共查询到20条相似文献,搜索用时 0 毫秒
1.
Podocyte apoptosis is a major factor inducing podocyte depletion that predicts the progressive course of glomerulosclerosis. However, the molecular mechanisms underlying podocyte apoptosis are still not well understood. Autophagy is a lysosomal degradation system involving the degradation and recycling of obsolete, damaged, or harmful cytoplasmic materials and organelles. Recent advances in the understanding of the molecular processes contributing to autophagy have provided insight into the relationship between autophagy and apoptosis. However, their cross-talk remains largely obscure until now. Here, we found that podocytes both in vivo and in vitro always exhibited high basal levels of autophagy, whereas autophagy inhibition could induce podocyte apoptosis, suggesting the pro-survival role of autophagy in podocytes. Besides, we found that autophagy inhibition by 3-methyladenine (3-MA) could induce the activation of endoplasmic reticulum stress even without any external stimulations, whereas knockdown of CHOP could effectively improve podocyte apoptosis and down-regulated expression of slit-diaphragm proteins induced by autophagy inhibition. Collectively, this study demonstrated that autophagy might act as a crucial regulatory mechanism of apoptotic cell death by modulating the balance between the pro-survival pathway and the pro-apoptotic pathway of endoplasmic reticulum stress, which might provide a novel mechanistic insight into the interface between autophagy and apoptosis in the progression of podocyte injury. 相似文献
2.
E Sanchez-Lopez T Zimmerman T Gomez del Pulgar M P Moyer J C Lacal Sanjuan A Cebrian 《Cell death & disease》2013,4(11):e933
Endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that regulates protein synthesis and maturation. Perturbation of ER functions leads to ER stress, which has been previously associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress has been involved in apoptosis induced by several cytotoxic agents. Choline kinase α (ChoKα), the first enzyme in the Kennedy pathway, is responsible for the generation of phosphorylcholine (PCho) that ultimately renders phosphatidylcholine. ChoKα overexpression and high PCho levels have been detected in several cancer types. Inhibition of ChoKα has demonstrated antiproliferative and antitumor properties; however, the mechanisms underlying these activities remain poorly understood. Here, we demonstrate that ChoKα inhibitors (ChoKIs), MN58b and RSM932A, induce cell death in cancer cells (T47D, MCF7, MDA-MB231, SW620 and H460), through the prolonged activation of ER stress response. Evidence of ChoKIs-induced ER stress includes enhanced production of glucose-regulated protein, 78 kDa (GRP78), protein disulfide isomerase, IRE1α, CHOP, CCAAT/enhancer-binding protein beta (C/EBPβ) and TRB3. Although partial reduction of ChoKα levels by small interfering RNA was not sufficient to increase the production of ER stress proteins, silencing of ChoKα levels also show a decrease in CHOP overproduction induced by ChoKIs, which suggests that ER stress induction is due to a change in ChoKα protein folding after binding to ChoKIs. Silencing of CHOP expression leads to a reduction in C/EBPβ, ATF3 and GRP78 protein levels and abrogates apoptosis in tumor cells after treatment with ChoKIs, suggesting that CHOP maintains ER stress responses and triggers the pro-apoptotic signal. Consistent with the differential effect of ChoKIs in cancer and primary cells previously described, ChoKIs only promoted a transient and moderated ER stress response in the non-tumorogenic cells MCF10A. In conclusion, pharmacological inhibition of ChoKα induces cancer cell death through a mechanism that involves the activation of exaggerated and persistent ER stress supported by CHOP overproduction. 相似文献
3.
Cadmium toxicity induces ER stress and apoptosis via impairing energy homoeostasis in cardiomyocytes
Cadmium, a highly toxic environmental pollutant, is reported to induce toxicity and apoptosis in multiple organs and cells, all possibly contributing to apoptosis in certain pathophysiologic situations. Previous studies have described that cadmium toxicity induces biochemical and physiological changes in the heart and finally leads to cardiac dysfunctions, such as decreasing contractile tension, rate of tension development, heart rate, coronary flow rate and atrioventricular node conductivity. Although many progresses have been made, the mechanism responsible for cadmium-induced cellular alternations and cardiac toxicity is still not fully understood. In the present study, we demonstrated that cadmium toxicity induced dramatic endoplasmic reticulum (ER) stress and impaired energy homoeostasis in cultured cardiomyocytes. Moreover, cadmium toxicity may inhibit protein kinase B (AKT)/mTOR (mammalian target of rapamycin) pathway to reduce energy productions, by either disrupting the glucose metabolism or inhibiting mitochondrial respiratory gene expressions. Our work will help to reveal a novel mechanism to clarify the role of cadmium toxicity to cardiomyocytes and provide new possibilities for the treatment of cardiovascular diseases related to cadmium toxicity. 相似文献
4.
