首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The anti-apoptotic protein Bcl-2 is a versatile regulator of cell survival. Its interactions with its own pro-apoptotic family members are widely recognized for their role in promoting the survival of cancer cells. These interactions are thus being targeted for cancer treatment. Less widely recognized is the interaction of Bcl-2 with the inositol 1,4,5-trisphosphate receptor (InsP3R), an InsP3-gated Ca2 + channel located on the endoplasmic reticulum. The nature of this interaction, the mechanism by which it controls Ca2 + release from the ER, its role in T-cell development and survival, and the possibility of targeting it as a novel cancer treatment strategy are summarized in this review. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

2.
The primary target of the cAMP analogue 8-pCPT-2′-O-Me-cAMP is exchange protein directly activated by cAMP (Epac). Here we tested potential off-target effects of the Epac activator on blood platelet activation signalling. We found that the Epac analogue 8-pCPT-2′-O-Me-cAMP inhibits agonist-induced-GPCR-stimulated, but not collagen-stimulated, P-selectin surface expression on Epac1 deficient platelets. In human platelets, 8-pCPT-2′-O-Me-cAMP inhibited P-selectin expression elicited by the PKC activator PMA. This effect was abolished in the presence of the extracellular ADP scavenger system CP/CPK. In silico modelling of 8-pCPT-2′O-Me-cAMP binding into the purinergic platelet receptor P2Y12 revealed that the analogue docks similar to the P2Y12 antagonist 2MeSAMP. The 8-pCPT-2′-O-Me-cAMP analogue per se, did not provoke Rap 1 (Rap 1-GTP) activation or phosphorylation on the vasodilator-stimulated phosphoprotein (VASP) at Ser-157. In addition, the protein kinase A (PKA) antagonists Rp-cAMPS and Rp-8-Br-cAMPS failed to block the inhibitory effect of 8-pCPT-2′-O-Me-cAMP on thrombin- and TRAP-induced Rap 1 activation, thus suggesting that PKA is not involved. We conclude that the 8-pCPT-2′-O-Me-cAMP analogue is able to inhibit agonist-induced-GPCR-stimulated P-selectin independent from Epac1; the off-target effect of the analogue appears to be mediated by antagonistic P2Y12 receptor binding. This has implications when using cAMP analogues on specialised system involving such receptors. We found, however that the Epac agonist 8-Br-2′-O-Me-cAMP did not affect platelet activation at similar concentrations.  相似文献   

3.
Cytoplasmic Ca2+ is a master regulator of airway physiology; it controls fluid, mucus, and antimicrobial peptide secretion, ciliary beating, and smooth muscle contraction. The focus of this review is on the role of cytoplasmic Ca2+ in fluid secretion by airway exocrine secretory cells. Airway submucosal gland serous acinar cells are the primary fluid secreting cell type of the cartilaginous conducting airways, and this review summarizes the current state of knowledge of the molecular mechanisms of serous cell ion transport, with an emphasis on their regulation by intracellular Ca2+. Many neurotransmitters that regulate secretion from serous acinar cells utilize Ca2+ as a second messenger. Changes in intracellular Ca2+ concentration regulate the activities of ion transporters and channels involved in transepithelial ion transport and fluid secretion, including Ca2+-activated K+ channels and Cl channels. We also review evidence of interactions of Ca2+ signaling with other signaling pathways (cAMP, NO) that impinge upon different ion transport pathways, including the cAMP/PKA-activated cystic fibrosis (CF) transmembrane conductance regulator (CFTR) anion channel. A better understanding of Ca2+ signaling and its targets in airway fluid secretion may identify novel strategies to intervene in airway diseases, for example to enhance fluid secretion in CF airways.  相似文献   

4.
The calcium-sensing receptor (CaSR) couples to signalling pathways via intracellular loops 2 and 3, and the C-terminus. However, the requirements for signalling are largely undefined. We investigated the impacts of selected point mutations in iL-2 (F706A) and iL-3 (L797A and E803A), and a truncation of the C-terminus (R866X) on extracellular Ca2+ (Ca2+o)-stimulated phosphatidylinositol-specific phospholipase-C (PI-PLC) and various other signalling responses. CaSR-mediated activation of PI-PLC was markedly attenuated in all four mutants and similar suppressions were observed for Ca2+o-stimulated ERK1/2 phosphorylation. Ca2+o-stimulated intracellular Ca2+ (Ca2+i) mobilization, however, was relatively preserved for the iL-2 and iL-3 mutants and suppression of adenylyl cyclase was unaffected by either E803A or R866X. The CaSR selects for specific signalling pathways via the proximal C-terminus and key residues in iL-2, iL-3.  相似文献   

