首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Painful neuropathy is one of the most serious complications of diabetes and remains difficult to treat. The muscarinic acetylcholine receptor (mAChR) agonists have a profound analgesic effect on painful diabetic neuropathy. Here we determined changes in T-type and high voltage-activated Ca(2+) channels (HVACCs) and their regulation by mAChRs in dorsal root ganglion (DRG) neurons in a rat model of diabetic neuropathy. The HVACC currents in large neurons, T-type currents in medium and large neurons, the percentage of small DRG neurons with T-type currents, and the Cav3.2 mRNA level were significantly increased in diabetic rats compared with those in control rats. The mAChR agonist oxotremorine-M significantly inhibited HVACCs in a greater proportion of DRG neurons with and without T-type currents in diabetic than in control rats. In contrast, oxotremorine-M had no effect on HVACCs in small and large neurons with T-type currents and in most medium neurons with T-type currents from control rats. The M(2) and M(4) antagonist himbacine abolished the effect of oxotremorine-M on HVACCs in both groups. The selective M(4) antagonist muscarinic toxin-3 caused a greater attenuation of the effect of oxotremorine-M on HVACCs in small and medium DRG neurons in diabetic than in control rats. Additionally, the mRNA and protein levels of M(4), but not M(2), in the DRG were significantly greater in diabetic than in control rats. Our findings suggest that diabetic neuropathy potentiates the activity of T-type and HVACCs in primary sensory neurons. M(4) mAChRs are up-regulated in DRG neurons and probably account for increased muscarinic analgesic effects in diabetic neuropathic pain.  相似文献   

2.
Wang F  Zhang Y  Jiang X  Zhang Y  Zhang L  Gong S  Liu C  Zhou L  Tao J 《Cell calcium》2011,49(1):12-22
Neuromedin U (NMU) has recently been reported to play a role in nociception. However, to date, the relevant mechanisms still remain unknown. In the present study, we investigated the expression profile of NMU receptors in mouse dorsal root ganglia (DRG) and identified a novel functional role of NMU in modulating T-type Ca(2+) channel currents (T-currents) as well as membrane excitability in small DRG neurons. We found that NMU inhibited T-currents in a dose-dependent manner in mouse small DRG neurons that endogenously expressed NMU type 1 (NMUR1), but not NMUR2 receptors. NMU (1μM) reversibly inhibited T-currents by ~27.4%. This inhibitory effect was blocked by GDP-β-S or pertussis toxin (PTX), indicating the involvement of a G(i/o)α-protein. Using depolarizing prepulse or intracellular application of QEHA, a synthetic peptide which competitively blocks G-protein βγ subunit (G(βγ)) mediated signaling, we found the absence of functional coupling between G(βγ) and T-type Ca(2+) channels. Pretreatment of the cells with H89, a protein kinase A (PKA) inhibitor, or intracellular application of PKI 5-24, blocked NMU-induced T-current inhibition, whereas inhibition of phospholipase C or protein kinase C elicited no such effects. In addition, we observed a significant decreased firing frequency of action potentials of small DRG neurons induced by NMU, which could be abrogated by pretreatment of the cells with NiCl(2) (100 μM). Taken together, these results suggested that NMU inhibits T-currents via PTX-sensitive PKA pathway, which might contribute to its physiological functions including neuronal hypoexcitability in small DRG neurons in mice.  相似文献   

3.
The PPARγ agonist Rosiglitazone exerts anti-hyperglycaemic effects by regulating the long-term expression of genes involved in metabolism, differentiation and inflammation. In the present study, Rosiglitazone treatment rapidly inhibited (5-30 min) the ER Ca2+ ATPase SERCA2b in monocytic cells (IC50 = 1.88 μM; p < 0.05), thereby disrupting short-term Ca2+ homeostasis (resting [Ca2+]cyto = 121.2 ± 2.9% basal within 1 h; p < 0.05). However, extended Rosiglitazone treatment (72 h) induced dose-dependent SERCA2b up-regulation, and restored calcium homeostasis, in monocytic cells (SERCA2b mRNA: 138.7 ± 5.7% basal (1 μM)/215.0 ± 30.9% basal (10 μM); resting [Ca2+]cyto = 97.3 ± 8.3% basal (10 μM)). As unfavourable cardiovascular outcomes, possibly related to disrupted cellular Ca2+ homeostasis, have been linked to Rosiglitazone, this effect may be of clinical interest. In contrast, in PPRE-luciferase reporter-gene assays, Rosiglitazone induced non-dose-dependent PPARγ-dependent effects (1 μM: 152.5 ± 4.9% basal; 10 μM: 136.1 ± 5.1% basal (p < 0.05 for 1 μM vs. 10 μM)). Thus, we conclude that Rosiglitazone can exert PPARγ-independent non-genomic effects, such as the SERCA2b inhibition seen here, but that long-term Rosiglitazone treatment did not perturb resting [Ca]cyto in this study.  相似文献   