5.
6.
Apoptosis of B cells upon ligation of the B cell antigen receptor (BCR) plays a role in elimination of self-reactive B cells. Previously, BCR ligation was shown to induce expression of the molecules involved in the unfolded protein response (UPR). However, the role of the UPR in BCR-mediated apoptosis is poorly understood. Here, we demonstrate that activation of various UPR molecules are induced when BCR ligation induces apoptosis in the B cell line WEHI-231 and mouse spleen B cells. BCR ligation-induced UPR is attenuated by survival signaling through CD40 in these cells. When overexpression of BiP suppresses the UPR in WEHI-231 cells, activation of p38 MAPK is blocked and apoptosis is reduced. Moreover, the p38 MAPK inhibitor SB203580 reduces BCR ligation-induced apoptosis. These results suggest that the UPR is involved in BCR ligation-induced apoptosis and that p38 MAPK is crucial for apoptosis during the UPR in B cells. 相似文献
7.
8.
Rapid, transient induction of ER stress in the liver and kidney after acute exposure to heavy metal: evidence from transgenic sensor mice 总被引:2,自引:0,他引:2
Hiramatsu N Kasai A Du S Takeda M Hayakawa K Okamura M Yao J Kitamura M 《FEBS letters》2007,581(10):2055-2059
Endoplasmic reticulum (ER) stress-responsive alkaline phosphatase (ES-TRAP) serves as a sensitive indicator for ER stress. In response to heavy metals including cadmium, nickel and cobalt, hepatocytes and renal tubular cells expressing ES-TRAP exhibited ER stress and decreased ES-TRAP activity. In ES-TRAP transgenic mice, acute exposure to cadmium showed rapid, transient decreases in the activity of serum ES-TRAP. It was inversely correlated with the induction of endogenous ER stress markers in the liver and kidney. Our result provides first evidence for the acute, reversible induction of ER stress in vivo after exposure to heavy metal. 相似文献
9.
Thioredoxin h (TRX h) functions as a reducing protein and is present in all organisms. As a new approach for inducing the endoplasmic reticulum (ER) stress, TRX h (OsTRX23) was expressed as a secretory protein using the endosperm-specific glutelin GluB-1 promoter and a signal peptide. In transgenic rice seeds, the majority of the recombinant TRX h accumulated in the ER but some was also localized to the protein body IIs (PB-IIs). The rice grain quality was dependent on the TRX h accumulation level. Increased TRX h expression resulted in aberrant phenotypes, such as chalky and shriveled features, lower seed weight and lower seed protein content. Furthermore, the accumulation of some seed storage proteins (SSPs) was significantly suppressed and the morphology of the protein bodies (PB-Is and PB-IIs) changed according to the level of TRX h. SSPs, such as 13 kDa prolamin and GluA, were specifically modified via the reducing action of TRX h. These changes led to the activation of the ER stress response, which was accompanied by the expression of several chaperone proteins. Specifically, the ER stress markers BiP4 and BiP5 were significantly up-regulated by an increase in the level of TRX h. These results suggest that changes in the conformation of certain SSPs via the action of recombinant TRX h lead to an induced ER stress response in transgenic rice seeds. 相似文献
10.
Shuying Shen Yi Zhang Rui Zhang Xingguo Gong 《Biochemical and biophysical research communications》2013
Sarsasapogenin is a sapogenin from the Chinese medical herb Anemarrhena asphodeloides Bunge. In the present study, we revealed that sarsasapogenin exhibited antitumor activity by inducing apoptosis in vitro as determined by Hoechst staining analysis and double staining of Annexin V-FITC/PI. In addition, cell cycle arrest in G2/M phase was observed in sarsasapogenin-treated HeLa cells. Moreover, the results revealed that perturbations in the mitochondrial membrane were associated with the deregulation of the Bax/Bcl-2 ratio which led to the upregulation of cytochrome c, followed by activation of caspases. Meanwhile, treatment of sarsasapogenin also activated Unfolded Protein Response (UPR) signaling pathways and these changes were accompanied by increased expression of CHOP. Salubrinal (Sal), a selective inhibitor of endoplasmic reticulum (ER) stress, partially abrogated the sarsasapogenin-related cell death. Furthermore, sarsasapogenin provoked the generation of reactive oxygen species, while the antioxidant N-acetyl cysteine (NAC) effectively blocked the activation of ER stress and apoptosis, suggesting that sarsasapogenin-induced reactive oxygen species is an early event that triggers ER stress mitochondrial apoptotic pathways. Taken together, the results demonstrate that sarsasapogenin exerts its antitumor activity through both reactive oxygen species (ROS)-mediate mitochondrial dysfunction and ER stress cell death. 相似文献
11.
