首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We earlier showed that the increased expression of Gi proteins exhibited by vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats (SHR) was attributed to the enhanced levels of endogenous endothelin. Since the levels of angiotensin II (Ang II) are also enhanced in VSMC from SHR, the present study was undertaken to examine the role of enhanced levels of endogenous Ang II in the overexpression of Giα proteins in VSMC from SHR and to further explore the underlying mechanisms responsible for this increase. The enhanced expression of Giα-2 and Giα-3 proteins in VSMC from SHR compared to WKY was attenuated by the captopril, losartan and AG1478, inhibitors of angiotensin converting enzyme, AT1 receptor and epidermal growth factor receptor (EGFR) respectively as well as by the siRNAs of AT1, cSrc and EGFR. The enhanced inhibition of forskolin-stimulated adenylyl cyclase activity by low concentrations of GTPγS (receptor-independent functions) and of inhibitory responses of hormones on adenylyl cyclase activity (receptor-dependent functions) in VSMC from SHR was also attenuated by losartan. Furthermore, the enhanced phosphorylation of EGFR in VSMC from SHR was also restored to control levels by captopril, losartan, PP2, a c-Src inhibitor and N-acetyl-L-cysteine (NAC), superoxide anion (O2) scavenger, whereas enhanced ERK1/2 phosphorylation was attenuated by captopril and losartan. Furthermore, NAC also restored the enhanced phosphorylation of c-Src in SHR to control levels. These results suggest that the enhanced levels of endogenous Ang II in VSMC from SHR, transactivate EGFR, which through MAP kinase signaling, enhance the expression of Giα proteins and associated adenylyl cyclase signaling.  相似文献   

2.
Oxidative stress has been shown to increase the expression of G(i)α proteins in vascular smooth muscle cells (VSMC) from spontaneously hypertensive rats. The present study was undertaken to examine if H(2)O(2), which induces oxidative stress, could also enhance the expression of G(i)α proteins in VSMC and to further explore the underlying signaling pathways responsible for this response. Treatment of VSMC with H(2)O(2) increased the expression of G(i)α proteins and not of G(s)α protein in a concentration- and time-dependent manner. A maximal increase of ~40-50% was observed at 100 μM and 1 h and was restored to control levels by AG1295 and AG1478, inhibitors of epidermal growth factor receptor (EGF-R) and platelet-derived growth factor receptor (PDGF-R), respectively, and PD98059 and U126, inhibitors of extracellular signal-regulated kinase (ERK1/2), and wortmannin and AKT inhibitor VIII, inhibitors of PKB/AKT, respectively. In addition, H(2)O(2) also increased the phosphorylation of EGF-R, PDGF-R, ERK1/2, and AKT, which was attenuated by the respective inhibitors, whereas the inhibitors of EGF-R and PDGE-R also inhibited the enhanced phosphorylation of ERK1/2 and AKT. Furthermore, transfection of cells with short interfering RNA of EGF-R and PDGF-R restored the H(2)O(2)-induced enhanced expression of G(i)α proteins to control levels. The increased expression of G(i)α proteins was reflected in enhanced G(i) functions as demonstrated by enhanced inhibition of adenylyl cyclase by inhibitory hormones and forskolin-stimulated adenylyl cyclase activity by a low concentration of GTPγS, whereas G(s)α-mediated stimulations of AC were significantly decreased. Furthermore, H(2)O(2)-induced enhanced proliferation of VSMC was attenuated by dibutyryl-cAMP. These results suggest that H(2)O(2) increases the expression of G(i)α proteins in VSMC through the transactivation of EGF-R/PDGF-R and ERK1/2 and phosphatidylinositol-3 kinase signaling pathways.  相似文献   