5.
The formation of a complex between Rac1 and the cytoplasmic domain of plexin-B1 is one of the first documented cases of a direct interaction between a small guanosine 5′-triphosphatase (GTPase) and a transmembrane receptor. Structural studies have begun to elucidate the role of this interaction for the signal transduction mechanism of plexins. Mapping of the Rac1 GTPase surface that contacts the Rho GTPase binding domain of plexin-B1 by solution NMR spectroscopy confirms the plexin domain as a GTPase effector protein. Regions neighboring the GTPase switch I and II regions are also involved in the interaction and there is considerable interest to examine the changes in protein dynamics that take place upon complex formation. Here we present main-chain nitrogen-15 relaxation measurements for the unbound proteins as well as for the Rho GTPase binding domain and Rac1 proteins in their complexed state. Derived order parameters, S2, show that considerable motions are maintained in the bound state of plexin. In fact, some of the changes in S2 on binding appear compensatory, exhibiting decreased as well as increased dynamics. Fluctuations in Rac1, already a largely rigid protein on the picosecond-nanosecond timescale, are overall diminished, but isomerization dynamics in the switch I and II regions of the GTPase are retained in the complex and appear to be propagated to the bound plexin domain. Remarkably, fluctuations in the GTPase are attenuated at sites, including helices α6 (the Rho-specific insert helix), α7 and α8, that are spatially distant from the interaction region with plexin. This effect of binding on long-range dynamics appears to be communicated by hinge sites and by subtle conformational changes in the protein. Similar to recent studies on other systems, we suggest that dynamical protein features are affected by allosteric mechanisms. Altered protein fluctuations are likely to prime the Rho GTPase-plexin complex for interactions with additional binding partners.  相似文献   

6.
Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca2 + signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca2 +-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca2 + transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca2 + from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca2 + homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca2 + signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca2 + homeostasis, thereby decreasing mitochondrial Ca2 + uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca2 + homeostasis and dynamics.  相似文献   

7.
The type II Ca2+/calmodulin-dependent protein kinases (CaMKs) are thought to play a vital role in cellular regulation in mammalian cells. Two genes CMK1 and CMK2 in the Candida albicans genome encode homologues of mammalian CaMKs. In this work, we constructed the cmk1Δ/Δ, the cmk2Δ/Δ and the cmk1Δ/Δcmk2Δ/Δ mutants and found that CaMKs function in cell wall integrity (CWI) and cellular redox regulation. Loss of either CMK1 or CMK2, or both resulted in increased expression of CWI-related genes under Calcofluor white (CFW) treatment. Besides, CaMKs are essential for the maintenance of cellular redox balance. Disruption of either CMK1 or CMK2, or both not only led to a significant increase of intracellular ROS levels, but also led to a decrease of the mitochondrial membrane potential (MMP), suggesting the important roles that CaMKs play in the maintenance of the mitochondrial function.  相似文献   

8.
G protein-coupled receptors (GPCRs) control a variety of fundamental cellular processes by regulating phospholipid signaling pathways. Essential for signaling by a large number of receptors is the hydrolysis of the membrane phosphoinositide PIP2 by phospholipase C (PLC) into the second messengers IP3 and DAG. Many receptors also stimulate phospholipase D (PLD), leading to the generation of the versatile lipid, phosphatidic acid. Particular PLC and PLD isoforms take differential positions in receptor signaling and are additionally regulated by small GTPases of the Ras, Rho and ARF families. It is now recognized that the PLC substrate, PIP2, has signaling capacity by itself and can, by direct interaction, affect the activity and subcellular localization of PLD and several other proteins. As expected, the synthesis of PIP2 by phosphoinositide 5-kinases is tightly regulated as well. In this review, we present an overview of how these signaling pathways are governed by GPCRs, explain the molecular basis for the spatially and temporally organized, highly dynamic quality of phospholipid signaling, and point to the functional connection of the pathways.  相似文献   

