa 108-120) specifically interacts with the S100A10 subunit of A2t. Additionally, mutation of this L2 region significantly reduces binding to A2t and HPV16 pseudovirus infection. Furthermore, downregulation of A2t with shRNA significantly decreases capsid internalization and infection by HPV16. Taken together, these findings indicate that A2t contributes to HPV16 internalization and infection of epithelial cells and this interaction is dependent on the presence of the L2 minor capsid protein.  相似文献   

8.
The cellular receptor for subgroup A avian leukosis and sarcoma virus (ALSV-A) is Tva, which contains a motif related to repeats in the low density lipoprotein receptor (LDLR) ligand binding repeat (LBr) and which is necessary for viral entry. As observed with LBr repeats of LDLR, the 47 residue LBr domain of Tva (sTva47) requires calcium during oxidative folding to form the correct disulfide bonds, and calcium enhances the structure of correctly oxidized sTva47, as well as its ability to bind the viral envelope protein (Env). However, solution nuclear magnetic resonance studies indicate that, even in the presence of excess calcium, sTva47 exists in an ensemble of conformations. Nonetheless, as reported here, the structure of the predominant sTva47 solution conformer closely resembles that of other LBr repeats, with identical S-S binding topology and octahedral calcium coordination. The location of W48 and other critical residues on the surface suggests a region of the molecule necessary for Env binding and to mediate post-binding events important for ALSV-A cell entry.  相似文献   

9.
Tva is the cellular receptor for subgroup A avian leukosis and sarcoma virus (ALSV-A). The viral interaction domain of Tva is determined by a 40-residue, cysteine-rich module closely related to the ligand binding domain of the human low-density lipoprotein receptor (LDLR). In this report, we examined the role of the LDLR-like module of Tva in envelope binding and viral infection by mutational analysis. We found that the entire LDLR module in Tva is essential for efficient binding to the viral envelope protein. However, the 17 N-terminal residues of this module can be deleted without affecting receptor function, suggesting that the major determinants for viral entry are located at the C terminus of the module. The effect on viral infection of many amino acid substitutions and deletions in the LDLR module is context dependent, suggesting that the residues important for viral entry are dispersed throughout the LDLR module. In addition, we found that all 27 mutations at residues D46, E47, and W48 greatly reduced envelope binding. These results are discussed in relation to a recently elucidated structure for an LDLR module.  相似文献   

10.
A mouse member of the immunoglobulin superfamily, originally designated the murine poliovirus receptor homolog (Mph), was found to be a receptor for the porcine alphaherpesvirus pseudorabies virus (PRV). This mouse protein, designated here murine herpesvirus entry protein B (mHveB), is most similar to one of three related human alphaherpesvirus receptors, the one designated HveB and also known as poliovirus receptor-related protein 2. Hamster cells resistant to PRV entry became susceptible upon expression of a cDNA encoding mHveB. Anti-mHveB antibody and a soluble protein composed of the mHveB ectodomain inhibited mHveB-dependent PRV entry. Expression of mHveB mRNA was detected in a variety of mouse cell lines, but anti-mHveB antibody inhibited PRV infection in only a subset of these cell lines, indicating that mHveB is the principal mediator of PRV entry into some mouse cell types but not others. Coexpression of mHveB with PRV gD, but not herpes simplex virus type 1 (HSV-1) gD, inhibited entry activity, suggesting that PRV gD may interact directly with mHveB as a ligand that can cause interference. By analogy with HSV-1, envelope-associated PRV gD probably also interacts directly with mHveB during viral entry.  相似文献   

11.
The avian leukosis and sarcoma virus (ALSV) group comprises eight subgroups based on envelope properties. HPRS-103, an exogenous retrovirus recently isolated from meat-type chicken lines, is similar to the viruses of these subgroups in group antigen but differs from them in envelope properties and has been assigned to a new subgroup, J. HPRS-103 has a wide host range in birds, and unlike other nontransforming ALSVs which cause late-onset B-cell lymphomas, HPRS-103 causes late-onset myelocytomas. Analysis of the sequence of an infectious clone of the complete proviral genome indicates that HPRS-103 is a multiple recombinant of at least five ALSV sequences and one EAV (endogenous avian retroviral) sequence. The HPRS-103 env is most closely related to the env gene of the defective EAV-E51 but divergent from those of other ALSV subgroups. Probing of restriction digests of line 0 chicken genomic DNA has identified a novel group of endogenous sequences (EAV-HP) homologous to that of the HPRS-103 env gene but different from sequences homologous to EAV and E51. Unlike other replication-competent nontransforming ALSVs, HPRS-103 has an E element in its 3' noncoding region, as found in many transforming ALSVs. A deletion found in the HPRS-103 U3 EFII enhancer factor-binding site is also found in all replication-defective transforming ALSVs (including MC29, which causes rapid-onset myelocytomas).  相似文献   