4.
Leung KW  Leung FP  Huang Y  Mak NK  Wong RN 《FEBS letters》2007,581(13):2423-2428
We demonstrated that ginsenoside-Re (Re), a pharmacological active component of ginseng, is a functional ligand of glucocorticoid receptor (GR) using competitive ligand-binding assay (IC50 = 156.6 nM; Kd = 49.7 nM) and reporter gene assay. Treatment with Re (1 μM) raises intracellular Ca2+ ([Ca2+]i) and nitric oxide (NO) levels in human umbilical vein endothelial cells as measured using fura-2 and 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate, respectively. Western blot analysis shows that Re increased phosphorylation of endothelial nitric oxide synthase. These effects were abolished by GR antagonist RU486, siRNA targeting GR, non-selective cation channel blocker 2-aminoethyldiphenylborate, or in the absence of extracellular Ca2+, indicating Re is indeed an agonistic ligand for the GR and the activated GR induces rapid Ca2+ influx and NO production in endothelial cells.  相似文献   

5.
Hydrogen sulfide (H2S), a gasotransmitter, is formed from l-cysteine by multiple enzymes including cystathionine-γ-lyase (CSE). We have shown that an H2S donor, NaHS, causes hyperalgesia in rodents, an effect inhibited by knockdown of Cav3.2 T-type Ca2+ channels (T-channels), and that NaHS facilitates T-channel-dependent currents (T-currents) in NG108-15 cells that naturally express Cav3.2. In the present study, we asked if endogenous and exogenous H2S participates in regulation of the channel functions in Cav3.2-transfected HEK293 (Cav3.2-HEK293) cells. dl-Propargylglycine (PPG), a CSE inhibitor, significantly decreased T-currents in Cav3.2-HEK293 cells, but not in NG108-15 cells. NaHS at 1.5 mM did not affect T-currents in Cav3.2-HEK293 cells, but enhanced T-currents in NG108-15 cells. In the presence of PPG, NaHS at 1.5 mM, but not 0.1–0.3 mM, increased T-currents in Cav3.2-HEK293 cells. Similarly, Na2S, another H2S donor, at 0.1–0.3 mM significantly increased T-currents in the presence, but not absence, of PPG in Cav3.2-HEK293 cells. Expression of CSE was detected at protein and mRNA levels in HEK293 cells. Intraplantar administration of Na2S, like NaHS, caused mechanical hyperalgesia, an effect blocked by NNC 55-0396, a T-channel inhibitor. The in vivo potency of Na2S was higher than NaHS. These results suggest that the function of Cav3.2 T-channels is tonically enhanced by endogenous H2S synthesized by CSE in Cav3.2-HEK293 cells, and that exogenous H2S is capable of enhancing Cav3.2 function when endogenous H2S production by CSE is inhibited. In addition, Na2S is considered a more potent H2S donor than NaHS in vitro as well as in vivo.  相似文献   

