首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Diverse G protein-coupled receptors depend on Gβγ heterodimers to promote cell polarization and survival via direct activation of PI3Kγ and potentially other effectors. These events involve full activation of AKT via its phosphorylation at Ser473, suggesting that mTORC2, the kinase that phosphorylates AKT at Ser473, is activated downstream of Gβγ. Thus, we tested the hypothesis that Gβγ directly contributes to mTOR signaling. Here, we demonstrate that endogenous mTOR interacts with Gβγ. Cell stimulation with serum modulates Gβγ interaction with mTOR. The carboxyl terminal region of mTOR, expressed as a GST-fusion protein, including the serine/threonine kinase domain, binds Gβγ heterodimers containing different Gβ subunits, except Gβ4. Both, mTORC1 and mTORC2 complexes interact with Gβ1γ2 which promotes phosphorylation of their respective substrates, p70S6K and AKT. In addition, chronic treatment with rapamycin, a condition known to interfere with assembly of mTORC2, reduces the interaction between Gβγ and mTOR and the phosphorylation of AKT; whereas overexpression of Gαi interfered with the effect of Gβγ as promoter of p70S6K and AKT phosphorylation. Altogether, our results suggest that Gβγ positively regulates mTOR signaling via direct interactions and provide further support to emerging strategies based on the therapeutical potential of inhibiting different Gβγ signaling interfaces.  相似文献   

2.
Complexes between chitosan and β-lactoglobulin (β-Lg) were investigated, and their formation was found to depend on pH and ionic strength. The electrostatic attraction between the cationic polysaccharide and the negatively charged protein above its isoelectric point has been identified as the main driving force in the molecular recognition process. At low protein concentration, soluble complexes were shown to be formed, and their structural features were characterized by circular dichroism (CD) and steady-state fluorescence. Both the overall secondary structure of the protein and the local environment probed by its tryptophan residues are not affected by the presence of chitosan in the complex. Furthermore, the formation of the complex does not lead to a net stabilization of the native state of the protein over its denatured state due to formation of a similarly stable complex between the polyelectrolyte and the denatured state of the protein. The formation of coacervates between β-Lg and chitosan was also characterized as a function of average molecular weight of chitosan (subjected to ultrasonication for different periods of time: 0, 5, 15, and 30 min) by means of both turbidimetric and calorimetric techniques. The combination of turbidimetric as well as isothermal calorimetric titrations have allowed the deconvolution of two processes usually coupled in the formation of protein-polyelectrolyte coacervates: the formation of complex coacervates as the protein sites become saturated by polyelectrolyte molecules and the redissolution of the coacervates as the polyelectrolyte-to-protein ratio increases.  相似文献   

3.

Background

Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are both neurodegenerative diseases leading to impaired execution of movement. α-Synuclein plays a central role in the pathogenesis of PD whereas Cu, Zn superoxide dismutase (SOD1) is a key player in a subset of familial ALS cases. Under pathological conditions both α-synuclein and SOD1 form oligomers and fibrils. In this study we investigated the possible molecular interaction of α-synuclein and SOD1 and its functional and pathological relevance.

Results

Using a protein-fragment complementation approach and co-IP, we found that α-synuclein and SOD1 physically interact in living cells, human erythrocytes and mouse brain tissue. Additionally, our data show that disease related mutations in α-synuclein (A30P, A53T) and SOD1 (G85R, G93A) modify the binding of α-synuclein to SOD1. Notably, α-synuclein accelerates SOD1 oligomerization independent of SOD1 activity.

Conclusion

This study provides evidence for a novel interaction of α-synuclein and SOD1 that might be relevant for neurodegenerative diseases.
  相似文献   