9.
In all eukaryotic cells, the endoplasmic reticulum (ER) and the mitochondria establish a tight interplay, which is structurally and functionally modulated through a proteinaceous tether formed at specific subdomains of the ER membrane, designated mitochondria-associated membranes or MAMs. The tethering function of the MAMs allows the regulation of lipid synthesis and rapid transmission of calcium (Ca2 +) signals between the ER and mitochondria, which is crucial to shape intracellular Ca2 + signaling and regulate mitochondrial bioenergetics. Research on the molecular characterization and function of MAMs has boomed in the last few years and the list of signaling and structural proteins dynamically associated with the ER–mitochondria contact sites in physiological and pathological conditions, is rapidly increasing along with the realization of an unprecedented complexity underlying the functional role of MAMs. Besides their established role as a signaling hub for Ca2 + and lipid transfer between ER and mitochondria, MAMs have been recently shown to regulate mitochondrial shape and motility, energy metabolism and redox status and to be central to the modulation of various key processes like ER stress, autophagy and inflammasome signaling. In this review we will discuss some emerging cell-autonomous and cell non-autonomous roles of the MAMs in mammalian cells and their relevance for important human diseases. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

10.
In hepatocytes, as in other cell types, Ca2+ signaling is subject to complex regulations, which result largely from the intrinsic characteristics of the different inositol 1,4,5-trisphosphate receptor (InsP3R) isoforms and from their interactions with other proteins. Although sigma1 receptors (Sig-1Rs) are widely expressed in the liver, their involvement in hepatic Ca2+ signaling remains unknown. We here report that in this cell type Sig-1R interact with type 1 isoforms of the InsP3 receptors (InsP3R-1). These results obtained by immunoprecipitation experiments are confirmed by the observation that Sig-1R proteins and InsP3R-1 colocalize in hepatocytes. However, Sig-1R ligands have no effect on InsP3-induced Ca2+ release in hepatocytes. This can be explained by the rather low expression level expression of InsP3R-1. In contrast, we find that Sig-1R ligands can inhibit agonist-induced Ca2+ signaling via an inhibitory effect on InsP3 synthesis. We show that this inhibition is due to the stimulation of PKC activity by Sig-1R, resulting in the well-known down-regulation of the signaling pathway responsible for the transduction of the extracellular stimulus into InsP3 synthesis. The PKC sensitive to Sig-1R activity belongs to the family of conventional PKC, but the precise molecular mechanism of this regulation remains to be elucidated.  相似文献   

11.
The two isoforms (RI and RII) of the regulatory (R) subunit of cAMP-dependent protein kinase or protein kinase A (PKA) are similar in sequence yet have different biochemical properties and physiological functions. To further understand the molecular basis for R-isoform-specificity, the interactions of the RIIβ isoform with the PKA catalytic (C) subunit were analyzed by amide H/2H exchange mass spectrometry to compare solvent accessibility of RIIβ and the C subunit in their free and complexed states. Direct mapping of the RIIβ-C interface revealed important differences between the intersubunit interfaces in the type I and type II holoenzyme complexes. These differences are seen in both the R-subunits as well as the C-subunit. Unlike the type I isoform, the type II isoform complexes require both cAMP-binding domains, and ATP is not obligatory for high affinity interactions with the C-subunit. Surprisingly, the C-subunit mediates distinct, overlapping surfaces of interaction with the two R-isoforms despite a strong homology in sequence and similarity in domain organization. Identification of a remote allosteric site on the C-subunit that is essential for interactions with RII, but not RI subunits, further highlights the considerable diversity in interfaces found in higher order protein complexes mediated by the C-subunit of PKA.  相似文献   

12.
Guanine nucleotide exchange factors (GEFs) regulate the activity of small G proteins by catalysing the intrinsically slow exchange of GDP for GTP. The mechanism involves the formation of trimeric G protein-nucleotide-GEF complexes, followed by the release of nucleotide to form stable binary G protein-GEF complexes. A number of structural studies of G protein-GEF complexes have shown large structural changes induced in the nucleotide binding site. Together with a recent structure of a trimeric complex, these studies have suggested not only some common principles but also large differences in detail in the GEF-mediated exchange reaction. Several structures suggested that a glutamic acid residue in switch II, which is part of the DxxGQE motif and highly conserved in Ras-like G proteins, might have a decisive mechanistic role in GEF-mediated nucleotide exchange reactions. Here we show that mutation of the switch II glutamate to Ala severely impairs GEF-catalysed nucleotide exchange in most, but not all, Ras family G proteins, explaining its high sequence conservation. The residue determines the initial approach of GEF to the nucleotide-loaded G protein and does not appreciably affect the formation of a binary nucleotide-free complex. Its major effect thus appears to be the removal of the P-loop lysine from its interaction with the nucleotide.  相似文献   

