共查询到20条相似文献,搜索用时 0 毫秒
1.
Lin HK Hu YC Yang L Altuwaijri S Chen YT Kang HY Chang C 《The Journal of biological chemistry》2003,278(51):50902-50907
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway controls several important biological functions, such as cell growth regulation, apoptosis, and migration. However, the way in which PI3K/Akt controls androgen receptor (AR)-mediated prostate cancer cell growth remains unclear and controversial. Here, we demonstrate that the PI3K/Akt pathway regulates AR activity in a cell passage number-dependent manner. Specifically, PI3K/Akt pathway can suppress AR activity in androgen-dependent LNCaP cells with low passage numbers. In contrast, it can also enhance AR activity in LNCaP cells with high passage numbers. Furthermore, we also demonstrate that insulin-like growth factor-1 can activate the PI3K/Akt pathway that results in the phosphorylation of AR at Ser210 and Ser790. The consequence of these events may then change the stability of AR protein. Together, our results demonstrate that the PI3K/Akt pathway may have distinct mechanisms to modulate AR functions in various stages of prostate cancer cells and that a combined therapy of antiandrogens and anti-PI3K/Akt inhibitors may be worth considering as a future therapeutic approach to battle prostate cancer. 相似文献
2.
3.
Regulation of TRAIL expression by the phosphatidylinositol 3-kinase/Akt/GSK-3 pathway in human colon cancer cells 总被引:15,自引:0,他引:15
Wang Q Wang X Hernandez A Hellmich MR Gatalica Z Evers BM 《The Journal of biological chemistry》2002,277(39):36602-36610
The intestinal mucosa is a rapidly-renewing tissue characterized by cell proliferation, differentiation, and eventual apoptosis with progression up the vertical gut axis. The inhibition of phosphatidylinositol (PI) 3-kinase by specific chemical inhibitors or overexpression of the lipid phosphatase PTEN enhances enterocyte-like differentiation in human colon cancer cell models of intestinal differentiation. In this report, we examined the role of PI 3-kinase inhibition in the regulation of apoptotic gene expression in human colon cancer cell lines HT29, HCT-116, and Caco-2. Inhibition of PI 3-kinase with the chemical inhibitor wortmannin increased TNF-related apoptosis-inducing ligand (TRAIL; Apo2) mRNA and protein expression. Similarly, overexpression of the tumor suppressor protein PTEN, an antagonist of PI 3-kinase signaling, resulted in the increased expression of TRAIL. Activation of PI 3-kinase by pretreatment with IGF-1, a gut trophic factor, markedly attenuated the induction of TRAIL by wortmannin. Moreover, overexpression of active Akt, a downstream target of PI 3-kinase, or inhibition of GSK-3, a downstream target of active Akt, completely blocked the induction of TRAIL by wortmannin. Consistent with findings that TRAIL is induced by agents that enhance intestinal cell differentiation, TRAIL expression was specifically localized to the differentiated cells of the colon and small bowel. Adenovirus-mediated overexpression of TRAIL increased DNA fragmentation of HCT-116 cells, demonstrating the functional activity of TRAIL induction. Taken together, our findings demonstrate induction of the TRAIL by inhibition of PI 3-kinase in colon cancer cell lines. These results identify TRAIL, a novel TNF family member, as a downstream target of the PI 3-kinase/Akt/GSK-3 pathway and may have important implications for better understanding the role of the PI 3-kinase pathway in intestinal cell homeostasis. 相似文献
4.
5.
