首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular response to G(q)-linked agonists is shaped by regulatory inputs which determine signal strength and duration. Stimulation of phospholipase C-β (PLC-β) lipase activity results in an increase in the levels of diacylglycerol (DAG) and activation of protein kinase C (PKC) activity. PKC has been implicated in the feedback regulation of G(q) signaling through actions on PLC-β and phospholipase D (PLD) lipase activity. As PKC activity is modulated by multiple layers of regulation, the physiological impact of PKC on G(q) signaling is unclear. PKC signaling can be terminated by diacylglycerol kinases (DGKs) which are regulated in a cell-specific manner. The present studies investigated the contribution of the ubiquitously expressed DGKζ isoform in the regulation of PKC signaling and G(q) response in transfected COS-7 cells. Genetic depletion of DGKζ protein with antisense oligonucleotides dramatically reduced DAG metabolism. The sustained increase in PKC signaling was associated with a pronounced inhibition of carbachol-stimulated lipase activity in cells co-transfected with m1 muscarinic receptor, Gα(q) and either with or without PLC-β(1). The data also reveal that sustained activation of PKC alone does not increase cellular PLD1 activity. Therefore, G(12)-activated RhoA is physiologically important for adequate stimulation of PLD1 activity. These data show that the impact of PKC on G(q) signal transduction is determined by the background of cell-specific processes.  相似文献   

2.
Protein kinase C (PKC) is the receptor for tumor promoting phorbol esters, which are potent activators of conventional and novel PKCs, but persistent treatment with phorbol esters leads to downregulation of these PKCs. However, PKCη, a novel PKC isozyme, resists downregulation by tumor-promoting phorbol esters, but little is known about how PKCη level is regulated. Phosphorylation and dephosphorylation play an important role in regulating activity and stability of PKCs. In the present study, we have investigated the molecular mechanism of PKCη regulation. Several PKC activators, including phorbol 12,13-dibutyrate, 12-O-tetradecanoylphorbol-13-acetate and indolactam V caused upregulation of PKCη, whereas the general PKC inhibitor Gö 6983, but not the conventional PKC inhibitor Gö 6976 led to the downregulation of PKCη. Upregulation of PKCη was associated with an increase in phosphorylation of PKCη. Silencing of phosphoinositide-dependent kinase-1, which phosphorylates PKCη at the activation loop, failed to prevent PKC activator-induced upregulation of PKCη. Knockdown of PKCε but not PKCα inhibited PKC activator-induced upregulation of PKCη. Thus, our results suggest that the regulation of PKCη is unique and PKCε is required for the PKC activator-induced upregulation of PKCη.  相似文献   

3.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca(2+)-permeable channels and mediate numerous cellular functions. It is commonly assumed that TRPC channels are activated by stimulation of Gα(q)-PLC-coupled receptors. However, whether the Gα(q)-PLC pathway is the main regulator of TRPC4/5 channels and how other Gα proteins may regulate these channels are poorly understood. We previously reported that TRPC4/TRPC5 can be activated by Gα(i). In the current work, we found that Gα(i) subunits, rather than Gα(q), are the primary and direct activators of TRPC4 and TRPC5. We report a novel molecular mechanism in which TRPC4 is activated by several Gα(i) subunits, most prominently by Gα(i2), and TRPC5 is activated primarily by Gα(i3). Activation of Gα(i) by the muscarinic M2 receptors or expression of the constitutively active Gα(i) mutants equally and fully activates the channels. Moreover, both TRPC4 and TRPC5 are activated by direct interaction of their conserved C-terminal SESTD (SEC14-like and spectrin-type domains) with the Gα(i) subunits. Two amino acids (lysine 715 and arginine 716) of the TRPC4 C terminus were identified by structural modeling as mediating the interaction with Gα(i2). These findings indicate an essential role of Gα(i) proteins as novel activators for TRPC4/5 and reveal the molecular mechanism by which G-proteins activate the channels.  相似文献   

