首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Huber SK  Scheidig AJ 《FEBS letters》2005,579(13):2821-2829
The Ras-related human GTPase Rab4a is involved in the regulation of endocytosis through the sorting and recycling of early endosomes. Towards further insight, we have determined the three-dimensional crystal structure of human Rab4a in its GppNHp-bound state to 1.6 Angstroms resolution and in its GDP-bound state to 1.8 Angstroms resolution, respectively. Despite the similarity of the overall structure with other Rab proteins, Rab4a displays significant differences. The structures are discussed with respect to the recently determined structure of human Rab5a and its complex with the Rab5-binding domain of the bivalent effector Rabaptin-5. The Rab4 specific residue His39 modulates the nucleotide binding pocket giving rise to a reduced rate for nucleotide hydrolysis and exchange. In comparison to Rab5, Rab4a has a different GDP-bound conformation within switch 1 region and displays shifts in position and orientation of the hydrophobic triad. The observed differences at the S2-L3-S3 region represent a new example of structural plasticity among Rab proteins and may provide a structural basis to understand the differential binding of similar effector proteins.  相似文献   

2.
Escherichia coli BamB is the largest of four lipoproteins in the β-barrel assembly machinery (BAM) complex. It interacts with the periplasmic domain of BamA, an integral outer membrane protein (OMP) essential for OMP biogenesis. Although BamB is not essential, it serves an important function in the BAM complex, significantly increasing the folding efficiency of some OMPs in vivo and in vitro. To learn more about the BAM complex, we solved structures of BamB in three different crystal forms. BamB crystallized in space groups P213, I222, and P212121, with one molecule per asymmetric unit in each case. Crystals from the space group I222 diffracted to 1. 65-Å resolution. BamB forms an eight-bladed β-propeller with a central pore and is shaped like a doughnut. A DALI search revealed that BamB shares structural homology to several eukaryotic proteins containing WD40 repeat domains, which commonly have β-propeller folds and often serve as scaffolding proteins within larger multi-protein complexes that carry out signal transduction, cell division, and chemotaxis. Using mutagenesis data from previous studies, we docked BamB onto a BamA structural model and assessed known and possible interactions between these two proteins. Our data suggest that BamB serves as a scaffolding protein within the BAM complex by optimally orienting the flexible periplasmic domain of BamA for interaction with other BAM components and chaperones. This may facilitate integration of newly synthesized OMPs into the outer membrane.  相似文献   

3.
The recent report of 2′,3′-cAMP isolated from rat kidney is the first proof of its biological existence, which revived interest in this mysterious molecule. 2′,3′-cAMP serves as an extracellular adenosine source, but how it is degraded remains unclear. Here, we report that 2′,3′-cAMP can be hydrolyzed by six phosphodiesterases containing three different families of hydrolytic domains, generating invariably 3′-AMP but not 2′-AMP. The catalytic efficiency (kcat/Km) of each enzyme against 2′,3′-cAMP correlates with that against the widely used non-specific substrate bis(p-nitrophenyl)phosphate (bis-pNPP), indicating that 2′,3′-cAMP is a previously unknown non-specific substrate for PDEs. Furthermore, we show that the exclusive formation of 3′-AMP is due to the P-O2′ bond having lower activation energy and is not the result of steric exclusion at enzyme active site. Our analysis provides mechanistic basis to dissect protein function when 2′,3′-cAMP hydrolysis is observed.  相似文献   

4.
Here, we report the first investigation of a novel member of the LZT (LIV-1 subfamily of ZIP zinc Transporters) subfamily of zinc influx transporters. LZT subfamily sequences all contain a unique and highly conserved metalloprotease motif (HEXPHEXGD) in transmembrane domain V with both histidine residues essential for zinc transport by ZIP (Zrt-, Irt-like Proteins) transporters. We investigate here whether ZIP14 (SLC39A14), lacking the initial histidine in this motif, is still able to transport zinc. We demonstrate that this plasma membrane located glycosylated protein functions as a zinc influx transporter in a temperature-dependant manner.  相似文献   