4.
5.
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by extracellular neuritic plaques and intracellular neurofibrillary tangles in brain parenchyma. Alpha-1-antichymotrypsin (ACT) is a component of plaque cores, can bind to Abeta, and has been proposed as a possible candidate gene for AD susceptibility. The genetic association between the ACT codon -17*A allele of the signal peptide polymorphism and AD has been shown in some, but not in all studies. One hypothesis is that the ACT codon -17*A allele is in linkage disequilibrium with unknown functional mutation(s) in the ACT gene. This study was undertaken to identify new mutation(s) in the ACT gene by PCR-SSCP-sequencing and, in conjunction with known mutations, to assess their role in affecting the risk of AD. A total of seven new point mutations were observed: 5'UTR(A-->G), Asp128Asn(G-->A), Ser250Ser(C-->T), Leu301Pro(T-->C), Thr324Thr(A-->G), G-->A in intron 4, and 3'UTR C-->A. Of these, mutations at codon 250, codon 324, intron 4 and 3'UTR showed a frequency of 1% or more. Of the known mutations, Thr-17Ala(A-->G), Lys76Lys(A-->G) and Leu241Leu(G-->A) occur at a polymorphic level. The ACT codon -17*A allele was associated with increased risk of AD (OR for AA vs TT: 1.71; 95% CI: 1.16-2.53; P=0.007), especially in the presence of the APOE*4 allele (OR for AA vs TT: 2.35; 95% CI: 1.13-4.85; P=0.02). The codon 241*A allele and the codon 250*T allele were associated with protective effects against AD (OR: 0.36; 95% CI: 0.13-0.86; P=0.02) (OR:0.39; 95% CI: 0.18-0.85; P=0.02). irrespective of the APOE*4 status. The codon 324*G allele was associated with a marginal protective effect (OR:0.57; 95% CI: 0.26-1.26; P=0.17). While the codon 241*A allele was in linkage disequilibrium with the codon -17*A allele, the codon 250*T and codon 324*G alleles were non-randomly associated with the codon -17*T allele. In contrast, the codon 76*G (OR:1.34; 95% CI: 0.92-1.95; P=0.13), codon 227*G (OR:3.96; 95% CI: 0.83-18.8; P=0.08) and intron 4*G (OR:1.47; 95% CI: 0.88-2.29; P=0.15) alleles were associated with a modest risk of AD, and all were in linkage disequilibrium with the codon -17*A allele. EH-based haplotype analysis showed that certain haplotypes are associated with either higher or lower risk of AD. Our data indicate that the ACT gene harbors several potentially important variable sites, which are associated with either an increased or decreased risk of AD. The non-random combination of risk and protective alleles may explain, in part, why the association studies regarding the ACT codon -17*A have been inconsistent, especially if the frequency of other ACT mutations varies between populations.  相似文献   

6.
The interaction of etravirine with β-cyclodextrin is analyzed by UV–visible absorption, infrared, fluorescence, nuclear magnetic resonance, two-dimensional rotational frame nuclear Overhauser effect spectroscopy, and molecular modeling studies. The 4-hydroxy-3, 5-dimethylbenzonitrile moiety is found to take part in the binding. The stoichiometry of the inclusion complex of ET with β-CD is 1:1 with the binding constant of 2.03 × 103 mol?1 dm3. The binding of ET with calf thymus DNA (ctDNA) and bovine serum albumin (BSA) protein is investigated in the presence and the absence of β-CD. Fluorescence enhancement is observed during the binding of ET with ctDNA in the absence of β-CD, whereas in the presence of β-CD, fluorescence quenching is observed. The binding constants of the binding of ET and ET–β-CD to ctDNA are 7.84 × 104 and 4.38 × 104 mol?1 dm3, respectively. The binding constant of the binding of ET and ET–β-CD to BSA are 3.14 × 104 and 1.6396 × 104 mol?1 dm3, respectively. The apparent binding constants between ET–β-CD complex and ctDNA or BSA protein decreases significantly. The numbers of binding sites of interaction of ET with BSA protein and the binding distance between BSA protein and ET the absence and the presence of β-CD differ. β-CD modulates the binding of ET with the macromolecular targets.  相似文献   

7.
1. The reactions of beta-propiolactone with amino acids were investigated under various conditions of pH and temperature to find those under which the reagent acted with specificity. 2. At pH9.0 and 22 degrees , after 15min. of reaction, at least 85% of each amino acid had reacted, methionine and cystine being the most reactive. 3. At pH7.0 and 22 degrees most amino acids reacted; methionine, cystine and histidine reacted almost entirely, and proline and lysine to a significantly smaller extent. 4. At pH3.0 and 22 degrees further specificity was obtained; methionine and cystine were the only reactive amino acids. 5. Reaction at pH3.0 and 0 degrees was specific for methionine; it was the only amino acid modified even after 145hr. of reaction.  相似文献   

8.
9.
The preparation of Pt(NH3)2(MeU)2·2H2O, 1. [(NH3)2Pt(MeU)2Pt(NH3)2](NO3)2, 2. Pt(NH3)2Cl(MeU), 3. and (in solution) [Pt(NH3)2(OH)(MeU)], 4. (MeU = 1-methyluracil monoanion) is reported. Levels of l-methyluracil and 1–4 in platinum-l-methyluracil blue (PtMeUB) have been assessed by high performance liquid chromatography (HPLC). This technique has also been used to show that in physiological saline or water, PtMeUB hydrolyzes to 3 or 4, respectively. Visible spectroscopy shows that the rate of hydrolysis of PtMeUB is much faster in fetal calf serum than in saline or water, with HPLC indicating that the product of hydrolysis in serum is 3. The precipitate obtained upon treatment of DNA solutions with PtMeUB has also been shown to hydrolyze to 3 or 4 when suspended in saline or water. Compounds 1–3 have been tested against the Ascites S-180J tumors, with 2 and 3 being active, while 4 has been shown to react readily with DNA. Possible mechanisms of antitumor action of PtMeUB that involve 3 and 4 are proposed.  相似文献   