Nutrients suppress phosphatidylinositol 3-kinase/Akt signaling via raptor-dependent mTOR-mediated insulin receptor substrate 1 phosphorylation 总被引:7,自引:0,他引:7 下载免费PDF全文
Nutritional excess and/or obesity represent well-known predisposition factors for the development of non-insulin-dependent diabetes mellitus (NIDDM). However, molecular links between obesity and NIDDM are only beginning to emerge. Here, we demonstrate that nutrients suppress phosphatidylinositol 3 (PI3)-kinase/Akt signaling via Raptor-dependent mTOR (mammalian target of rapamycin)-mediated phosphorylation of insulin receptor substrate 1 (IRS-1). Raptor directly binds to and serves as a scaffold for mTOR-mediated phosphorylation of IRS-1 on Ser636/639. These serines lie close to the Y(632)MPM motif that is implicated in the binding of p85alpha/p110alpha PI3-kinase to IRS-1 upon insulin stimulation. Phosphomimicking mutations of these serines block insulin-stimulated activation of IRS-1-associated PI3-kinase. Knockdown of Raptor as well as activators of the LKB1/AMPK pathway, such as the widely used antidiabetic compound metformin, suppress IRS-1 Ser636/639 phosphorylation and reverse mTOR-mediated inhibition on PI3-kinase/Akt signaling. Thus, diabetes-related hyperglycemia hyperactivates the mTOR pathway and may lead to insulin resistance due to suppression of IRS-1-dependent PI3-kinase/Akt signaling. 相似文献
6.
Yang PH Cheung WK Peng Y He ML Wu GQ Xie D Jiang BH Huang QH Chen Z Lin MC Kung HF 《The Journal of biological chemistry》2008,283(13):8486-8495
Makorin-2 belongs to the makorin RING zinc finger gene family, which encodes putative ribonucleoproteins. Here we cloned the Xenopus makorin-2 (mkrn2) and characterized its function in Xenopus neurogenesis. Forced overexpression of mkrn2 produced tadpoles with dorso-posterior deficiencies and small-head/short-tail phenotype, whereas knockdown of mkrn2 by morpholino antisense oligonucleotides induced double axis in tadpoles. In Xenopus animal cap explant assay, mkrn2 inhibited activin, and retinoic acid induced animal cap neuralization, as evident from the suppression of a pan neural marker, neural cell adhesion molecule. Surprisingly, the anti-neurogenic activity of mkrn2 is independent of the two major neurogenesis signaling cascades, BMP-4 and Wnt8 pathways. Instead, mkrn2 works specifically through the phosphatidylinositol 3-kinase (PI3K) and Akt-mediated neurogenesis pathway. Overexpression of mkrn2 completely abrogated constitutively active PI3K- and Akt-induced, but not dominant negative glycogen synthase kinase-3beta (GSK-3beta)-induced, neural cell adhesion molecule expression, indicating that mkrn2 acts downstream of PI3K and Akt and upstream of GSK-3beta. Moreover, mkrn2 up-regulated the mRNA and protein levels of GSK-3beta. These results revealed for the first time the important role of mkrn2 as a new player in PI3K/Akt-mediated neurogenesis during Xenopus embryonic development. 相似文献
7.
Angiotensin II (Ang II) stimulates tumor growth and angio-genesis in some solid cancer cells, but its anti-apoptosis role in breast cancer remains unclear. To address this issue, we investigated the effect of Ang II on adriamycin-induced apoptosis in breast cancer MCF-7 cells. Treatment of human breast cancer MCF-7 cells with adriamycin, a DNA topoisomerase IIα inhibitor, caused apoptosis. However, cells pretreated with Ang II were resistant to this apoptosis. Ang II significantly reduced the ratio of apoptotic cells and stimulation of phospho-Akt-Thr308 and phospho-Akt-Ser473 in a dose-dependent and time-dependent manner. In addition, Ang II significantly prevented apoptosis through inhibiting the cleavage of procaspase-9, a major downstream effector of Akt. TheAng II type 1 receptor (AT1R) was responsible for these effects. Among the signaling molecules downstream of AT1R, we revealed that the phosphatidylinositol 3-kinase/Akt pathway plays a predominant role in the anti-apoptotic effect of Ang II. Our data indicated that Ang n plays a critical anti-apoptotic role in breast cancer cells by a mechanism involving AT1R/phosphatidylinositol 3-kinase/Akt activation and the subsequent suppression of caspase-9 activation. 相似文献
8.