5.
In this study, we show that expression of the Westmead DMBA8 nonmetastatic cDNA 1 (WDNM1) gene was increased upon SFM and/or TNFα treatment, with a corresponding increase in apoptotic cells, and gradually decreased following re-stimulation with serum in HC11 mammary epithelial cells. TNFα induced WDNM1 expression showed the NFκB-dependent mechanism since it's expression was abrogated in IκBαM (super-repressor of NFκB)-transfected cells, but not those transfected with control vector. Furthermore, overexpression of WDNM1 suppressed growth and differentiation, and accelerated apoptosis of HC11 cells. Thus, our results demonstrate that WDNM1 gene expression, regulated by the TNFα-NFκB signal pathway, is associated with HC11 cell apoptosis.  相似文献   

6.
Erythroascorbic acid (eAsA) is a five-carbon analog of ascorbic acid, and it is synthesized from D-arabinose by D-arabinose dehydrogenase (ARA) and D-arabinono-gamma-lactone oxidase. We found an NAD+-specific ARA activity which is operative under submillimolar level of d-arabinose in the extracts of Saccharomyces cerevisiae. The hypothetical protein encoded by YMR041c showed a significant homology to a l-galactose dehydrogenase which plays in plant ascorbic acid biosynthesis, and we named it as Ara2p. Recombinant Ara2p showed NAD+-specific ARA activity with Km=0.78 mM to d-arabinose, which is 200-fold lower than that for the conventional NADP+-specific ARA, Ara1p. Gene disruptant of ARA2 lost entire NAD+-specific ARA activity and the conspicuous increase in intracellular eAsA by exogenous d-arabinose feeding, while the double knockout mutant of ARA1 and ARA2 still retained measurable amount of eAsA. It demonstrates that Ara2p, not Ara1p, mainly contributes to the production of eAsA from d-arabinose in S. cerevisiae.  相似文献   

7.
We have studied the regulatory function of Dictyostelium discoideum Ax2 phenylalanine hydroxylase (dicPAH) via characterization of domain structures. Including the full-length protein, partial proteins truncated in regulatory, tetramerization, or both, were prepared from Escherichia coli as his-tag proteins and examined for oligomeric status and catalytic parameters for phenylalanine. The proteins were also expressed extrachromosomally in the dicPAH knockout strain to examine their in vivo compatibility. The results suggest that phenylalanine activates dicPAH, which is functional in vivo as a tetramer, although cooperativity was not observed. In addition, the results of kinetic study suggest that the regulatory domain of dicPAH may play a role different from that of the domain in mammalian PAH.

Structured summary of protein interactions

dicPAH and dicPAHbind by molecular sieving (View Interaction: 1, 2, 3, 4)  相似文献   

8.
Fermented beverage of plant extract was prepared from about 50 kinds of vegetables and fruits. Natural fermentation was carried out mainly by lactic acid bacteria (Leuconostoc spp.) and yeast (Zygosaccharomyces spp. and Pichia spp.). Three kinds of saccharides have been found in this beverage and produced by fermentation. The saccharides isolated from the beverage using carbon-Celite column chromatography and preparative HPLC, were identified as a new saccharide, beta-d-fructopyranosyl-(2-->6)-d-glucopyranose, laminaribiose and maltose by examination of constituted sugars, GLC and GC-MS analyses of methyl derivatives and MALDI-TOF-MS and NMR measurements of the saccharides.  相似文献   

9.
The transport of l-leucine, l-phenylalanine and l-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of l-leucine was inhibited by BCH (65%) and d-leucine (58%) but not by l-proline. The inhibition of l-leucine clearance by BCH and d-leucine was not additive. l-leucine inhibited the peak clearance of radiolabelled l-leucine by 78%. BCH also inhibited the peak clearance of l-phenylalanine (66%) and l-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that l-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium.  相似文献   