PERK-dependent compartmentalization of ERAD and unfolded protein response machineries during ER stress 总被引:3,自引:0,他引:3
Kondratyev M Avezov E Shenkman M Groisman B Lederkremer GZ 《Experimental cell research》2007,313(16):3395-3407
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) activates the ER membrane kinases PERK and IRE1 leading to the unfolded protein response (UPR). We show here that UPR activation triggers PERK and IRE1 segregation from BiP and their sorting with misfolded proteins to the ER-derived quality control compartment (ERQC), a pericentriolar compartment that we had identified previously. PERK phosphorylates translation factor eIF2alpha, which then accumulates on the cytosolic side of the ERQC. Dominant negative PERK or eIF2alpha(S51A) mutants prevent the compartmentalization, whereas eIF2alpha(S51D) mutant, which mimics constitutive phosphorylation, promotes it. This suggests a feedback loop where eIF2alpha phosphorylation causes pericentriolar concentration at the ERQC, which in turn amplifies the UPR. ER-associated degradation (ERAD) is an UPR-dependent process; we also find that ERAD components (Sec61beta, HRD1, p97/VCP, ubiquitin) are recruited to the ERQC, making it a likely site for retrotranslocation. In addition, we show that autophagy, suggested to play a role in elimination of aggregated proteins, is unrelated to protein accumulation in the ERQC. 相似文献
12.
Yun-Rong Zhu Yong Xu Jian-Feng Fang Feng Zhou Xiong-Wei Deng Yun-Qing Zhang 《Biochemical and biophysical research communications》2014
The search for novel and more efficient chemo-agents against malignant osteoblastoma is important. In this study, we examined the potential anti-osteoblastoma function of bufotalin, and studied the underlying mechanisms. Our results showed that bufotalin induced osteoblastoma cell death and apoptosis in dose- and time-dependent manners. Further, bufotalin induced endoplasmic reticulum (ER) stress activation in osteoblastoma cells, the latter was detected by the induction of C/EBP homologous protein (CHOP), phosphorylation of inositol-requiring enzyme 1 (IRE1) and PKR-like endoplasmic reticulum kinase (PERK), as well as caspase-12 activation. Conversely, the ER stress inhibitor salubrinal, the caspase-12 inhibitor z-ATAD-fmk as well as CHOP depletion by shRNA significantly inhibited bufotalin-induced osteoblastoma cell death and apoptosis. Finally, by using a mice xenograft model, we demonstrated that bufotalin inhibited U2OS osteoblastoma cell growth in vivo. In summary, our results suggest that ER stress contributes to bufotalin-induced apoptosis in osteoblastoma cells. Bufotalin might be investigated as a novel anti-osteoblastoma agent. 相似文献
13.
14.
Bravo R Gutierrez T Paredes F Gatica D Rodriguez AE Pedrozo Z Chiong M Parra V Quest AF Rothermel BA Lavandero S 《The international journal of biochemistry & cell biology》2012,44(1):16-20
Endoplasmic reticulum (ER) stress activates an adaptive unfolded protein response (UPR) that facilitates cellular repair, however, under prolonged ER stress, the UPR can ultimately trigger apoptosis thereby terminating damaged cells. The molecular mechanisms responsible for execution of the cell death program are relatively well characterized, but the metabolic events taking place during the adaptive phase of ER stress remain largely undefined. Here we discuss emerging evidence regarding the metabolic changes that occur during the onset of ER stress and how ER influences mitochondrial function through mechanisms involving calcium transfer, thereby facilitating cellular adaptation. Finally, we highlight how dysregulation of ER-mitochondrial calcium homeostasis during prolonged ER stress is emerging as a novel mechanism implicated in the onset of metabolic disorders. 相似文献
15.
Duarte Mateus Elettra Sara Marini Cinzia Progida Oddmund Bakke 《Biochimica et Biophysica Acta (BBA)/Molecular Cell Research》2018,1865(5):781-793
The Endoplasmic Reticulum (ER) is a membranous organelle with diverse structural and functional domains. Peripheral ER includes interconnected tubules, and dense tubular arrays called “ER matrices” together with bona fide flat cisternae. Transitions between these states are regulated by membrane-associated proteins and cytosolic factors. Recently, the small GTPases Rab10 and Rab18 were reported to control ER shape by regulating ER dynamics and fusion. Here, we present evidence that another Rab protein, Rab7a, modulates the ER morphology by controlling the ER homeostasis and ER stress. Indeed, inhibition of Rab7a expression by siRNA or expression of the dominant negative mutant Rab7aT22?N, leads to enlargement of sheet-like ER structures and spreading towards the cell periphery. Notably, such alterations are ascribable neither to a direct modulation of the ER shaping proteins Reticulon-4b and CLIMP63, nor to interactions with Protrudin, a Rab7a-binding protein known to affect the ER organization. Conversely, depletion of Rab7a leads to basal ER stress, in turn causing ER membrane expansion. Both ER enlargement and basal ER stress are reverted in rescue experiments by Rab7a re-expression, as well as by the ER chemical chaperone tauroursodeoxycholic acid (TUDCA). Collectively, these findings reveal a new role of Rab7a in ER homeostasis, and indicate that genetic and pharmacological ER stress manipulation may restore ER morphology in Rab7a silenced cells. 相似文献
16.
