首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Cell–cell interactions between muscle precursors are required for myogenic differentiation; however, underlying mechanisms are largely unknown. Promyogenic cell surface protein Cdo functions as a component of multiprotein complexes containing other cell adhesion molecules, Boc, Neogenin and N-cadherin, and mediates some of signals triggered by cell–cell interactions between muscle precursors. Cdo activates p38MAPK via interaction with two scaffold proteins JLP and Bnip-2 to promote myogenesis. p38MAPK and Akt signaling are required for myogenic differentiation and activation of both signaling pathways is crucial for efficient myogenic differentiation. We report here that APPL1, an interacting partner of Akt, forms complexes with Cdo and Boc in differentiating myoblasts. Both Cdo and APPL1 are required for efficient Akt activation during myoblast differentiation. The defective differentiation of Cdo-depleted cells is fully rescued by overexpression of a constitutively active form of Akt, whereas overexpression of APPL1 fails to do so. Taken together, Cdo activates Akt through association with APPL1 during myoblast differentiation, and this complex likely mediates some of the promyogenic effect of cell–cell interaction. The promyogenic function of Cdo involves a coordinated activation of p38MAPK and Akt via association with scaffold proteins, JLP and Bnip-2 for p38MAPK and APPL1 for Akt.  相似文献   

3.
Leem YE  Han JW  Lee HJ  Ha HL  Kwon YL  Ho SM  Kim BG  Tran P  Bae GU  Kang JS 《Cellular signalling》2011,23(12):2021-2029
Skeletal myogenesis is a multistep process that involves cell cycle exit, expression of muscle-specific genes and formation of multinucleated myotubes. Growth arrest specific gene 1 (Gas1) is a GPI-linked membrane protein and originally identified as a growth arrest-linked gene in fibroblasts. Promyogenic cell surface protein, Cdo functions as a component of multiprotein complexes that include other cell adhesion molecules, like Cadherins to mediate cell contact signaling. Here we report that Gas1 and Cdo are coexpressed in muscle cells and form a complex in differentiating myoblasts. Interestingly, Cdo−/− myoblasts display defects in Gas1 induction during differentiation. Overexpression or depletion of Gas1 enhances or decreases myogenic differentiation, respectively. During myoblast differentiation, Gas1 depletion causes defects in downregulation of Cdk2 and Cyclin D1 and up-regulation of miR-322, a negative regulator of Cdk2 activities. Furthermore overexpression or knockdown of Gas1 either enhances or decreases activation of p38MAPK that functions downstream of Cdo. Additionally, Gas1 overexpression in Cdo-depleted C2C12 cells restores p38MAPK activities and differentiation abilities. These data suggest that Gas1 promotes myogenic differentiation through regulation of cell cycle arrest and is critical to activate p38MAPK, most likely via association with Cdo/Cadherin multiprotein complexes.  相似文献   

4.
Skeletal muscle formation is a multistep process involving proliferation, differentiation, alignment and fusion of myoblasts to form myotubes which fuse with additional myoblast to form myofibers. Toca-1 (Transducer of Cdc42-dependent actin assembly), is an adaptor protein which activates N-WASP in conjunction with Cdc42 to facilitate membrane invagination, endocytosis and actin cytoskeleton remodeling. Expression of Toca-1 in mouse primary myoblasts and C2C12 myoblasts was up-regulated on day 1 of differentiation and subsequently down-regulated during differentiation. Knocking down Toca-1 expression in C2C12 cells (Toca-1KD cells) resulted in a significant decrease in myotube formation and expression of shRNA-resistant Toca-1 in Toca-1KD cells rescued the myogenic defect, suggesting that the knockdown was specific and Toca-1 is essential for myotube formation. Toca-1KD cells exhibited elongated spindle-like morphology, expressed myogenic markers (MyoD and MyHC) and localized N-Cadherin at cell periphery similar to control cells suggesting that Toca-1 is not essential for morphological changes or expression of proteins critical for differentiation. Toca-1KD cells displayed prominent actin fibers suggesting a defect in actin cytoskeleton turnover necessary for cell–cell fusion. Toca-1KD cells migrated faster than control cells and had a reduced number of vinculin patches similar to N-WASPKO MEF cells. Transfection of N-WASP-expressing plasmid into Toca-1KD cells restored myotube formation of Toca-1KD cells. Thus, our results suggest that Toca-1KD cells have defects in formation of myotubes probably due to reduced activity of actin cytoskeleton regulators such as N-WASP. This is the first study to identify and characterize the role of Toca-1 in myogenesis.  相似文献   