10.
The marine phage PhiHSIC has been previously reported to enter into a lysogenic relationship with its host, HSIC, identified as Listonella pelagia. This phage produces a variety of plaques on its host, including turbid and haloed plaques, from which lysogens were previously isolated. These lysogens were unstable during long-term storage at -80( degrees ) C and were lost. When HSIC was reinfected with phage PhiHSIC, pseudolysogen-like interactions between the phage and its host were observed. The cells (termed HSIC-2 or HSIC-2e) produced high viral titers (10(11) ml(-1)) in the absence of inoculating phage and yet reached culture densities of nearly 10(9) ml(-1). Prophages were not induced by mitomycin C or the polyaromatic hydrocarbon naphthalene in cells harboring such infections. However, such cells were homoimmune to superinfection. Colonies hybridized strongly with a gene probe from a 100-bp fragment of the PhiHSIC genome, while the host did not. Analysis of chromosomal DNA preparations suggested the presence of a chromosomally integrated prophage. Phage adsorption experiments suggested that HSIC-2 was adsorption impaired. Because of the chromosomal prophage integration and homoimmunity, we interpret these results to indicate that PhiHSIC establishes a lysogenic relationship with its host that involves an extremely high level of spontaneous induction. This could be caused by a weak repressor of phage production. Additionally, poor phage adsorption of HSIC-2 compared to the wild type probably helped maintain this pseudolysogen-like relationship. In many ways, pseudolysogenic phage-host interactions may provide a paradigm for phage-host interactions in the marine environment.  相似文献   

11.
12.
The synthesis of β-casomorphin-5 (Tyr-Pro-Phe-Pro-Gly, H2L) and a number of its peptide fragments is described. Complexes formed between these peptides and Cu(II) have been investigated spectrophotometrically, using CD and EPR spectroscopy, and potentiometrically. Results show that, with tyrosine as the N-terminal residue, the major complex formed at physiological pH is the dimeric species, [Cu2L2], bonded through the phenolic O? of the Tyr residue of one ligand and the N-terminal amine nitrogen of the second ligand molecule. There is no evidence for coordination through the peptide nitrogens unless the terminal Tyr group is removed.  相似文献   

13.
Huntington disease (HD), a fatal neurodegenerative disorder, is caused by a lengthening of the polyglutamine tract in the huntingtin (Htt) protein. Despite considerable effort, thus far there is no cure or treatment available for the disorder. Using the approach of tandem affinity purification we recently discovered that prothymosin-α (ProTα), a small highly acidic protein, interacts with mutant Htt (mHtt). This was confirmed by co-immunoprecipitation and a glutathione S-transferase (GST) pull-down assay. Overexpression of ProTα remarkably reduced mHtt-induced cytotoxicity in both non-neuronal and neuronal cell models expressing N-terminal mHtt fragments, whereas knockdown of ProTα expression in the cells enhanced mHtt-caused cell death. Deletion of the central acidic domain of ProTα abolished not only its interaction with mHtt but also its protective effect on mHtt-caused cytotoxicity. Additionally, overexpression of ProTα inhibited caspase-3 activation but enhanced aggregation of mHtt. Furthermore, when added to cultured cells expressing mHtt, the purified recombinant ProTα protein not only entered the cells but it also significantly suppressed the mHtt-caused cytotoxicity. Taken together, these data suggest that ProTα might be a novel therapeutic target for treating HD and other polyglutamine expansion disorders.  相似文献   