17.
18.
Hepatocellular carcinoma (HCC) is highly resistant to conventional systemic therapies and prognosis for advanced HCC patients remains poor. Recent studies of the molecular mechanisms responsible for tumor initiation and progression have identified several potential molecular targets in HCC. Sorafenib is a multi-kinase inhibitor shown to have survival benefits in advanced HCC. It acts by inhibiting the serine/threonine kinases and the receptor type tyrosine kinases. In preclinical experiments sorafenib had anti-proliferative activity in hepatoma cells and it reduced tumor angiogenesis and increased apoptosis. Here, we demonstrate for the first time that the cytotoxic mechanisms of sorafenib include its inhibitory effects on protein ubiquitination, unfolded protein response (UPR) and keratin phosphorylation in response to endoplasmic reticulum (ER) stress. Moreover, we show that combined treatment with sorafenib and proteasome inhibitors (PIs) synergistically induced a marked increase in cell death in hepatoma- and hepatocyte-derived cells. These observations may open the way to potentially interesting treatment combinations that may augment the effect of sorafenib, possibly including drugs that promote ER stress. Because sorafenib blocked the cellular defense mechanisms against hepatotoxic injury not only in hepatoma cells but also in hepatocyte-derived cells, we must be careful to avoid severe liver injury. 相似文献
19.
Nakayama H Hamada M Fujikake N Nagai Y Zhao J Hatano O Shimoke K Isosaki M Yoshizumi M Ikeuchi T 《Biochemical and biophysical research communications》2008,377(2):550-555
Persistent endoplasmic reticulum (ER) stress and impairment of the ubiquitin-proteasome system (UPS) cause neuronal cell death. However, the relationship between these two phenomena remains controversial. In our current study, we have utilized an expanded polyglutamine fusion protein (polyQ81) expression system in PC12 cells to further examine the involvement of ER stress and UPS impairment in cell death. The expression of polyQ81-induced ER stress and cell death. PolyQ81 also induced the activation of c-Jun N-terminal kinase (JNK) and caspase-3 and an increase in polyubiquitin immunoreactivity, suggesting UPS impairment. ER stress was induced prior to the accumulation of polyubiquitinated proteins. Low doses of lactacystin had almost similar effects on cell viability and on the activation of JNK and caspase-3 between normal cells and polyQ81-expressing cells. These results suggest that ER stress mediates polyglutamine toxicity prior to UPS impairment during the initial stages of these toxic effects. 相似文献
20.
Brenna Osborne Tsun-Wen Yao Xin Maggie Wang Yiqian Chen L. Damla Kotan Naveed A. Nadvi Mustafa Herdem Geoffrey W. McCaughan John D. Allen Denise M.T. Yu A. Kemal Topaloglu Mark D. Gorrell 《Biochimica et Biophysica Acta - Proteins and Proteomics》2014,1844(7):1248-1259
Fibroblast activation protein (FAP) is a focus of interest as a potential cancer therapy target. This membrane bound protease possesses the unique catalytic activity of hydrolysis of the post-proline bond two or more residues from the N-terminus of substrates. FAP is highly expressed in activated fibroblastic cells in tumours, arthritis and fibrosis. A rare, novel, human polymorphism, C1088T, encoding Ser363 to Leu, occurring in the sixth blade of the β propeller domain, was identified in a family. Both in primary human fibroblasts and in Ser363LeuFAP transfected cells, we showed that this single substitution ablates FAP dimerisation and causes loss of enzyme activity. Ser363LeuFAP was detectable only in endoplasmic reticulum (ER), in contrast to the distribution of wild-type FAP on the cell surface. The variant FAP showed decreased conformational antibody binding, consistent with an altered tertiary structure. Ser363LeuFAP expression was associated with upregulation of the ER chaperone BiP/GRP78, ER stress sensor ATF6, and the ER stress response target phospho-eIF2α, all indicators of ER stress. Proteasomal inhibition resulted in accumulation of Ser363LeuFAP, indicating the involvement of ER associated degradation (ERAD). Neither CHOP expression nor apoptosis was elevated, so ERAD is probably important for protecting Ser363LeuFAP expressing cells. These data on the first loss of function human FAP gene variant indicates that although the protein is vulnerable to an amino acid substitution in the β-propeller domain, inactive, unfolded FAP can be tolerated by cells. 相似文献