10.
D-amino acid amidase (DAA) from Ochrobactrum anthropi SV3, which catalyzes the stereospecific hydrolysis of D-amino acid amides to yield the D-amino acid and ammonia, has attracted increasing attention as a catalyst for the stereospecific production of D-amino acids. In order to clarify the structure-function relationships of DAA, the crystal structures of native DAA, and of the D-phenylalanine/DAA complex, were determined at 2.1 and at 2.4 A resolution, respectively. Both crystals contain six subunits (A-F) in the asymmetric unit. The fold of DAA is similar to that of the penicillin-recognizing proteins, especially D-alanyl-D-alanine-carboxypeptidase from Streptomyces R61, and class C beta-lactamase from Enterobacter cloacae strain GC1. The catalytic residues of DAA and the nucleophilic water molecule for deacylation were assigned based on these structures. DAA has a flexible Omega-loop, similar to class C beta-lactamase. DAA forms a pseudo acyl-enzyme intermediate between Ser60 O(gamma) and the carbonyl moiety of d-phenylalanine in subunits A, B, C, D, and E, but not in subunit F. The difference between subunit F and the other subunits (A, B, C, D and E) might be attributed to the order/disorder structure of the Omega-loop: the structure of this loop cannot assigned in subunit F. Deacylation of subunit F may be facilitated by the relative movement of deprotonated His307 toward Tyr149. His307 N(epsilon2) extracts the proton from Tyr149 O(eta), then Tyr149 O(eta) attacks a nucleophilic water molecule as a general base. Gln214 on the Omega-loop is essential for forming a network of water molecules that contains the nucleophilic water needed for deacylation. Although peptidase activity is found in almost all penicillin-recognizing proteins, DAA lacks peptidase activity. The lack of transpeptidase and carboxypeptidase activities may be attributed to steric hindrance of the substrate-binding pocket by a loop comprised of residues 278-290 and the Omega-loop.  相似文献   

11.
Pseudomonas cichoriiid-tagatose 3-epimerase (P. cichoriid-TE) can efficiently catalyze the epimerization of not only d-tagatose to d-sorbose, but also d-fructose to d-psicose, and is used for the production of d-psicose from d-fructose. The crystal structures of P. cichoriid-TE alone and in complexes with d-tagatose and d-fructose were determined at resolutions of 1.79, 2.28, and 2.06 Å, respectively. A subunit of P. cichoriid-TE adopts a (β/α)8 barrel structure, and a metal ion (Mn2+) found in the active site is coordinated by Glu152, Asp185, His211, and Glu246 at the end of the β-barrel. P. cichoriid-TE forms a stable dimer to give a favorable accessible surface for substrate binding on the front side of the dimer. The simulated omit map indicates that O2 and O3 of d-tagatose and/or d-fructose coordinate Mn2+, and that C3-O3 is located between carboxyl groups of Glu152 and Glu246, supporting the previously proposed mechanism of deprotonation/protonation at C3 by two Glu residues. Although the electron density is poor at the 4-, 5-, and 6-positions of the substrates, substrate-enzyme interactions can be deduced from the significant electron density at O6. The O6 possibly interacts with Cys66 via hydrogen bonding, whereas O4 and O5 in d-tagatose and O4 in d-fructose do not undergo hydrogen bonding to the enzyme and are in a hydrophobic environment created by Phe7, Trp15, Trp113, and Phe248. Due to the lack of specific interactions between the enzyme and its substrates at the 4- and 5-positions, P. cichoriid-TE loosely recognizes substrates in this region, allowing it to efficiently catalyze the epimerization of d-tagatose and d-fructose (C4 epimer of d-tagatose) as well. Furthermore, a C3-O3 proton-exchange mechanism for P. cichoriid-TE is suggested by X-ray structural analysis, providing a clear explanation for the regulation of the ionization state of Glu152 and Glu246.  相似文献   