5.
The promyogenic cell surface molecule Cdo is required for activation of extracellular signal-regulated kinase (ERK) and nuclear factor of activated T cells c3 (NFATc3) induced by netrin-2 in myogenic differentiation. However, the molecular mechanism leading to NFATc3 activation is unknown. Stromal interaction molecule 1 (Stim1), an internal calcium sensor of the endoplasmic reticulum store, promotes myogenesis via activation of NFATc3. In this study we investigated the functional interaction between Cdo and Stim1 in myogenic differentiation. Overexpression and depletion of Stim1 enhanced or decreased myotube formation, respectively. Of interest, Stim1 protein levels were decreased in Cdo-deficient perinatal hindlimb muscles or primary myoblasts; this correlates with defective NFATc3 activation in Cdo(-/-) myoblasts upon differentiation. Forced activation of NFATc3 by overexpression of calcineurin restored differentiation of Cdo-depleted C2C12 myoblasts. Furthermore, Cdo and Stim1 formed a complex in 293T cells or in differentiating C2C12 myoblasts. The netrin-2-mediated NFATc3 activation was coincident with robust interactions between Cdo and Stim1 in myoblasts and the ERK-mediated Stim1 phosphorylation at serine 575. The serine 575 phosphorylation was enhanced in C2C12 cells upon differentiation, and the alanine substitution of serine 575 failed to restore differentiation of Stim1-depleted myoblasts. Taken together, the results indicate that cell adhesion signaling triggered by netrin-2/Cdo induces Stim1 phosphorylation at serine 575 by ERK, which promotes myoblast differentiation.  相似文献   

6.
Stem cell therapy for muscular dystrophies requires stem cells that are able to participate in the formation of new muscle fibers. However, the differentiation steps that are the most critical for this process are not clear. We investigated the myogenic phases of human adipose tissue-derived stem cells (hASCs) step by step and the capability of myotube formation according to the differentiation phase by cellular fusion with mouse myoblast C2C12 cells. In hASCs treated with 5-azacytidine and fibroblast growth factor-2 (FGF-2) for 1 day, the early differentiation step to express MyoD and myogenin was induced by FGF-2 treatment for 6 days. Dystrophin and myosin heavy chain (MyHC) expression was induced by hASC conditioned medium in the late differentiation step. Myotubes were observed only in hASCs undergoing the late differentiation step by cellular fusion with C2C12 cells. In contrast, hASCs that were normal or in the early stage were not involved in myotube formation. Our results indicate that stem cells expressing dystrophin and MyHC are more suitable for myotube formation by co-culture with myoblasts than normal or early differentiated stem cells expressing MyoD and myogenin.  相似文献   

7.
A variety of signaling pathways participate in the development of skeletal muscle, but the extracellular cues that regulate such pathways in myofiber formation are not well understood. Neogenin is a receptor for ligands of the netrin and repulsive guidance molecule (RGM) families involved in axon guidance. We reported previously that neogenin promoted myotube formation by C2C12 myoblasts in vitro and that the related protein Cdo (also Cdon) was a potential neogenin coreceptor in myoblasts. We report here that mice homozygous for a gene-trap mutation in the Neo1 locus (encoding neogenin) develop myotomes normally but have small myofibers at embryonic day 18.5 and at 3 wk of age. Similarly, cultured myoblasts derived from such animals form smaller myotubes with fewer nuclei than myoblasts from control animals. These in vivo and in vitro defects are associated with low levels of the activated forms of focal adhesion kinase (FAK) and extracellular signal-regulated kinase (ERK), both known to be involved in myotube formation, and inefficient expression of certain muscle-specific proteins. Recombinant netrin-2 activates FAK and ERK in cultured myoblasts in a neogenin- and Cdo-dependent manner, whereas recombinant RGMc displays lesser ability to activate these kinases. Together, netrin-neogenin signaling is an important extracellular cue in regulation of myogenic differentiation and myofiber size.  相似文献   

8.
The p38alpha/beta mitogen-activated protein kinase (MAPK) pathway promotes skeletal myogenesis, but the mechanisms by which it is activated during this process are unclear. During myoblast differentiation, the promyogenic cell surface receptor Cdo binds to the p38alpha/beta pathway scaffold protein JLP and, via JLP, p38alpha/beta itself. We report that Cdo also interacts with Bnip-2, a protein that binds the small guanosine triphosphatase (GTPase) Cdc42 and a negative regulator of Cdc42, Cdc42 GTPase-activating protein (GAP). Moreover, Bnip-2 and JLP are brought together through mutual interaction with Cdo. Gain- and loss-of-function experiments with myoblasts indicate that the Cdo-Bnip-2 interaction stimulates Cdc42 activity, which in turn promotes p38alpha/beta activity and cell differentiation. These results reveal a previously unknown linkage between a cell surface receptor and downstream modulation of Cdc42 activity. Furthermore, interaction with multiple scaffold-type proteins is a distinctive mode of cell surface receptor signaling and provides one mechanism for specificity of p38alpha/beta activation during cell differentiation.  相似文献   