13.
Cell-death and -survival decisions are critically controlled by intracellular Ca2 + homeostasis and dynamics at the level of the endoplasmic reticulum (ER). Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a pivotal role in these processes by mediating Ca2 + flux from the ER into the cytosol and mitochondria. Hence, it is clear that many pro-survival and pro-death signaling pathways and proteins affect Ca2 + signaling by directly targeting IP3R channels, which can happen in an IP3R-isoform-dependent manner. In this review, we will focus on how the different IP3R isoforms (IP3R1, IP3R2 and IP3R3) control cell death and survival. First, we will present an overview of the isoform-specific regulation of IP3Rs by cellular factors like IP3, Ca2 +, Ca2 +-binding proteins, adenosine triphosphate (ATP), thiol modification, phosphorylation and interacting proteins, and of IP3R-isoform specific expression patterns. Second, we will discuss the role of the ER as a Ca2 + store in cell death and survival and how IP3Rs and pro-survival/pro-death proteins can modulate the basal ER Ca2 + leak. Third, we will review the regulation of the Ca2 +-flux properties of the IP3R isoforms by the ER-resident and by the cytoplasmic proteins involved in cell death and survival as well as by redox regulation. Hence, we aim to highlight the specific roles of the various IP3R isoforms in cell-death and -survival signaling. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

14.
Effective control of the Ca2+ homeostasis in any living cell is paramount to coordinate some of the most essential physiological processes, including cell division, morphological differentiation, and intercellular communication. Therefore, effective homeostatic mechanisms have evolved to maintain the intracellular Ca2+ concentration at physiologically adequate levels, as well as to regulate the spatial and temporal dynamics of Ca2+signaling at subcellular resolution. Members of the superfamily of EF-hand Ca2+-binding proteins are effective to either attenuate intracellular Ca2+ transients as stochiometric buffers or function as Ca2+ sensors whose conformational change upon Ca2+ binding triggers protein-protein interactions, leading to cell state-specific intracellular signaling events. In the central nervous system, some EF-hand Ca2+-binding proteins are restricted to specific subtypes of neurons or glia, with their expression under developmental and/or metabolic control. Therefore, Ca2+-binding proteins are widely used as molecular markers of cell identity whilst also predicting excitability and neurotransmitter release profiles in response to electrical stimuli. Secretagogin is a novel member of the group of EF-hand Ca2+-binding proteins whose expression precedes that of many other Ca2+-binding proteins in postmitotic, migratory neurons in the embryonic nervous system. Secretagogin expression persists during neurogenesis in the adult brain, yet becomes confined to regionalized subsets of differentiated neurons in the adult central and peripheral nervous and neuroendocrine systems. Secretagogin may be implicated in the control of neuronal turnover and differentiation, particularly since it is re-expressed in neoplastic brain and endocrine tumors and modulates cell proliferation in vitro. Alternatively, and since secretagogin can bind to SNARE proteins, it might function as a Ca2+ sensor/coincidence detector modulating vesicular exocytosis of neurotransmitters, neuropeptides or hormones. Thus, secretagogin emerges as a functionally multifaceted Ca2+-binding protein whose molecular characterization can unravel a new and fundamental dimension of Ca2+signaling under physiological and disease conditions in the nervous system and beyond.  相似文献   

15.
Rac signaling in breast cancer: a tale of GEFs and GAPs   总被引:1,自引:0,他引:1  
Rac GTPases, small G-proteins widely implicated in tumorigenesis and metastasis, transduce signals from tyrosine-kinase, G-protein-coupled receptors (GPCRs), and integrins, and control a number of essential cellular functions including motility, adhesion, and proliferation. Deregulation of Rac signaling in cancer is generally a consequence of enhanced upstream inputs from tyrosine-kinase receptors, PI3K or Guanine nucleotide Exchange Factors (GEFs), or reduced Rac inactivation by GTPase Activating Proteins (GAPs). In breast cancer cells Rac1 is a downstream effector of ErbB receptors and mediates migratory responses by ErbB1/EGFR ligands such as EGF or TGFα and ErbB3 ligands such as heregulins. Recent advances in the field led to the identification of the Rac-GEF P-Rex1 as an essential mediator of Rac1 responses in breast cancer cells. P-Rex1 is activated by the PI3K product PIP3 and Gβγ subunits, and integrates signals from ErbB receptors and GPCRs. Most notably, P-Rex1 is highly overexpressed in human luminal breast tumors, particularly those expressing ErbB2 and estrogen receptor (ER). The P-Rex1/Rac signaling pathway may represent an attractive target for breast cancer therapy.  相似文献   

