首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The possibilities of obtaining biologically active cellulose–chitosan fibers were examined. An effective two-stage method was developed. The first stage involves the formation of dialdehyde cellulose by the potassium periodate oxidation of lyocell fibers, which is able to form Schiff’s base with chitosan. In the second stage, chitosan-coated lyocell fibers were prepared by subsequent treatment of oxidized lyocell fibers with a solution of chitosan in aqueous acetic acid. The impact of this two-stage protocol on the chemical and physical properties of lyocell fibers was evaluated by determining carbonyl group content, fineness and tensile strength of fibers, as well as chitosan content in the composite cellulose–chitosan fibers. Antibacterial activity of the chitosan-coated lyocell fibers against different pathogenens: Staphylococcus aureus and Escherichia coli, was confirmed in vitro experiments.  相似文献   

3.
True paper, in the technical sense of the term, was first made in China in 105a.d. from the bast fibers of paper mulberry and probably also from bamboo. For many centuries old rags, principally cotton or linen, supplied the papermakers with raw material In modern times, sprucewood fibers have long been outstanding for papermaking. In recent decades, however, the spruces have been equalled, if not surpassed, in tonnage used, by various species of pine, especially the southern yellow pines. Of secondary importance have been the fibers of dozens of other species.  相似文献   

4.
5.
After crushing one optic nerve in a bony fish, retinal fibers regenerate to both tecta. Anterograde labelling indicates that the ipsilaterally regenerating fibers have a rather straight growth, apparently along the undamaged fibers of the contralateral retina. In contrast, the contralaterally regenerating fibers deviate widely from a straight course. Retrograde labelling shows a mirror-symmetric distribution of regenerated ipsilateral and resident contralateral ganglion cells in a comparable annulus. In contrast, ganglion cells in the regenerated contralateral retina show no topological order after comparable small Dil applications to the ventrolateral tectum. These data suggest that regenerating fibers can orient on the undisturbed, contralateral fibers. © 1993 John Wiley & Sons, Inc.  相似文献   

6.
Olfactory nerve fibers   总被引:4,自引:0,他引:4       下载免费PDF全文
Cross sections of olfactory nerves present a unique appearance. They indicate the presence of large numbers of very small nerve fibers, with a modal diameter of about 0.2 µ and a narrow range for their size variation. From one side of the nasal septum of a pig the yield of fibers was estimated at 6,000,000; the number arising from the turbinates would be considerably larger. The fibers are attached to the membranes of the Schwann sheaths in large bundles through mesaxons longer and more branched than those that have been seen in other nerves. Continuity of the axons between the nerves and the bipolar cells was traced in an examination of the olfactory mucous membrane; and the indication of a one-to-one relationship between cells and axons was reinforced by a comparative count. After the axons leave the bipolar cells they become incased in the central projections of the sustentacular cells. Where the latter come into contact with the basal cells the axons emerge to push back the plasma membranes of the basal cells in the first step in acquiring their nerve sheaths. Later steps are described. When the axons are delivered by the basal cells to the collecting Schwann tubes, they are already aggregated into small bundles with sheaths fundamentally the same as those they will possess until they are delivered to the glia in the olfactory bulb. Some of the aspects of the cytology of the bipolar cells and adjoining sustentacular cells are described. A survey of the physiological properties of olfactory nerve fibers was made in some experiments on the olfactory nerve of the pike. Almost all of the action potential is encompassed within a single elevation, manifesting at its front a conduction velocity of 0.2 m./sec. For a comparison, the last elevation in the C action potential in the sciatic nerve of the frog is cited as an example of conduction at the same velocity. Though expressed through long time constants, the properties of the pike olfactory fibers conform to the generalized schema for properties of vertebrate nerve fibers. This conformity signalizes that they differ from the exceptional properties of the unmedullated fibers of dorsal root origin. An afferent function for unmedullated nerve fibers does not imply that the fibers concerned are alike in their physiological properties.  相似文献   

7.
8.
9.
10.
A possibility of efferent innervation of gustatory and mechanosensitive afferent fiber endings was studied in frog fungiform papillae with a suction electrode. The amplitude of antidromic impulses in a papillary afferent fiber induced by antidromically stimulating an afferent fiber of glossopharyngeal nerve (GPN) with low voltage pulses was inhibited for 40 s after the parasympathetic efferent fibers of GPN were stimulated orthodromically with high voltage pulses at 30 Hz for 10 s. This implies that electrical positivity of the outer surface of papillary afferent membrane was reduced by the efferent fiber-induced excitatory postsynaptic potential. The inhibition of afferent responses in the papillae was blocked by substance P receptor blocker, L-703,606, indicating that substance P is probably released from the efferent fiber terminals. Slow negative synaptic potential, which corresponded to a slow depolarizing synaptic potential, was extracellularly induced in papillary afferent terminals for 45 s by stimulating the parasympathetic efferent fibers of GPN with high voltage pulses at 30 Hz for 10 s. This synaptic potential was also blocked by L-703,606. These data indicate that papillary afferent fiber endings are innervated by parasympathetic efferent fibers.  相似文献   

11.
12.
13.
14.
15.
Eukaryotic DNA is presented to the enzymatic machineries that use DNA as a template in the form of chromatin fibers. At the first level of organization, DNA is wrapped around histone octamers to form nucleosomal particles that are connected with stretches of linker DNA; this beads-on-a-string structure folds further to reach a very compact state in the nucleus. Chromatin structure is in constant flux, changing dynamically to accommodate the needs of the cell to replicate, transcribe, and repair the DNA, and to regulate all these processes in time and space. The more conventional biochemical and biophysical techniques used to study chromatin structure and dynamics have been recently complemented by an array of single-molecule approaches, in which chromatin fibers are investigated one-at-a-time. Here we describe single-molecule efforts to see nucleosomes, touch them, put them together, and then take them apart, one-at-a-time. The beginning is exciting and promising, but much more effort will be needed to take advantage of the huge potential that the new physics-based techniques offer.  相似文献   

16.
The fiber (in terms of plant biology) is an individual cell characterized by spindle shape, length of up to several centimeters, well developed cell wall, and mechanical function. The review summarizes different, sometimes contradictory view points about duration, segregation and mechanisms of realization of individual stages of fiber biogenesis. Initiation and coordinated and intrusive growth are considered, as well as formation of secondary cell wall, including its gelatinous layers, and senescence. Biogenesis of fibers ontogenetically related to various tissues has been analyzed and the data about marker stage-specific characters of these cells. The data summarized in this review will allow not only deeper understanding the development of cells with such unique characters, but also interpret the growth mechanisms for much more cell types, in which it is more difficult to identify individual stages of biogenesis than in the sclerenchyma fibers.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号