Li Y Wang Z Kong D Li R Sarkar SH Sarkar FH 《The Journal of biological chemistry》2008,283(41):27707-27716
We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3beta, targets of Akt, regulate cell proliferation and apoptosis. Moreover, FOXO3a, GSK-3beta, and Src are AR regulators and regulate transactivation of AR, mediating the development and progression of PCa. Therefore, we investigated the molecular effects of isoflavone on the Akt/FOXO3a/GSK-3beta/AR signaling network in hormone-sensitive LNCaP and hormone-insensitive C4-2B PCa cells. We found that isoflavone inhibited the phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased the expression of GSK-3beta, leading to the down-regulation of AR and its target gene PSA. We also found that isoflavone inhibited AR nuclear translocation and promoted FOXO3a translocation to the nucleus. By electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we found that isoflavone inhibited FOXO3a binding to the promoter of AR and increased FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive PCa cells. These results suggest that isoflavone-induced inhibition of cell proliferation and induction of apoptosis are partly mediated through the regulation of the Akt/FOXO3a/GSK-3beta/AR signaling network. In conclusion, our data suggest that isoflavone could be useful for the prevention and/or treatment of PCa. 相似文献
9.
It has been recently shown that cannabinoids may regulate the growth of many cell types. In the present work we examined the effect of the anandamide analogue (R)-methanandamide (MET) on androgen-dependent prostate LNCaP cell growth. We found that 0.1 microM MET had a mitogenic effect measured by [(3)H]thymidine incorporation into DNA. The effect exerted by MET was blocked by the cannabinoid receptor antagonists SR141716 (SR1) and SR144528 (SR2) as well as by the phosphoinositide 3-kinase (PI3K) inhibitor LY294002, suggesting an involvement of cannabinoid receptors and the PI3K pathway in the mechanism of MET action. MET treatment of LNCaP cells also induced an up-regulation of androgen receptor expression that was blocked by the two cannabinoid receptor antagonists SR1 and SR2. These results show for the first time that cannabinoids may modify androgen receptor expression in an androgen-dependent cell line and by this mechanism could regulate prostate cell growth. 相似文献
10.
Lynch RL Konicek BW McNulty AM Hanna KR Lewis JE Neubauer BL Graff JR 《Molecular cancer research : MCR》2005,3(3):163-169
11.
Litherland GJ Dixon C Lakey RL Robson T Jones D Young DA Cawston TE Rowan AD 《The Journal of biological chemistry》2008,283(21):14221-14229
The phosphatidylinositol 3-kinase (PI3K) signaling pathway has emerged as a major regulator of cellular functions and has been implicated in several pathologies involving remodeling of extracellular matrix (ECM). The end stage of inflammatory joint diseases is characterized by excessive ECM catabolism, and in this study we assess the role of PI3K signaling in the induction of collagenolytic matrix metalloproteinases (MMPs) in human chondrocytes. We used the most potent cytokine stimulus reported to promote cartilage ECM catabolism, namely interleukin-1 (IL-1) in combination with oncostatin M (OSM). Both OSM and IL-6 (in the presence of its soluble receptor), but not IL-1 nor leukemia inhibitory factor, induced Akt phosphorylation in human chondrocytes. Inhibition of PI3K signaling using LY294002 blocked IL-1+OSM-mediated Akt phosphorylation, induction of MMP-1 and MMP-13, and cartilage collagenolysis. To further explore the role of downstream substrates within the PI3K pathway, complementary use of small molecule inhibitors and specific small interfering RNAs demonstrated that the PI3K subunit p110alpha and Akt1 were required for MMP-1 mRNA induction. MMP-13 induction was also reduced by loss of function of these molecules and by a lack of p110delta, 3-phosphoinositide-dependent kinase-1 or Akt3. We therefore propose that the activities of specific elements of the PI3K signaling pathway, including Akt, are necessary for the synergistic induction of MMP-1 and MMP-13 and the cartilage breakdown stimulated by IL-1+OSM. Our data provide new insight into the mechanism of synergy between IL-1 and OSM and highlight new therapeutic targets for inflammatory joint diseases that aim to repress the expression of collagenases. 相似文献
12.