4.
Transforming growth factor beta (TGFβ) signaling is linked to the membrane trafficking of TGFβ receptors. The Protein Kinase C (PKC) family of serine/threonine kinases have been implicated in modulating the endocytic processes of various receptors. The present study investigated whether PKC activity plays a role in the trafficking, and signaling of TGFβ receptors, and further explored which PKC isoforms may be responsible for altered TGFβ signaling patterns. Using immunofluorescence microscopy and 125I-TGFβ internalization assays, we show that the pharmacological inhibition of PKC activity alters TGFβ receptor trafficking and delays TGFβ receptor degradation. Consistent with these findings, we demonstrate that PKC inhibition extends TGFβ-dependent Smad2 phosphorylation. Previous studies have shown that PKCζ associates with TGFβ receptors to modulate cell plasticity. We therefore used siRNA directed at the atypical PKC isoforms to investigate if reducing PKCι and PKCζ protein levels would delay TGFβ receptor degradation and extend TGFβ signaling. Our findings suggest that atypical PKC isoforms regulate TGFβ signaling by altering cell surface TGFβ receptor trafficking and degradation.  相似文献   

5.
As more genes are being identified through genomic techniques,the need to rapidly express recombinant proteins for functionalstudies has become increasingly acute. Transient expression ofrecombinant protein using COS-1, CV-1 and 293 cells is widelyused to address this need. To improve the robustness of hostcells for transient expression, the effect of over-expression ofProtein Kinase B has been explored. In this report wedemonstrate that over-expression of Protein Kinase B canimprove transient recombinant protein expression 40% to >200%depending on the protein being expressed and the cell line used.  相似文献   

6.
7.
Epidermal growth factor receptor (EGFR) activation is negatively regulated by protein kinase C (PKC) signaling. Stimulation of A431 cells with EGF, bradykinin or UTP increased EGFR phosphorylation at Thr654 in a PKC-dependent manner. Inhibition of PKC signaling enhanced EGFR activation, as assessed by increased phosphorylation of Tyr845 and Tyr1068 residues of the EGFR. Diacylglycerol is a physiological activator of PKC that can be removed by diacylglycerol kinase (DGK) activity. We found, in A431 and HEK293 cells, that the DGKθ isozyme translocated from the cytosol to the plasma membrane, where it co-localized with the EGFR and subsequently moved into EGFR-containing intracellular vesicles. This translocation was dependent on both activation of EGFR and PKC signaling. Furthermore, DGKθ physically interacted with the EGFR and became tyrosine-phosphorylated upon EGFR stimulation. Overexpression of DGKθ attenuated the bradykinin-stimulated, PKC-mediated EGFR phosphorylation at Thr654, and enhanced the phosphorylation at Tyr845 and Tyr1068. SiRNA-induced DGKθ downregulation enhanced this PKC-mediated Thr654 phosphorylation. Our data indicate that DGKθ translocation and activity is regulated by the concerted activity of EGFR and PKC and that DGKθ attenuates PKC-mediated Thr654 phosphorylation that is linked to desensitisation of EGFR signaling.  相似文献   

8.
Recently, we described a novel function of over-expressed protein kinase Cε (PKCε) as a negative allosteric modulator of EGFR signalling in several head and neck squamous carcinoma (HNSCC) cell lines. Extending this work, here we present several lines of evidence for the potency of PKCε to differently modulate the efficacy of EGFR tyrosine kinase inhibitors (TKIs) such as gefitinib and lapatinib. Using the HNSCC cell line FaDu as a model, we demonstrate by co-immunoprecipitation the physical association of over-expressed PKCε with the EGFR which is stabilised by gefitinib and leads to an increase in gefitinib-induced inhibition of EGFR downstream signalling and elevated EGFR-ErbB2 heterodimerisation. Cell cycle and Western blot analysis revealed that the gefitinib-induced apoptosis was enhanced whereas the pro-apoptotic effect of lapatinib that requires another EGFR conformation was reduced by PKCε. Our findings suggest that due to elevated expression PKCε may associate with the EGFR resulting in conformational changes and different allosteric modulation of the EGFR behaviour towards TKIs. This surprising capacity indicates PKCε as a novel predictive marker protein in molecular cancer therapy with EGFR tyrosine kinase inhibitors.  相似文献   