12.
To understand the molecular determinants of measles virus (MV) cytopathicity, we have characterized mutant viruses exhibiting a more-extensive cell-to-cell fusion while maintaining efficient replication to high titers. A virus which is modified by the addition of an 8-amino-acid Flag epitope tag at the cytoplasmic tail of its H (for MV hemagglutinin) envelope glycoprotein replicates efficiently, has an increased cytopathicity, possesses a greater infectivity per particle, and has an altered protein composition compared with that of unmodified MV. The mutant phenotype is not specifically linked to the epitope sequence, since an alternatively added HA (for influenza virus-derived hemagglutinin) epitope tag caused similar effects. We demonstrate that both epitope tags weaken the interaction between the H and fusion (F) glycoproteins in virus-infected cells. This reduction in strength of H/F interaction is independent of the presence of the viral matrix (M) protein. Viruses with this less stable complex are more sensitive to neutralization by a soluble octameric form of the CD46 receptor, consistent with their increased fusogenicity. Similar analyses of glycoproteins derived from MV strains with reduced cytopathicities confirm that the strength of H and F glycoprotein interaction is a modulator of viral fusogenicity.  相似文献   

13.
The herpes simplex virus (HSV) triplex is a complex of three protein subunits, VP19C and a dimer of VP23 that is essential for capsid assembly. We have derived HSV-1 recombinant viruses that contain monomeric red fluorescent protein (mRFP1), a Flu hemagglutinin (HA) epitope, and a six-histidine tag fused to the amino terminus of VP19C. These viruses were capable of growth on Vero cells, indicating that the amino terminus of VP19C could tolerate these fusions. By use of immunoelectron microscopy methods, capsids that express VP19C-mRFP but not VP19C-HA were labeled with gold particles when incubated with the corresponding antibody. Our conclusion from the data is that a large tag at the N terminus of VP19C was sufficiently exposed on the capsid surface for polyclonal antibody reactivity, while the small HA epitope was inaccessible to the antibody. These data indicate that an epitope tag at the amino terminus of VP19C is not exposed at the capsid surface for reactivity to its antibody.  相似文献   

14.
Here we present the first molecular characterization of the defect associated with an avian sarcoma and leukosis virus (ASLV) receptor resistance allele, tvb(r). We show that resistance to infection by subgroups B, D, and E ASLV is explained by the presence of a single base pair mutation that distinguishes this allele from tvb(s1), an allele which encodes a receptor for all three viral subgroups. This mutation generates an in-frame stop codon that is predicted to lead to the production of a severely truncated protein.  相似文献   

15.
The identification of TVB(S3), a cellular receptor for the cytopathic subgroups B and D of avian leukosis virus (ALV-B and ALV-D), as a tumor necrosis factor receptor-related death receptor with a cytoplasmic death domain, provides a compelling argument that viral Env-receptor interactions are linked to cell death (4). However, other TVB proteins have been described that appear to have similar death domains but are cellular receptors for the noncytopathic subgroup E of ALV (ALV-E): TVB(T), a turkey subgroup E-specific ALV receptor, and TVB(S1), a chicken receptor for subgroups B, D, and E ALV. To begin to understand the role of TVB receptors in the cytopathic effects associated with infection by specific ALV subgroups, we asked whether binding of a soluble ALV-E surface envelope protein (SU) to its receptor can lead to cell death. Here we report that ALV-E SU-receptor interactions can induce apoptosis in quail or turkey cells. We also show directly that TVB(S1) and TVB(T) are functional death receptors that can trigger cell death by apoptosis via a mechanism involving their cytoplasmic death domains and activation of the caspase pathway. These data demonstrate that ALV-B and ALV-E use functional death receptors to enter cells, and it remains to be determined why only subgroups B and D viral infections lead specifically to cell death.  相似文献   

16.
Li Q  Ali MA  Cohen JI 《Cell》2006,127(2):305-316
Varicella-zoster virus (VZV) causes chickenpox and shingles. While varicella is likely spread as cell-free virus to susceptible hosts, the virus is transmitted by cell-to-cell spread in the body and in vitro. Since VZV glycoprotein E (gE) is essential for virus infection, we postulated that gE binds to a cellular receptor. We found that insulin-degrading enzyme (IDE) interacts with gE through its extracellular domain. Downregulation of IDE by siRNA, or blocking of IDE with antibody, with soluble IDE protein extracted from liver, or with bacitracin inhibited VZV infection. Cell-to-cell spread of virus was also impaired by blocking IDE. Transfection of cell lines impaired for VZV infection with a plasmid expressing human IDE resulted in increased entry and enhanced infection with cell-free and cell-associated virus. These studies indicate that IDE is a cellular receptor for both cell-free and cell-associated VZV.  相似文献   