9.
10.
The present study evaluated endogenous activities and the role of BMP and transforming growth factor-β (TGF-β), representative members of the TGF-β family, during myotube differentiation in C2C12 cells. Smad phosphorylation at the C-terminal serines was monitored, since TGF-β family members signal via the phosphorylation of Smads in a ligand-dependent manner. Expression of phosphorylated Smad1/5/8, which is an indicator of BMP activity, was higher before differentiation, and rapidly decreased after differentiation stimulation. Differentiation-related changes were consistent with those in the expression of Ids, well-known BMP-responsive genes. Treatment with inhibitors of BMP type I receptors or noggin in C2C12 myoblasts down-regulated the expression of myogenic regulatory factors, such as Myf5 and MyoD, leading to impaired myotube formation. Addition of BMP-2 during the myoblast phase also inhibited myotube differentiation through the down-regulation of Myf5 and MyoD. In contrast to endogenous BMP activity, the phosphorylation of Smad2, a TGF-β-responsive Smad, was higher 8-16 days after differentiation stimulation. A-83-01, an inhibitor of TGF-β type I receptor, increased the expression of Myf5 and MyoD, and enhanced myotube formation. The present results reveal that endogenous activities of the TGF-β family are changed during myogenesis in a pathway-specific manner, and that the activities are required for myogenesis.  相似文献   

11.
The development of skeletal muscle is a complex process involving the proliferation, differentiation, apoptosis, and changing of muscle fiber types in myoblasts. Many reports have described the involvement of microRNAs in the myogenesis of myoblasts. In this study, we found that the expression of miR-152 was gradually down-regulated during myoblast proliferation, but gradually up-regulated during the differentiation of myoblasts. Transfection with miR-152 mimics restrained cell proliferation and decreased the expression levels of cyclin E, CDK4, and cyclin D1, but promoted myotube formation and significantly increased the mRNA expression levels of MyHC, MyoD, MRF4, and MyoG in C2C12 myoblasts. However, treatment with miR-152 inhibitors promoted cell proliferation and restrained differentiation. Moreover, over-expression of miR-152 significantly decreased E2F3 production in C2C12 myoblasts. A luciferase assay confirmed that miR-152 could bind to the 3′ UTR of E2F3. In conclusion, this study showed that miR-152 inhibited proliferation and promoted myoblast differentiation by targeting E2F3.  相似文献   

12.
Caveolin-3 is the principal structural protein of caveolae membrane domains in striated muscle cells. Caveolin-3 mRNA and protein expression are dramatically induced during the differentiation of C2C12 skeletal myoblasts, coincident with myoblast fusion. In these myotubes, caveolin-3 localizes to the sarcolemma (muscle cell plasma membrane), where it associates with the dystrophin-glycoprotein complex. However, it remains unknown what role caveolin-3 plays in myoblast differentiation and myotube formation. Here, we employ an antisense approach to derive stable C2C12 myoblasts that fail to express the caveolin-3 protein. We show that C2C12 cells harboring caveolin-3 antisense undergo differentiation and express normal amounts of four muscle-specific marker proteins. However, C2C12 cells harboring caveolin-3 antisense fail to undergo myoblast fusion and, therefore, do not form myotubes. Interestingly, treatment with specific p38 mitogen-activated protein kinase inhibitors blocks both myotube formation and caveolin-3 expression, but does not affect the expression of other muscle-specific proteins. In addition, we find that three human rhabdomyosarcoma cell lines do not express caveolin-3 and fail to undergo myoblast fusion. Taken together, these results support the idea that caveolin-3 expression is required for myoblast fusion and myotube formation, and suggest that p38 is an upstream regulator of caveolin-3 expression.  相似文献   

13.
Fusion of mononucleated myoblasts to generate multinucleated myotubes is a critical step in skeletal muscle development. Filopodia, the actin cytoskeleton based membrane protrusions, have been observed early during myoblast fusion, indicating that they could play a direct role in myogenic differentiation. The control of filopodia formation in myoblasts remains poorly understood. Here we show that the expression of IRSp53 (Insulin Receptor Substrate protein 53kDa), a known regulator of filopodia formation, is down-regulated during differentiation of both mouse primary myoblasts and a mouse myoblast cell line C2C12. Over-expression of IRSp53 in C2C12 cells led to induction of filopodia and decrease in cell adhesion, concomitantly with inhibition of myogenic differentiation. In contrast, knocking down the IRSp53 expression in C2C12 cells led to a small but significant increase in myotube development. The decreased cell adhesion of C2C12 cells over-expressing IRSp53 is correlated with a reduction in the number of vinculin patches in these cells. Mutations in the conserved IMD domain (IRSp53 and MIM (missing in metastasis) homology domain) or SH3 domain of IRSp53 abolished the ability of this protein to inhibit myogenic differentiation and reduce cell adhesion. Over-expression of the IMD domain alone was sufficient to decrease the cell-extracellular matrix adhesion and to inhibit myogenesis in a manner dependent on its function in membrane shaping. Based on our data, we propose that IRSp53 is a negative regulator of myogenic differentiation which correlates with the observed down regulation of IRSp53 expression during myoblast differentiation to myotubes.  相似文献   