12.
Liew HC  Khoo HE  Moore PK  Bhatia M  Lu J  Moochhala SM 《Life sciences》2007,80(18):1664-1668
Stonustoxin (SNTX) is a 148 kDa, dimeric, hypotensive and lethal protein factor isolated from the venom of the stonefish Synanceja horrida. SNTX (10-320 ng/ml) progressively causes relaxation of endothelium-intact, phenylephrine (PE)-precontracted rat thoracic aortic rings. The SNTX-induced vasorelaxation was inhibited by L-N(G)-nitro arginine methyl ester (L-NAME), suggesting that nitric oxide (NO) contributes to the SNTX-induced response. Interestingly, D, L-proparglyglycine (PAG) and beta-cyano-L-alanine (BCA), irreversible and competitive inhibitors of cystathionine-gamma-lyase (CSE) respectively, also inhibited SNTX-induced vasorelaxation, indicating that H(2)S may also play a part in the effect of SNTX. The combined use of L-NAME with PAG or BCA showed that H(2)S and NO act synergistically in effecting SNTX-induced vasorelaxation.  相似文献   

13.
D-Glucosone 6-phosphate (D-arabino-hexos-2-ulose 6-(dihydrogen phosphate)) was prepared from D-glucosone (D-arabino-hexos-2-ulose) by enzymatic conversion with hexokinase. The isomeric composition of D-glucosone 6-phosphate in aqueous solution was quantitatively determined by NMR spectroscopy and compared to D-glucosone. The main isomers are the alpha-anomer (58%) and the beta-anomer (28%) of the hydrated pyranose form, and the beta-D-fructofuranose form (14%).  相似文献   

14.
In the present study, the chemical composition of the essential oils from aerial parts of Centaurea grinensis Reuter (K) collected at ?uta Lova, near Senj (Croatia), and aerial parts (L1) and flowers (L2) of C. apiculata Ledeb. collected near Rebro village, near Breznik town, Znepole Region (Bulgaria), both belonging to subgenus Lopholoma (Cass.) Dobrocz, was evaluated by GC and GC-MS. The main components of K were 4-vinyl guaiacol (21.5%), hexadecanoic acid (16.2%), acetophenone (12.5%). Caryophyllene oxide (15.8%) together with sphathulenol (14.5%) and humulene epoxide II (9.4%) were recognized as the main constituent of both the aerial part (L1) and flowers (L2) of C. apiculata. Furthermore, a complete review on the composition of the essential oils of all the Centaurea taxa belonging to subgenus Lopholoma studied so far has been inserted and cluster analysis (PCA) was carried out.  相似文献   

15.
In this study, interactions of selected monosaccharides with the Pseudomonas aeruginosa Lectin II (PA-IIL) are analyzed in detail. An interesting feature of the PA-IIL binding is that the monosaccharide is interacting via two calcium ions and the binding is unusually strong for protein-saccharide interaction. We have used Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) and normal mode analysis to calculate the free energy of binding. The impact of intramolecular hydrogen bond network for the lectin/monosaccharide interaction is also analyzed.  相似文献   

16.
We investigated the effects of vitamin C administration on vitamin C-specific transporters in ODS/ShiJcl-od/od rat livers. The vitamin C-specific transporter levels increased in the livers of the rats not administered vitamin C and decreased in the livers of those administered vitamin C at 100 mg/d, indicating that these transporter levels can be influenced by the amount of vitamin C administered.  相似文献   

17.
D-psicose, a rare sugar produced by the enzymatic reaction of D-tagatose 3-epimerase (DTEase), has been used extensively for the bioproduction of various rare carbohydrates. Recently characterized D-psicose 3-epimerase (DPEase) from Agrobacterium tumefaciens was found to belong to the DTEase family and to catalyze the interconversion of D-fructose and D-psicose by epimerizing the C-3 position, with marked efficiency for D-psicose. The crystal structures of DPEase and its complex with the true substrate D-fructose were determined; DPEase is a tetramer and each monomer belongs to a TIM-barrel fold. The active site in each subunit is distinct from that of other TIM-barrel enzymes, which use phosphorylated ligands as the substrate. It contains a metal ion with octahedral coordination to two water molecules and four residues that are absolutely conserved across the DTEase family. Upon binding of D-fructose, the substrate displaces water molecules in the active site, with a conformation mimicking the intermediate cis-enediolate. Subsequently, Trp112 and Pro113 in the beta4-alpha4 loop undergo significant structural changes, sealing off the active site. Structural evidence and site-directed mutagenesis of the putative catalytic residues suggest that the metal ion plays a pivotal role in catalysis by anchoring the bound D-fructose, and Glu150 and Glu244 carry out an epimerization reaction at the C-3 position.  相似文献   