3.
We have previously shown that A10 vascular smooth muscle cells (VSMC) exposed to angiotensin II (Ang?II) exhibited overexpression of Giα proteins. In the present study, we examined the involvement of different signaling pathways in regulating Ang II induced enhanced expression of Giα proteins in VSMC by using pharmacological inhibitors. Ang II induced increased expression of Giα proteins in A10 VSMC was markedly attenuated by actinomycin D, losartan (an AT(1) receptor antagonist), dibutyryl cAMP, phospholipase C (PLC) inhibitor U73122, protein kinase C (PKC) inhibitors staurosporine and GP109203X, but not by PD123319 (an AT(2) receptor antagonist). In addition, BAPTA-AM and TMB-8 (chelators of intracellular Ca(2+)); and nifedipine (a blocker of L-type Ca(2+) channels) significantly inhibited Ang II induced enhanced expression of Giα proteins. On the other hand, extracellular Ca(2+) chelation using EGTA did not affect the Ang II evoked enhanced levels of Giα proteins. Furthermore, pretreatment of A10 VSMC with calmidazolium (an inhibitor of calmodulin), or KN93 (an inhibitor of CaM kinase), or genistein (an inhibitor of protein tyrosine kinase, PTK), also attenuated the increased levels of Giα proteins induced by Ang?II. These results suggest that Ang II induced enhanced expression of Giα proteins may be regulated by different signaling pathways through AT(1) receptors in A10 VSMC.  相似文献   

4.
BackgroundWidely used NAPDH oxidase (Nox) inhibitor, apocynin is a prodrug that needs to be converted to its pharmacologically active form by myeloperoxidase. In myeloperoxidase deficient non phagocytic cells such as vascular smooth muscle cells (VSMCs) apocynin stimulates the production of ROS. ROS is generated by the activation of many signalling pathways, thus we have used apocynin as a pharmacological tool to characterise the role of endogenous ROS in activating the transforming growth factor beta receptor (TGFBR1) without the activation of other pathways.MethodsThe in vitro study utilized human VSMCs. Western blotting and quantitative real time PCR were performed to assess signalling pathways and gene expression, respectively. Intracellular ROS levels was measured using fluorescence detection assay.ResultsTreatment with apocynin of human VSMCs stimulated ROS production and the phosphorylation of TGFBR1 and subsequent activation of TGFBR1 signalling leading to the formation of phosphorylated Smad2 which consequently upregulates the mRNA expression of glycosaminoglycan synthesizing enzyme.ConclusionsThese findings outline a specific involvement of ROS production in TGFBR1 activation. Furthermore, because apocynin stimulates Nox and ROS production, apocynin must be used with considerable care in vitro as its actions clearly extend beyond the stimulation of Nox enzymes and it has consequences for cellular signalling.General significanceApocynin can stimulate Nox leading to the production of ROS and the outcome is completely dependent upon the redox properties of the cell.  相似文献   

5.
6.
Although betulinic acid (BA) is known to induce apoptosis and antiangiogenic response in tumor cells, the underlying mechanism of its action is unknown. Deregulation of tissue collagen metabolism is one of the consequences of neoplastic transformation. The final step of collagen degradation is mediated by prolidase [E.C.3.4.13.9] which may play a role in angiogenesis. The formation of new blood vessels is regulated by the hypoxia-inducible factor 1 (HIF-1). The expression of HIF-1 correlates with hypoxia-induced angiogenesis as a result of the induction of vascular endothelial cell growth factor (VEGF). Since BA evokes anticancer activity, its effect on collagen biosynthesis, HIF-1α and VEGF expressions, as well as prolidase activity and expression was studied in cultured endometrial adenocarcinoma (EA) cells. It was found that BA inhibits collagen biosynthesis in EA cells (5[3H] proline incorporation assay). It was accompanied by a parallel decrease in prolidase activity and expression and decrease in expressions of α1 and α2 integrins, HIF-1α, and VEGF (western immunoblot analysis) in cultured human EA cells. The data suggest that BA may have anti-angiogenic potential by inhibition of prolidase, HIF-1α and VEGF expressions, and inhibition of collagen biosynthesis.  相似文献   