14.
15.
16.
During ex vivo myoblast differentiation, a pool of quiescent mononucleated myoblasts, reserve cells, arise alongside myotubes. Insulin/insulin-like growth factor (IGF) and PKB/Akt-dependent phosphorylation activates skeletal muscle differentiation and hypertrophy. We have investigated the role of glycogen synthase kinase 3 (GSK-3) inhibition by protein kinase B (PKB)/Akt and Wnt/beta-catenin pathways in reserve cell activation during myoblast differentiation and myotube hypertrophy. Inhibition of GSK-3 by LiCl or SB216763, restored insulin-dependent differentiation of C2ind myoblasts in low serum, and cooperated with insulin in serum-free medium to induce MyoD and myogenin expression in C2ind myoblasts, quiescent C2 or primary human reserve cells. We show that LiCl treatment induced nuclear accumulation of beta-catenin in C2 myoblasts, thus mimicking activation of canonical Wnt signaling. Similarly to the effect of GSK-3 inhibitors with insulin, coculturing C2 reserve cells with Wnt1-expressing fibroblasts enhanced insulin-stimulated induction of MyoD and myogenin in reserve cells. A similar cooperative effect of LiCl or Wnt1 with insulin was observed during late ex vivo differentiation and promoted increased size and fusion of myotubes. We show that this synergistic effect on myotube hypertrophy involved an increased fusion of reserve cells into preexisting myotubes. These data reveal insulin and Wnt/beta-catenin pathways cooperate in muscle cell differentiation through activation and recruitment of satellite cell-like reserve myoblasts.  相似文献   

17.
Fibroblast growth factor-inducible 14 (Fn14), distantly related to tumor necrosis factor receptor superfamily and a receptor for TWEAK cytokine, has been implicated in several biological responses. In this study, we have investigated the role of Fn14 in skeletal muscle formation in vitro. Flow cytometric and Western blot analysis revealed that Fn14 is highly expressed on myoblastic cell line C2C12 and mouse primary myoblasts. The expression of Fn14 was decreased upon differentiation of myoblasts into myotubes. Suppression of Fn14 expression using RNA interference inhibited the myotube formation in both C2C12 and primary myoblast cultures. Fn14 was required for the transactivation of skeletal alpha-actin promoter and the expression of specific muscle proteins such as myosin heavy chain fast type and creatine kinase. RNA interference-mediated knockdown of Fn14 receptor in C2C12 myoblasts decreased the levels of myogenic regulatory factors MyoD and myogenin upon induction of differentiation. Conversely, overexpression of MyoD increased differentiation in Fn14-knockdown C2C12 cultures. Suppression of Fn14 expression in C2C12 myoblasts also inhibited the differentiation-associated increase in the activity of serum response factor and RhoA GTPase. In addition, our data suggest that the role of Fn14 during myogenic differentiation could be independent of TWEAK cytokine. Collectively, our study suggests that the Fn14 receptor is required for the expression of myogenic regulatory factors and differentiation of myoblasts into myotubes.  相似文献   

18.
19.
20.
The homeobox protein Barx2 is expressed in both smooth and skeletal muscle and is up-regulated during differentiation of skeletal myotubes. Here we use antisense-oligonucleotide inhibition of Barx2 expression in limb bud cell culture to show that Barx2 is required for myotube formation. Moreover, overexpression of Barx2 accelerates the fusion of MyoD-positive limb bud cells and C2C12 myoblasts. However, overexpression of Barx2 does not induce ectopic MyoD expression in either limb bud cultures or in multipotent C3H10T1/2 mesenchymal cells, and does not induce fusion of C3H10T1/2 cells. These results suggest that Barx2 acts downstream of MyoD. To test this hypothesis, we isolated the Barx2 gene promoter and identified DNA regulatory elements that might control Barx2 expression during myogenesis. The proximal promoter of the Barx2 gene contained binding sites for several factors involved in myoblast differentiation including MyoD, myogenin, serum response factor, and myocyte enhancer factor 2. Co-transfection experiments showed that binding sites for both MyoD and serum response factor are necessary for activation of the promoter by MyoD and myogenin. Taken together, these studies indicate that Barx2 is a key regulator of myogenic differentiation that acts downstream of muscle regulatory factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号