The endothelial receptor tyrosine kinase Tie1 activates phosphatidylinositol 3-kinase and Akt to inhibit apoptosis 下载免费PDF全文
Tie1 is an orphan receptor tyrosine kinase that is expressed almost exclusively in endothelial cells and that is required for normal embryonic vascular development. Genetic studies suggest that Tie1 promotes endothelial cell survival, but other studies have suggested that the Tie1 kinase has little to no activity, and Tie1-mediated signaling pathways are unknown. To begin to study Tie1 signaling, a recombinant glutathione S-transferase (GST)-Tie1 kinase fusion protein was produced in insect cells and found to be autophosphorylated in vitro. GST-Tie1 but not a kinase-inactive mutant associated with a recombinant p85 SH2 domain protein in vitro, suggesting that Tie1 might signal through phosphatidylinositol (PI) 3-kinase. To study Tie1 signaling in a cellular context, a c-fms-Tie1 chimeric receptor (fTie1) was expressed in NIH 3T3 cells. Ligand stimulation of fTie1 resulted in Tie1 autophosphorylation and downstream activation of PI 3-kinase and Akt. Stimulation of fTie1-expressing cells potently inhibited UV irradiation-induced apoptosis in a PI 3-kinase-dependent manner. Moreover, both Akt phosphorylation and inhibition of apoptosis were abrogated by mutation of tyrosine 1113 to phenylalanine, suggesting that this residue is an important PI 3-kinase binding site. These findings are the first biochemical demonstration of a signal transduction pathway and corresponding cellular function for Tie1, and the antiapoptotic effect of Tie1 is consistent with the results of previous genetic studies. 相似文献
13.
Serantes R Arnalich F Figueroa M Salinas M Andrés-Mateos E Codoceo R Renart J Matute C Cavada C Cuadrado A Montiel C 《The Journal of biological chemistry》2006,281(21):14632-14643
Sepsis-associated encephalopathy (SAE) is a frequent but poorly understood neurological complication in sepsis that negatively influences survival. Here we present clinical and experimental evidence that this brain dysfunction may be related to altered neurotransmission produced by inflammatory mediators. Compared with septic patients, SAE patients had higher interleukin-1beta (IL-1beta) plasma levels; interestingly, these levels decreased once the encephalopathy was resolved. A putative IL-1beta effect on type A gamma-aminobutyric acid receptors (GABA(A)Rs), which mediate fast synaptic transmission in most cerebral inhibitory synapses in mammals, was investigated in cultured hippocampal neurons and in Xenopus oocytes expressing native or foreign rat brain GABA(A)Rs, respectively. Confocal images in both cell types revealed that IL-1beta increases recruitment of GABA(A)Rs to the cell surface. Moreover, brief applications of IL-1beta to voltage-clamped oocytes yielded a delayed potentiation of the GABA-elicited chloride currents (I(GABA)); this effect was suppressed by IL-1ra, the natural IL-1 receptor (IL-1RI) antagonist. Western blot analysis combined with I(GABA) recording and confocal images of GABA(A) Rs in oocytes showed that IL-1beta stimulates the IL-1RI-dependent phosphatidylinositol 3-kinase activation and the consequent facilitation of phospho-Akt-mediated insertion of GABA(A)Rs into the cell surface. The interruption of this signaling pathway by specific phosphatidylinositol 3-kinase or Akt inhibitors suppresses the cytokine-mediated effects on GABA(A)R, whereas activation of the conditionally active form of Akt1 (myr-Akt1.ER*) with 4-hydroxytamoxifen reproduces the effects. These findings point to a previously unrecognized signaling pathway that connects IL-1beta with increased "GABAergic tone." We propose that through this mechanism IL-1beta might alter synaptic strength at central GABAergic synapses and so contribute to the cognitive dysfunction observed in SAE. 相似文献
14.
15.