18.
l-Lactate oxidase (LOX) belongs to a family of flavin mononucleotide (FMN)-dependent α-hydroxy acid-oxidizing enzymes. Previously, the crystal structure of LOX (pH 8.0) from Aerococcus viridans was solved, revealing that the active site residues are located around the FMN. Here, we solved the crystal structures of the same enzyme at pH 4.5 and its complex with d-lactate at pH 4.5, in an attempt to analyze the intermediate steps. In the complex structure, the d-lactate resides in the substrate-binding site, but interestingly, an active site base, His265, flips far away from the d-lactate, as compared with its conformation in the unbound state at pH 8.0. This movement probably results from the protonation of His265 during the crystallization at pH 4.5, because the same flip is observed in the structure of the unbound state at pH 4.5. Thus, the present structure appears to mimic an intermediate after His265 abstracts a proton from the substrate. The flip of His265 triggers a large structural rearrangement, creating a new hydrogen bonding network between His265-Asp174-Lys221 and, furthermore, brings molecular oxygen in between d-lactate and His265. This mimic of the ternary complex intermediate enzyme-substrate-O2 could explain the reductive half-reaction mechanism to release pyruvate through hydride transfer. In the mechanism of the subsequent oxidative half-reaction, His265 flips back, pushing molecular oxygen into the substrate-binding site as the second substrate, and the reverse reaction takes place to produce hydrogen peroxide. During the reaction, the flip-flop action of His265 has a dual role as an active base/acid to define the major chemical steps. Our proposed reaction mechanism appears to be a common mechanistic strategy for this family of enzymes.  相似文献   

19.
Huang T  Jander G  de Vos M 《Phytochemistry》2011,72(13):1531-1537
Chemical defense against herbivores is of utmost importance for plants. Primary and secondary metabolites, including non-protein amino acids, have been implicated in plant defense against insect pests. High levels of non-protein amino acids have been identified in certain plant families, including legumes and grasses, where they have been associated with resistance to insect herbivory. Non-protein amino acids can have direct toxic effects via several mechanisms, including misincorporation into proteins, obstruction of primary metabolism, and mimicking and interfering with insect neurological processes. Additionally, certain non-protein amino acids allow nitrogen to be stored in a form that is metabolically inaccessible to herbivores and, in some cases, may act as signals for further plant defense responses. Specialized insect herbivores often possess specific mechanisms to avoid or detoxify non-protein amino acids from their host plants. Although hundreds of non-protein amino acids have been found in nature, biosynthetic pathways and defensive functions have been elucidated in only a few cases. Next-generation sequencing technologies and the development of additional plant and insect model species will facilitate further research on the production of non-protein amino acids, a widespread but relatively uninvestigated plant defense mechanism.  相似文献   

20.
In synaptic vesicles, the estimated concentration of the excitatory amino acid glutamate is 100–150 mM. It was recently discovered that VGLUT1, previously characterized as an inorganic phosphate transporter (BNPI) with 9–11 predicted transmembrane spanning domains, is capable of transporting glutamate. The expression and His-tag based purification of recombinant VGLUT1 from PC12 cells and High Five insect cells is described. Significantly better virus and protein expression was obtained using High Five rather than Sf9 insect cells. PC12 cell expressed VGLUT1 is functional but not the Baculovirus expressed protein. The lack of functionality of the Baculovirus expressed VGLUT1 is discussed. The data indicate that VGLUT1 readily oligomerizes/dimerizes. The data are discussed in the context of developing this system further in order to reconstitute vesicular glutamate uptake in vitro using lipid-detergent vesicles. Published: June 7, 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号