7.
In an attempt to identify the growth factors or cytokines involved in the serosal thickening that occurs in rabbit bladder subjected to partial outflow obstruction, the following growth factors – transforming growth factor β1, platelet-derived growth factor, epidermal growth factor, granulocyte colony-stimulating factor and granulocyte–monocyte colony-stimulating factor – were delivered separately onto the serosal surface of the intact bladder via osmotic minipumps. The proliferative/differentiative cellular response of the rabbit bladder wall was evaluated by bromodeoxyuridine incorporation and immunofluorescence staining with a panel of monoclonal antibodies to cytoskeletal proteins (desmin, vimentin, keratins 8 and 18 and non-muscle myosin) and to smooth muscle (α-actin, myosin and SM22) proteins. Administration of the transforming growth factor, but not of the other growth factors/cytokines, was effective in inducing serosal thickening. Accumulating cells in this tissue were identified as myofibroblasts, i.e. cells showing a mixed fibroblast–smooth muscle cell differentiation profile. The phenotypic pattern of myofibroblasts changed in a time-dependent manner: 21 days after the growth factor delivery, small bundles of smooth muscle cells were found admixed with myofibroblasts, as occurs in the obstructed bladder. These ‘ectopic’ muscle structures displayed a variable proliferating activity and expressed an immature smooth muscle cell phenotype. The complete cellular conversion to smooth muscle cells was not achieved if transforming growth factor β1 was delivered to fibroblasts of subcutaneous tissue. These findings suggest a tissue-specific role for this growth factor in the cellular conversion from myofibroblast to smooth muscle cells. © 1998 Chapman & Hall  相似文献   

8.
9.

Background

During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs) function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma.

Method

Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS) were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL) samples from healthy subjects and those with asthma.

Results

PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL)-13 and tumor necrosis factor (TNFα) stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL) fluid derived from healthy subjects as well as from those with asthma.

Conclusion

Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a potential role for inflammation-induced changes in oxytocin receptor signaling in the regulation of airway hyper-responsiveness in asthma.  相似文献   

10.
11.
12.
The present study was undertaken to test the hypothesis that activation of cell membrane associated protein kinase C (PKC) plays a role in stimulating cell membrane associated phospholipase A2 (PLA2) activity, and subsequent liberation of arachidonic acid (AA) under exposure of rabbit pulmonary arterial smooth muscle cells to the oxidant hydrogen peroxide (H2O2). Exposure of the smooth muscle cells to H2O2 dose-dependently stimulates [14C] AA release, and enhances the cell membrane associated PLA2 activity. Pretreatment of the cells with protein kinase C (PKC) inhibitors H7 and sphingosine prevent the cell membrane associated PLA2 activity, and AA release caused by H2O2. Treatment of the smooth muscle cells with H2O2 stimulates the cell membrane associated PKC activity. Pretreatment of the cells with an antioxidant vitamin E prevents H2O2 caused stimulation of the cell membrane associated PKC activity. The cell membrane associated PLA2 and PKC activities correlate linearly. These results suggest that H2O2 caused stimulation of the smooth muscle cell membrane associated PLA2 activity, and subsequent liberation of AA can occur through an increase in the activity of the cell membrane associated PKC. (Mol Cell Biochem122: 9–15, 1993)Abbreviations AA Arachidonic Acid - PLA2 Phospholipase A2 - PKC Protein Kinase C - PBS Phosphate Buffered Saline - HBPS Hank's Buffered Physiological Saline - HEPES 4-(2-Hydroxyethyl)-1-Piperazine N-2-Ethanesulfonate - FCS Fetal Calf Serum - ATP Adenosine Triphosphate - H7 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine - DMEM Dulbecco's Modified Eagles Medium - TCA Trichloroacetic Acid  相似文献   