9.
The PKB signaling pathway is essential for cell survival and the inhibition of apoptosis, but its functional mechanisms have not been fully explored. Previously, we reported that TPA effectively inhibited PKB activity and caused PKB degradation, which was correlated with the repression of PKB phosphorylation at Ser473. In this study, we focus on how PKB is regulated by TPA in gastric cancer cells. One of the TPA targets, PKCα, was found to mediate the inhibition of PKB phosphorylation and degredation caused by TPA. Furthermore, TPA induced the import of PKCα into the nucleus, where PKCα exerted an inhibitory effect on PKB expression and phosphorylation. As a result, cancer cell proliferation was arrested. Our study characterizes a novel function of PKCα in mediating the negative regulation of PKB by TPA, and suggests a potential application in the clinical treatment of gastric cancer.  相似文献   

10.

Introduction

Type I cGMP-dependent protein kinase (PKGIα) belongs to the family of cyclic nucleotide-dependent protein kinases and is one of the main effectors of cGMP. PKGIα is involved in regulation of cardiac contractility, vasorelaxation, and blood pressure; hence, the development of potent modulators of PKGIα would lead to advances in the treatment of a variety of cardiovascular diseases. Aim: Representatives of ARC-type compounds previously characterized as potent inhibitors and high-affinity fluorescent probes of PKA catalytic subunit (PKAc) were tested towards PKGIα to determine that ARCs could serve as activity regulators and sensors for the latter protein kinase both in vitro and in complex biological systems. Results: Structure–activity profiling of ARCs with PKGIα in vitro demonstrated both similarities as well as differences to corresponding profiling with PKAc, whereas ARC-903 and ARC-668 revealed low nanomolar displacement constants and inhibition IC50 values with both cyclic nucleotide-dependent kinases. The ability of ARC-based fluorescent probes to penetrate cell plasma membrane was demonstrated in the smooth muscle tissue of rat cerebellum isolated arteries, and the compound with the highest affinity in vitro (ARC-903) showed also potential for in vivo applications, fully abolishing the PKG1α-induced vasodilation.  相似文献   

11.
12.
G protein β-like (GβL) is a member of WD repeat-containing family which are involved in various intracellular signaling events. In our previous report, we demonstrated that GβL regulates TNFα-stimulated NF-κB signaling by interacting with and inhibiting phosphorylation of IκB kinase. However, GβL itself does not seem to regulate IKK directly, because it contains no functional domains except WD domains. Here, using immunoprecipitation and proteomic analyses, we identified protein phosphatase 4 as a new binding partner of GβL. We also found that GβL interacts with PP2A and PP6, other members of the same phosphatase family. By interacting with protein phosphatases, which do not directly bind to IKKβ, GβL mediates the association of phosphatases with IKKβ. Overexpression of protein phosphatases inhibited TNFκ-induced activation of NF-κB signaling, which is an effect similar to that of GβL overexpression. Down-regulation of GβL by small interfering RNA diminished the inhibitory effect of phosphatases, resulting in restoration of NF-κB signaling. Thus, we propose that GβL functions as a negative regulator of NF-κB signaling by recruiting protein phosphatases to the IKK complex.  相似文献   

13.
The cyclic-AMP-dependent protein kinase A (PKA) regulates processes such as cell proliferation and migration following activation of growth factor receptor tyrosine kinases (RTKs), yet the signaling mechanisms that link PKA with growth factor receptors remain largely undefined. Here we report that RTKs can directly modulate the function of the catalytic subunit of PKA (PKA-C) through post-translational modification. In vitro kinase assays revealed that both the epidermal growth factor and platelet derived growth factor receptors (EGFR and PDGFR, respectively) tyrosine phosphorylate PKA-C. Mass spectrometry identified tyrosine 330 (Y330) as a receptor-mediated phosphorylation site and mutation of Y330 to phenylalanine (Y330F) all but abolished the RTK-mediated phosphorylation of PKA-C in vitro. Y330 resides within a conserved region at the C-terminal tail of PKA-C that allosterically regulates enzymatic activity. Therefore, the effect of phosphorylation at Y330 on the activity of PKA-C was investigated. The K(m) for a peptide substrate was markedly decreased when PKA-C subunits were tyrosine phosphorylated by the receptors as compared to un-phosphorylated controls. Importantly, tyrosine-phosphorylated PKA-C subunits were detected in cells stimulated with EGF, PDGF, and Fibroblast growth factor 2 (FGF2) and in fibroblasts undergoing PDGF-mediated chemotaxis. These results demonstrate a direct, functional interaction between RTKs and PKA-C and identify tyrosine phosphorylation as a novel mechanism for regulating PKA activity.  相似文献   