16.
Cdc42, a member of the Ras superfamily of small guanine nucleotide binding proteins, plays an important role in regulating the actin cytoskeleton, intracellular trafficking, and cell polarity. Its activation is controlled by guanine nucleotide exchange factors (GEFs), which stimulate the dissociation of bound guanosine-5′-diphosphate (GDP) to allow guanosine-5′-triphosphate (GTP) binding. Here, we investigate the exchange factor activity of the Dbl-homology domain containing constructs of the adaptor protein Intersectin1L (ITSN1L), which is a specific GEF for Cdc42. A detailed kinetic characterisation comparing ITSN1L-mediated nucleotide exchange on Cdc42 in its GTP- versus GDP-bound state reveals a kinetic discrimination for GEF-stimulated dissociation of GTP: The maximum acceleration of the intrinsic mGDP [2′/3′-O-(N-methyl-anthraniloyl)-GDP] release from Cdc42 by ITSN1L is accelerated at least 68,000-fold, whereas the exchange of mGTP [2′/3′-O-(N-methyl-anthraniloyl)-GTP] is stimulated only up to 6000-fold at the same GEF concentration. The selectivity in nucleotide exchange kinetics for GDP over GTP is even more pronounced when a Cdc42 mutant, F28L, is used, which is characterised by fast intrinsic dissociation of nucleotides. We furthermore show that both GTP and Mg2+ ions are required for the interaction with effectors. We suggest a novel model for selective nucleotide exchange residing on a conformational change of Cdc42 upon binding of GTP, which enables effector binding to the Cdc42 · GTP complex but, at the same time, excludes efficient modulation by the GEF. The higher exchange activity of ITSN1L towards the GDP-bound conformation of Cdc42 could represent an evolutionary adaptation of this GEF that ensures nucleotide exchange towards the formation of the signalling-active GTP-bound form of Cdc42 and avoids dissociation of the active complex.  相似文献   

17.
For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca2 +, as a signaling ion, largely contributes. Altered intracellular Ca2 + levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca2 + increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca2 + waves, thereby recruiting a larger group of cells. Intercellular Ca2+ wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels (‘half of a gap junction channel’). This review gives an overview of the current knowledge on Cx-mediated Ca2 + communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca2 + communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

18.
Staurosporine (Stp) is an inhibitor of protein kinase C (PKC) that has been used to address the role of this enzyme in a variety of cells. However, Stp can also inhibit protein tyrosine kinases (PTK). We have investigated the effects of Stp on the InsP3- (using mAb C305 directed against the β chain of the T cell receptor (TcR)/CD3 complex) and the thapsigargin (Tg)-dependent release and influx of Ca2+ in human (Jurkat) T cells. The addition of Stp (200 nM) during the sustained phase of the TcR-dependent Ca2+ response resulted in a rapid inhibition of the influx of Ca2+ that was not seen when Ca2+ mobilization was triggered by Tg (1 μM). When the cells were preincubated with Stp (200 nM), there was an inhibition of the mAb C305- but not the Tg-dependent Ca2+ response. The effect of Stp was not the result of the inhibition of PKC as shown by down-regulation of PKC and with the use of the specific PKC inhibitor bis-indolyl maleimide GF 109203X. The effect of Stp on the entry of Ca2+ in activated (mAb C305) Jurkat lymphocytes was dose-related and was not the result of a direct inhibition of plasma membrane Ca2+ channels based on an absence of effect on the Tg-dependent entry of Ca2+ and the use of Ca2+ channel blockers (econazole and Ni2+). These blockers terminated the influx of Ca2+ but the Tg-sensitive Ca2+ reserves were not refilled in marked contrast to the effect of Stp. Quantification of InsP3 revealed that the addition of Stp resulted in an approximate 40% reduction in mAb C305-activated Jurkat cells. The effects of Stp can be explained as follows. Stp decreases the mAb C305-induced production of InsP3 by inhibiting the TcR/CD3-dependent activation of PTK associated with the stimulation of phospholipase C-γ1. A decrease in [InsP3] without a return to baseline is sufficient to close the InsP3 Ca2+ channel, endoplasmic Ca2+ ATPases use the incoming Ca2+ to refill the Ca2+ pools and that terminates the capacitative entry of Ca2+. A simple kinetic model reproduced the experimental data.  相似文献   

19.
20.
The interface between mitochondria and the endoplasmic reticulum is emerging as a crucial hub for calcium signalling, apoptosis, autophagy and lipid biosynthesis, with far reaching implications in cell life and death and in the regulation of mitochondrial and endoplasmic reticulum function. Here we review our current knowledge on the structural and functional aspects of this interorganellar juxtaposition. This article is part of a Special Issue entitled: Calcium Signaling In Health and Disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号