17.
Structural protein markers in the avian oncoviruses.   总被引:4,自引:2,他引:2       下载免费PDF全文
The proteins of purified avian oncoviruses were analyzed by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis and isoelectric focusing. Certain members of the avian leukosis-sarcoma viruses (ALSV) had group-specific antigens with altered electrophoretic properties. (i) The p27 protein of Rous-associated virus 0 (RAV-0) had a lower electrophoretic mobility in SDS gels and a lower isoelectric point than the p27 of other ALSV. (ii) The p19 proteins of RAV-1, RAV-2, and the Bryan high-titer strain of Rous sarcoma virus had higher mobilities in SDS gels than did the corresponding protein of other viruses. This altered electrophoretic mobility was correlated with specific differences in the tryptic peptides of radioiodinated p19s. (iii) The p15 protein of RAV-7 had a lower mobility in SDS gels than did the p15 of other ALSV. These markers were used in a study of the structural proteins of subgroup E RAV-60 produced after infection of chicken embryo cells by exogenous ALSV. Although exogenous group-specific protein markers could often be identified in the subgroup E isolates, one RAV-60 had a p27 that comigrated with the p27 of RAV-0. The p19s of two other RAV-60 isolates had electrophoretic properties that were different than those of p19s from either RAV-0 or the exogenous viruses. These results support the hypothesis that RAV-60 is generated by recombination between endogenous and exogenous oncoviruses and indicate that at least the p27 encoded by RAV-0 is closely related to a protein specified by endogenous viral information in chicken cells.  相似文献   

18.
The expression of mammalian membrane proteins in laboratory cell lines allows their biological functions to be characterized and carefully dissected. However, it is often difficult to design and generate effective antibodies for membrane proteins in the desired studies. As a result, expressed membrane proteins cannot be detected or characterized via common biochemical approaches such as western blotting, immunoprecipitation, or immunohistochemical analysis, and their cellular behaviors cannot be sufficiently investigated. To circumvent such roadblocks, we designed and generated two sets of expression modules that consist of sequences encoding for three essential components: (1) a signal peptide from human receptor for advanced glycation end products that targets the intended protein to the endoplasmic reticulum for cell surface expression; (2) an antigenic epitope tag that elicits specific antibody recognition; and (3) a series of restriction sites that facilitate subcloning of the target membrane protein. The modules were designed with the flexibility to change the epitope tag to suit the specific tagging needs. The modules were subcloned into expression vectors, and were successfully tested with both Type I and Type III human membrane proteins: the receptor for advanced glycation end products, the Toll‐like receptor 4, and the angiotensin II receptor 1. These expressed membrane proteins are readily detected by western blotting, and are immunoprecipitated by antibodies to their relative epitope tags. Immunohistochemical and biochemical analyses also show that the expressed proteins are located at cell surface, and maintain their modifications and biological functions. Thus, the designed modules serve as an effective tool that facilitates biochemical studies of membrane proteins.  相似文献   

19.
A monoclonal antibody to human insulin receptor   总被引:1,自引:0,他引:1  
A murine hybridoma secreting antibody against human insulin receptor was produced by fusing FO myeloma cells with spleen and lymph node cells from a mouse that had been immunized with insulin receptor purified from human placenta. The secreted antibody was an IgG1 (κ), designated αIR-1. Like the previously described rabbit polyclonal antibody, αIR-1 did not inhibit insulin binding. It specifically immunoprecipitated 125I-insulin-receptor complexes as well as unoccupied receptor previously labeled directly with lactoperoxidase. Thus, αIR-1 interacts with the receptor at a site distinct from the insulin binding site. Unlike previously described anti-insulin receptor antibodies, αIR-1 exhibits strong tissue and species specificity.  相似文献   

20.
Murine leukemia virus (MLV)-derived envelope proteins containing alterations in or adjacent to the highly conserved PHQ motif present at the N terminus of the envelope surface subunit (SU) are incorporated into vector particles but are not infectious due to a postbinding block to viral entry. These mutants can be rendered infectious by the addition of soluble receptor-binding domain (RBD) proteins in the culture medium. The RBD proteins that rescue the infectivity of these defective MLV vectors can be derived from the same MLV or from other MLVs that use distinct receptors to mediate entry. We have now constructed functional immunologically reactive gibbon ape leukemia virus (GALV) envelope proteins, tagged with a feline leukemia virus (FeLV)-derived epitope tag, which are efficiently incorporated into infectious particles. Tagged GALV envelope proteins bind specifically to cells expressing the phosphate transporter protein Pit1, demonstrating for the first time that Pit1 is the binding receptor for GALV and not a coreceptor or another type of GALV entry factor. We have also determined that GALV particles bearing SU proteins with an insertion C-terminal to the PHQ motif (GALV I(10)) bind Pit1 but fail to infect cells. Incubation with soluble GALV RBD renders GALV I(10) particles infectious, whereas incubation with soluble RBDs from MLV or FeLV-B does not. This finding is consistent with the results obtained by Lauring et al. using FeLV-T, a virus that employs Pit1 as a receptor but requires soluble FeLV RBD for entry. MLV and GALV RBDs are not able to render FeLV-T infectious (A. S. Lauring, M. M. Anderson, and J. Overbaugh, J. Virol. 75:8888-8898, 2001). Together, these results suggest that fusion-defective FeLV-T and GALV are restricted to homologous RBD rescue of infectivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号