14.
15.
Summary The activity of the main base-extruding mechanism in Vero cells, the Na+-independent Cl/HCO 3 antiport, increases 5- to 10-fold when the cytosolic pH (pH i ) is increased over a narrow range close to neutrality. We have studied the effect on this regulation of stimulation and inhibition of protein kinase C by short-term and long-term treatment with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA). After short-term treatment with TPA to stimulate the kinase, the threshold value for activation of the antiport is shifted to a more acidic pH. After prolonged treatment with TPA to downregulate protein kinase C the sensitivity of the antiport to variation in proton concentration was lowered, possibly by reducing the number of essential protonbinding sites. Concomitantly, the steady state pH i of the cells was increased. The data indicate that protein kinase C is involved in the regulation of the Na+-independent Cl/HCO 3 antiport.  相似文献   

16.
β-N-Oxalyl-L-α,β-diaminopropionic acid (l-ODAP) an α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor agonist activates protein kinase C in white leghorn chick brain. The current study focuses on the protein kinase C downstream signaling targets associated with L-ODAP excitotoxicity in SK-N-MC human neuroblastoma cells and white leghorn male chick (Gallus domesticus) brain extracts. L-ODAP treatment in SK-N-MC cells (1.5 mM) and chicks (0.5 mg/g body weight) results in a decreased expression and increased phosphorylation of phosphatidylehthanolamine-binding protein 1 (PEBP1) up to 4 h which however, returns to normal by 8 h. D-ODAP, the non-toxic enantiomer however, did not affect PEBP1 levels in either chick brain or SK-N-MC cells. Decreased PEBP1 expression correlated with subsequent activation of Raf-1, MEK and ERK signaling components of the mitogen-activated protein kinase cascade and nuclear translocation of hypoxia inducible factor-1α (HIF-1α) in chick brain nuclear extracts and SK-N-MC cells. SK-N-MC cells over-expressing PEBP1 inhibited nuclear translocation of HIF-1α when treated with l-ODAP, indicating that down-regulation of PEBP1 is responsible for HIF-1α stabilization and nuclear localization. Excitotoxicity of L-ODAP may thus be the result of phosphorylation and down-regulation of PEBP1, a crucial signaling protein regulating diverse signaling cascades. L-ODAP induced convulsions and seizures in chicks could be the result of a hypoxic insult to brain.  相似文献   

17.
18.
19.
Multifunctional cytokine transforming growth factor-beta (TGF-β1) plays a critical role in the pathogenesis of acute lung inflammation by controlling endothelial monolayer permeability. TGF-β1 regulates endothelial cell (EC) functions via two distinct receptors, activin receptor-like kinase 1 (ALK1) and activin receptor-like kinase 5 (ALK5). The precise roles of ALK1 and ALK5 in the regulation of TGF-β1-induced lung endothelium dysfunction remain mostly unknown. We now report that adenoviral infection with constitutively active ALK5 (caALK5), but not caALK1, induces EC retraction and that this receptor predominantly controls EC permeability. We demonstrate that ubiquitinated ALK5 and phosphorylated heat shock protein 27 (phospho-Hsp27) specifically accumulate in the cytoskeleton fraction, which parallels with microtubule collapse, cortical actin disassembly and increased EC permeability. We have found that ALK1 and ALK5 interact with heat shock protein 90 (Hsp90). Moreover, the Hsp90 inhibitor radicicol (RA) prevents accumulation of ubiquitinated caALK5 and phospho-Hsp27 in the cytoskeletal fraction and restore the decreased EC permeability induced by caALK5. We hypothesize that specific translocation of ubiquitinated ALK5 receptor into the cytoskeleton compartment due to its lack of degradation is the mechanism that causes the divergence of caALK1 and caALK5 signaling.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号