14.
Chloroethyl nitrosoureas constitute an important family of cancer chemotherapeutic agents, used in the treatment of various types of cancer. They exert antitumor activity by inducing DNA interstrand cross-links. Semustine, a chloroethyl nitrosourea, is a 4-methyl derivative of lomustine. There exist some interesting reports dealing with DNA-binding properties of chloroethyl nitrosoureas; however, underlying mechanism of cytotoxicity caused by semustine has not been precisely and completely delineated. The present work focuses on understanding semustine–DNA interaction to comprehend its anti-proliferative action at molecular level using various spectroscopic techniques. Attenuated total reflection–Fourier transform infrared (ATR-FTIR) spectroscopy is used to determine the binding site of semustine on DNA. Conformational transition in DNA after semustine complexation is investigated using circular dichroism (CD) spectroscopy. Stability of semustine–DNA complexes is determined using absorption spectroscopy. Results of the present study demonstrate that semustine performs major-groove-directed DNA alkylation at guanine residues in an incubation-timedrug-concentration-dependent manner. CD spectral outcomes suggest partial transition of DNA from native B-conformation to C-form. Calculated binding constants (Ka) for semustine and lomustine interactions with DNA are 1.53?×?103 M?1 and 8.12?×?103 M?1, respectively. Moreover, molecular modeling simulation is performed to predict preferential binding orientation of semustine with DNA that corroborates well with spectral outcomes. Results based on comparative study of DNA-binding properties of semustine and lomustine, presented here, may establish a correlation between molecular structure and cytotoxicity of chloroethyl nitrosoureas that may be instrumental in the designing and synthesis of new nitrosourea therapeutics possessing better efficacy and fewer side effects.  相似文献   

15.
16.
Phage ΦC31 integrase is a potential vector for the insertion of therapeutic genes into specific sites in the human genome. To understand the mechanism involved in ΦC31 integrase-mediated recombination, it is important to understand the interaction between the integrase and cellular proteins. Using a yeast two-hybrid system with pLexA-ΦC31 integrase as bait, we screened a pB42AD human fetal brain cDNA library for potential interacting cellular proteins. From the 10? independent clones that were screened, 11 potential interacting clones were isolated, of which one encoded C-terminal fragment of Sp100. The interaction between Sp100 and ΦC31 integrase was further confirmed by yeast mating and co-immunoprecipitation assays. The hybridization between a ΦC31 integrase peptide array and an HEK293 cell extract revealed that residues 81RILN84 in the N-terminus of ΦC31 integrase are responsible for the interaction with Sp100. Knocking down endogenous Sp100 with Sp100-specific siRNA increased ΦC31 integrase-mediated recombination but did not impact reporter gene expression. Therefore, endogenous Sp100 may interact with ΦC31 integrase and inhibit the efficiency of ΦC31 integrase-mediated recombination.  相似文献   

17.
The β3- and β8-strands and C-terminal residues 155-165 of αB-crystallin were identified by pin arrays as interaction sites for various client proteins including the intermediate filament protein desmin. Here we present data using 5 well-characterised αB-crystallin protein constructs with substituted β3- and β8-strands and with the C-terminal residues 155-165 deleted to demonstrate the importance of these sequences to the interaction of αB-crystallin with desmin filaments. We used electron microscopy of negatively stained samples to visualize increased interactions followed by sedimentation assays to quantify our observations. A low-speed sedimentation assay measured the ability of αB-crystallin to prevent the self-association of desmin filaments. A high-speed sedimentation assay measured αB-crystallin cosedimentation with desmin filaments. Swapping the β8-strand of αB-crystallin or deleting residues 155-165 increased the cosedimentation of αB-crystallin with desmin filaments, but this coincided with increased filament-filament interactions. In contrast, substitution of the β3-strand with the equivalent αA-crystallin sequences improved the ability of αB-crystallin to prevent desmin filament-filament interactions with no significant change in its cosedimentation properties. These data suggest that all three sequences (β3-strand, β8-strand and C-terminal residues 155-165) contribute to the interaction of αB-crystallin with desmin filaments. The data also suggest that the cosedimentation of αB-crystallin with desmin filaments does not necessarily correlate with preventing desmin filament-filament interactions. This important observation is relevant not only to the formation of the protein aggregates that contain both desmin and αB-crystallin and typify desmin related myopathies, but also to the interaction of αB-crystallin with other filamentous protein polymers.  相似文献   

18.
19.
Spindle Imaging in Living Mammalian Oocytes with Polarized Light Microscope and its Practical Use  相似文献   

20.
RCAN1, also known as DSCR1, is an endogenous regulator of calcineurin, a serine/threonine protein phosphatase that plays a critical role in many physiological processes. In this report, we demonstrate that p38?? MAP kinase can phosphorylate RCAN1 at multiple sites in vitro and show that phospho-RCAN1 is a good protein substrate for calcineurin. In addition, we found that unphosphorylated RCAN1 noncompetitively inhibits calcineurin protein phosphatase activity and that the phosphorylation of RCAN1 by p38?? MAP kinase decreases the binding affinity of RCAN1 for calcineurin. These findings reveal the molecular mechanism by which p38?? MAP kinase regulates the function of RCAN1/calcineurin through phosphorylation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号