13.
During atherogenesis, excess amounts of low-density lipoproteins (LDL) accumulate in the subendothelial space where they undergo oxidative modifications. Oxidized LDL (oxLDL) alter the fragile balance between survival and death of vascular smooth muscle cells (VSMC) thereby leading to plaque instability and finally to atherothrombotic events. As protein kinase C δ (PKCδ) is pro-apoptotic in many cell types, we investigated its potential role in the regulation of VSMC apoptosis induced by oxLDL. We found that human VSMC silenced for PKCδ exhibited a protection towards oxLDL-induced apoptosis. OxLDL triggered the activation of PKCδ as shown by its phosphorylation and nuclear translocation. PKCδ activation was dependent on the reactive oxygen species generated by oxLDL. Moreover, we demonstrated that PKCδ participates in oxLDL-induced endoplasmic reticulum (ER) stress-dependent apoptotic signaling mainly through the IRE1α/JNK pathway. Finally, the role of PKCδ in the development of atherosclerosis was supported by immunohistological analyses showing the colocalization of activated PKCδ with ER stress and lipid peroxidation markers in human atherosclerotic lesions. These findings highlight a role for PKCδ as a key regulator of oxLDL-induced ER stress-mediated apoptosis in VSMC, which may contribute to atherosclerotic plaque instability and rupture.  相似文献   

14.
In the context of cross-talk between transmembrane signaling pathways, we studied the loci within the β-adrenergic receptor/G protein/adenyl cyclase system at which PKC exerts regulatory effects of peroxynitrite (ONOO?) on isoproterenol stimulated adenyl cyclase activity in pulmonary artery smooth muscle cells. Treatment of the cells with ONOO? stimulated PKC-α activity and that subsequently increased p38MAPK phosphorylation. Pretreatment with Go6976 (PKC-α inhibitor) and SB203580 (p38MAPK inhibitor) eliminated ONOO? caused inhibition on isoproterenol stimulated adenyl cyclase activity. Pretreatment with Go6976, but not SB203580, prevented ONOO? induced increase in PKC-α activity. Studies using genetic inhibitors of PKC-α (PKC-α siRNA) and p38MAPK (p38MAPK siRNA) also corroborated the findings obtained with their pharmacological inhibitors in eliminating the attenuation of ONOO? effect on isoproterenol stimulated adenyl cyclase activity. This inhibitory effect of ONOO? was found to be eliminated upon pretreatment of the cells with pertussis toxin thereby pointing to a Gi dependent mechanism. This hypothesis was reinforced by Giα phosphorylation as well as by the observation of the loss of the ability of Gpp(NH)p (a measure of Gi mediated response) to stimulate adenyl cyclase activity upon ONOO? treatment to the cells. We suggest the existence of a pertussis toxin sensitive G protein (Gi)-mediated mechanism in isoproterenol stimulated adenyl cyclase activity, which is regulated by PKCα-p38MAPK axis dependent phosphorylation of its α-subunit (Giα) in the pulmonary artery smooth muscle cells.  相似文献   

15.
16.
Atheroma formation and restenosis following percutaneous vascular intervention involve the growth and migration of vascular smooth muscle cells (SMCs) into neointimal lesions, in part due to changes in the extracellular matrix. While some clinical studies have suggested that, in comparison to non-diabetics, β3 integrin inhibition in diabetic patients confers protection from restenosis, little is known regarding the role of β3 integrin inhibition on SMC responses in this context. To understand the molecular mechanisms underlying integrin-mediated regulation of SMC function in diabetes, we examined SMC responses in diabetic mice deficient in integrin β3 and observed that the integrin was required for enhanced proliferation, migration and extracellular regulated kinase (ERK) activation. Hyperglycemia-enhanced membrane recruitment and catalytic activity of PKCβ in an integrin β3-dependent manner. Hyperglycemia also promoted SMC filopodia formation and cell migration, both of which required αVβ3, PKCβ, and ERK activity. Furthermore, the integrin–kinase association was regulated by the αVβ3 integrin ligand thrombospondin and the integrin modulator Rap1 under conditions of hyperglycemia. These results suggest that there are differences in SMC responses to vascular injury depending on the presence or absence of hyperglycemia and that SMC response under hyperglycemic conditions is largely mediated through β3 integrin signaling.  相似文献   