Valverde AM Arribas M Mur C Navarro P Pons S Cassard-Doulcier AM Kahn CR Benito M 《The Journal of biological chemistry》2003,278(12):10221-10231
To investigate the role of insulin receptor substrate-1 (IRS-1) and its downstream signaling in insulin-induced thermogenic differentiation of brown adipocytes, we have reconstituted IRS-1-deficient fetal brown adipocytes (IRS-1(-/-)) with wild-type IRS-1 (IRS-1(wt)). The lack of IRS-1 resulted in the inability of insulin to induce IRS-1-associated phosphatidylinositol 3-kinase (PI 3-kinase) activity and Akt phosphorylation in IRS-1(-/-) brown adipocytes. In addition, these cells showed an impairment in activating alpha-Akt, beta-Akt, and gamma-Akt isoforms upon insulin stimulation. Reconstitution of IRS-1(-/-) brown adipocytes with IRS-1(wt) restored the IRS-1/PI 3-kinase/Akt signaling pathway. Treatment of wild-type brown adipocytes with insulin for 24 h up-regulated uncoupling protein-1 (UCP-1) expression and transactivated the UCP-1 promoter; this effect was abolished in the absence of IRS-1 or in the presence of an Akt inhibitor and further recovered after IRS-1(wt) reconstitution. Neither UCP-2 nor UCP-3 was up-regulated by insulin in wild-type and IRS-1-deficient brown adipocytes. Insulin stimulated the expression of CCAAT/enhancer-binding protein alpha (C/EBPalpha) and its DNA binding activity in wild-type brown adipocytes but not in IRS-1(-/-) cells. However, insulin stimulation of both C/EBPalpha expression and binding activity was restored after IRS-1(wt) reconstitution of deficient cells. Retrovirus-mediated expression of C/EBPalpha and peroxisome proliferator-activated receptor gamma in IRS-1(-/-) brown adipocytes up-regulated UCP-1 protein content and transactivated UCP-1 promoter regardless of insulin stimulation. Both C/EBPalpha and peroxisome proliferator-activated receptor gamma reconstituted FAS mRNA expression, but only C/EBPalpha restored insulin sensitivity in the absence of IRS-1. Finally, reconstitution of IRS-1(-/-) brown adipocytes with the IRS-1 mutants IRS-1(Phe-895), which lacks IRS-1/growth factor receptor binding protein 2 binding but not IRS-1/p85-PI 3-kinase binding, or with IRS-1(Tyr-608/Tyr-628/Tyr-658), which only binds p85-PI 3-kinase, induced UCP-1 expression and transactivated the UCP-1 promoter. These data provide strong evidence for an essential role of IRS-1 through the PI 3-kinase/Akt signaling pathway inducing UCP-1 gene expression by insulin. 相似文献
16.
Modulation of insulin receptor substrate-1 tyrosine phosphorylation by an Akt/phosphatidylinositol 3-kinase pathway 总被引:13,自引:0,他引:13
Serine/threonine phosphorylation of insulin receptor substrate 1 (IRS-1) has been implicated as a negative regulator of insulin signaling. Prior studies have indicated that this negative regulation by protein kinase C involves the mitogen-activated protein kinase and phosphorylation of serine 612 in IRS-1. In the present studies, the negative regulation by platelet-derived growth factor (PDGF) was compared with that induced by endothelin-1, an activator of protein kinase C. In contrast to endothelin-1, the inhibitory effects of PDGF did not require mitogen-activated protein kinase or the phosphorylation of serine 612. Instead, three other serines in the phosphorylation domain of IRS-1 (serines 632, 662, and 731) were required for the negative regulation by PDGF. In addition, the PDGF-activated serine/threonine kinase called Akt was found to inhibit insulin signaling. Moreover, this inhibition required the same IRS-1 serine residues as the inhibition by PDGF. Finally, the negative regulatory effects of PDGF and Akt were inhibited by rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), one of the downstream targets of Akt. These studies implicate the phosphatidylinositol 3-kinase/Akt kinase cascade as an additional negative regulatory pathway for the insulin signaling cascade. 相似文献
17.
Sophie Malagarie-Cazenave Nuria Olea-Herrero Diana Vara Inés Díaz-Laviada 《FEBS letters》2009,583(1):141-147
In this study, capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide) induced an increase in the cell viability of the androgen-responsive prostate cancer LNCaP cells, which was reversed by the use of the TRPV1 antagonists capsazepine, I-RTX and SB 366791. In further studies we observed that capsaicin induced a decrease in ceramide levels as well as Akt and Erk activation. To investigate the mechanism of capsaicin action we measured androgen (AR) receptor levels. Capsaicin induced an increase in the AR expression that was reverted by the three TRPV1 antagonists. AR silencing by the use of siRNA, as well as blocking the AR receptor with bicalutamide, inhibited the proliferative effect of capsaicin. 相似文献
18.
Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. 总被引:16,自引:6,他引:16 下载免费PDF全文
We have found that insulin-like growth factor I (IGF-I) can protect fibroblasts from apoptosis induced by UV-B light. Antiapoptotic signalling by the IGF-I receptor depended on receptor kinase activity, as cells overexpressing kinase-defective receptor mutants could not be protected by IGF-I. Overexpression of a kinase-defective receptor which contained a mutation in the ATP binding loop functioned as a dominant negative and sensitized cells to apoptosis. The antiapoptotic capacity of the IGF-I receptor was not shared by other growth factors tested, including epidermal growth factor (EGF) and thrombin, although the cells expressed functional receptors for all the agonists. However, EGF was antiapoptotic for cells overexpressing the EGF receptor, and expression of activated pp60v-src also was protective. There was no correlation between protection from apoptosis and activation of mitogen-activated protein kinase, p38/HOG1, or p70S6 kinase. On the other hand, protection by any of the tyrosine kinases against UV-induced apoptosis was blocked by wortmannin, implying a role for phosphatidylinositol 3-kinase (PI3 kinase). To test this, we transiently expressed constitutively active or kinase-dead PI3 kinase and found that overexpression of activated phosphatidylinositol 3-kinase (PI3 kinase) was sufficient to provide protection against apoptosis. Because Akt/PKB is believed to be a downstream effector for PI3 kinase, we also examined the role of this serine/threonine protein kinase in antiapoptotic signalling. We found that membrane-targeted Akt was sufficient to protect against apoptosis but that kinase-dead Akt was not. We conclude that the endogenous IGF-I receptor has a specific antiapoptotic signalling capacity, that overexpression of other tyrosine kinases can allow them also to be antiapoptotic, and that activation of PI3 kinase and Akt is sufficient for antiapoptotic signalling. 相似文献
19.
Bcl-xL mediates a survival mechanism independent of the phosphoinositide 3-kinase/Akt pathway in prostate cancer cells 总被引:4,自引:0,他引:4
Yang CC Lin HP Chen CS Yang YT Tseng PH Rangnekar VM Chen CS 《The Journal of biological chemistry》2003,278(28):25872-25878
Among various molecular strategies by which prostate cancer cells evade apoptosis, phosphoinositide 3-kinase (PI3K)/Akt signaling represents a dominant survival pathway. However, different prostate cancer cell lines such as LNCaP and PC-3 display differential sensitivity to the apoptotic effect of PI3K inhibition in serum-free media, reflecting the heterogeneous nature of prostate cancer in apoptosis regulation. Whereas both cell lines are equally susceptible to LY294002-mediated Akt dephosphorylation, only LNCaP cells default to apoptosis, as evidenced by DNA fragmentation and cytochrome c release. In PC-3 cells, Akt deactivation does not lead to cytochrome c release, suggesting that the intermediary signaling pathway is short-circuited by an antiapoptotic factor. This study presents evidence that Bcl-xL overexpression provides a distinct survival mechanism that protects PC-3 cells from apoptotic signals emanating from PI3K inhibition. First, the Bcl-xL/BAD ratio in PC-3 cells is at least an order of magnitude greater than that of LNCaP cells. Second, ectopic expression of Bcl-xL protects LNCaP cells against LY294002-induced apoptosis. Third, antisense down-regulation of Bcl-xL sensitizes PC-3 cells to the apoptotic effect of LY294002. The physiological relevance of this Bcl-xL-mediated survival mechanism is further underscored by the protective effect of serum on LY294002-induced cell death in LNCaP cells, which is correlated with a multifold increase in Bcl-xL expression. In contrast to Bcl-xL, Bcl-2 expression levels are similar in both cells lines, and do not respond to serum stimulation, suggesting that Bcl-2 may not play a physiological role in antagonizing apoptosis signals pertinent to BAD activation in prostate cancer cells. 相似文献