17.
This study was designed to localize transforming growth factor alpha (TGF-) and epidermal growth factor receptor (EGFR) expression in the developing human gastrointestinal tract and pancreas. Immunohistochemical techniques using specific antibodies against human TGF- and EGFR were performed on digestive tissues of fetuses from 9 to 10 to 24 weeks of gestation, children and adults. In fetuses, TGF- and EGFR proteins were expressed in all epithelial tissues studied with a good correlation and from an age as early as 9 to 10 weeks of gestation, except for TGF- in the esophagus. The strongest TGF- immunostaining was noted in the stomach and the proximal colon. Unexpectedly, immunoreactive gut endocrine cells were observed with the two antibodies used. Relatively numerous in fetuses, they decreased in number with age and were rare in adults particularly along the colon. Enteroglucagon-secreting cells were shown to express TGF- while some gastrin, somatostatin and pancreatic glucagon cells were immunostained with EGFR antibodies. The presence of TGF- and of its recetor in digestive tract epithelium and pancreatic tissues early in fetal life suggests a functional role for TGF- during the developmental process of the digestive system. We demonstrate that TGF- is also produced by endocrine cells and might have an additional mode of action other than paracrine, at least during fetal life.  相似文献   

18.
With regard to the mechanotransduction mechanisms of vasculature involved in hypertensive diseases, we aimed to identify tyrosine-phosphorylated proteins in pulmonary artery that responded to mechanical stress. Mechanical stretch simultaneously augmented protein-tyrosine phosphorylation in p55, p95, p105, p115, p130, p165, p180 in pulmonary artery tissue and pulmonary artery-derived smooth muscle cells (PASMC), whereas p115 and p55 were preferentially phosphorylated by the stretch in endothelial cells (PAEC). A series of experiments designed to characterize these proteins indicated that p115 and p180 were focal adhesion kinase (FAK) and platelet-derived growth factor receptor (PDGF-R), respectively, and that stretch augmented the surface-expression of PDGF-R in PASMC but not in PAEC. Moreover, a significant increase in the steady-state mRNA level for PDGF-R was observed in the pulmonary artery of rats with monocrotaline-induced pulmonary hypertension, where the artery should be overstretched due to increasing pulmonary arterial blood pressure. These results suggest that stretch-induced overexpression of cell-surface PDGF-R as well as augmentation of tyrosine phosphorylation of proteins including FAK in PASMC might be involved in the mechanotransduction of pulmonary artery.  相似文献   

19.
Dexamethasone has been shown to inhibit vascular smooth muscle cell (VSMC) migration, which is required for preventing restenosis. However, the mechanism underlying effect of dexamethasone remains unknown. We have previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 alpha (PGC-1α) can inhibit VSMC migration and proliferation. Here, we investigated the role of PGC-1α in dexamethasone-reduced VSMC migration and explored the possible mechanism. We first examined PGC-1α expression in cultured rat aortic VSMCs. The results revealed that incubation of VSMCs with dexamethasone could significantly elevate PGC-1α mRNA expression. In contrast, platelet-derived growth factor (PDGF) decreased PGC-1α expression while stimulating VSMC migration. Mechanistic study showed that suppression of PGC-1α by small interfering RNA strongly abrogated the inhibitory effect of dexamethasone on VSMC migration, whereas overexpression of PGC-1α had the opposite effect. Furthermore, an analysis of MAPK signal pathways showed that dexamethasone inhibited ERK and p38 MAPK phosphorylation in VSMCs. Overexpression of PGC-1α decreased both basal and PDGF-induced p38 MAPK phosphorylation, but it had no effect on ERK phosphorylation. Finally, inhibition of PPARγ activation by a PPARγ antagonist GW9662 abolished the suppressive effects of PGC-1α on p38 MAPK phosphorylation and VSMC migration. These effects of PGC-1α were enhanced by a PPARγ agonist troglitazone. Collectively, our data indicated for the first time that one of the anti-migrated mechanisms of dexamethasone is due to the induction of PGC-1α expression. PGC-1α suppresses PDGF-induced VSMC migration through PPARγ coactivation and, consequently, p38 MAPK inhibition.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号