6.
We recently showed that streptozotocin (STZ) injections in rats lead to the development of painful peripheral diabetic neuropathy (PDN) accompanied by enhancement of CaV3.2 T-type calcium currents (T-currents) and hyperexcitability in dorsal root ganglion (DRG) neurons. Here we used the classical peripherally acting T-channel blocker mibefradil to examine the role of CaV3.2 T-channels as pharmacological targets for treatment of painful PDN. When administered intraperitoneally (i.p.), at clinically relevant doses, mibefradil effectively alleviated heat, cold and mechanical hypersensitivities in STZ-treated diabetic rats in a dose-dependent manner. We also found that CaV3.2 antisense (AS)-treated diabetic rats exhibit a significant decrease in painful PDN compared with mismatch antisense (MIS)-treated diabetic rats. Co-treatment with mibefradil (9 mg/kg i.p.) resulted in reversal of heat, cold and mechanical hypersensitivity in MIS-treated but not in AS-treated diabetic rats, suggesting that mibefradil and CaV3.2 AS share the same cellular target. Using patch-clamp recordings from acutely dissociated DRG neurons, we demonstrated that mibefradil similarly blocked T-currents in diabetic and healthy rats in a voltage-dependent manner by stabilizing inactive states of T-channels. We conclude that antihyperalgesic and antiallodynic effects of mibefradil in PDN are at least partly mediated by inhibition of CaV3.2 channels in peripheral nociceptors. Hence, peripherally acting voltage-dependent T-channel blockers could be very useful in the treatment of painful symptoms of PDN.  相似文献   

7.
Contractile dysfunction and diminished response to β-adrenergic agonists are characteristics for failing hearts. Chemically donated nitroxyl (HNO) improves contractility in failing hearts and thus may have therapeutic potential. Yet, there is a need for pharmacologically suitable donors. In this study we tested whether the pure and long acting HNO donor, 1-nitrosocyclohexyl acetate (NCA), affects contractile force in normal and pathological ventricular myocytes (VMs) as well as in isolated hearts. VMs were isolated from mice either subjected to isoprenaline-infusion (ISO; 30 μg/g per day) or to vehicle (0.9% NaCl) for 5 days. Sarcomere shortening and Ca2+ transients were simultaneously measured using the IonOptix system. Force of contraction of isolated hearts was measured by a Langendorff-perfusion system. NCA increased peak sarcomere shortening by + 40-200% in a concentration-dependent manner (EC50 ∼55 μM). Efficacy and potency did not differ between normal and chronic ISO VMs, despite the fact that the latter displayed a markedly diminished inotropic response to acute β-adrenergic stimulation with ISO (1 μM). NCA (60 μM) increased peak sarcomere shortening and Ca2+ transient amplitude by ∼200% and ∼120%, respectively, suggesting effects on both myofilament Ca2+ sensitivity and sarcoplasmic reticulum (SR) Ca2+ cycling. Importantly, NCA did not affect diastolic Ca2+ or SR Ca2+ content, as assessed by rapid caffeine application. NCA (45 μM) increased force of contraction by 30% in isolated hearts. In conclusion, NCA increased contractile force in normal and β-adrenergically desensitized VMs as well as in isolated mouse hearts. This profile warrants further investigations of this HNO donor in the context of heart failure.  相似文献   

8.
In the present study, we have examined any possible involvement of L-type Ca2+ channels in ginseng-mediated neuroprotective actions. Exposure to a 50 mM KCl (high-K) produced neuronal cell death, which was blocked by a selective L-type Ca2+ channel blocker in cultured cortical neurons. When cultured cells were co-treated with ginseng total saponin (GTS) and high-K, GTS reduced high-K-induced neuronal death. Using Ca2+ imaging techniques, we found that GTS inhibited high-K-mediated acute and long-term [Ca2+]i changes. These GTS-mediated [Ca2+]i changes were diminished by nifedipine. Furthermore, GTS-mediated effects were also diminished by a saturating concentration of Bay K (10 μM). After confirming the protective effect of GTS using a TUNEL assay, we found that ginsenosides Rf and Rg3 are active components in ginseng-mediated neuroprotection. These results suggest that inhibition of L-type Ca2+ channels by ginseng could be one of the mechanisms for ginseng-mediated neuroprotection in cultured rat cortical neurons.  相似文献   

9.
Fibroblast growth factor-23 (FGF-23) secreted by osteocytes is known as a circulating factor that is essential for phosphate homeostasis. Recent studies have implicated FGF-23 in the nociceptive signalling of peripheral sensory neurons. However, the relevant mechanisms underlying this effect are not known. In this study, we determine the role of FGF-23 in regulating T-type Ca2+ channels (T-type channels) in small-diameter dorsal root ganglion (DRG) neurons in mice. Our results show that FGF-23 increases T-type channel currents in a concentration-dependent manner. This FGF-23-induced response was dependent on FGF type 1 receptor (FGFR1) and was accompanied by a depolarizing shift in the steady-state inactivation curve. Pretreatment of neurons with the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 prevented the FGF-23-mediated T-type channel response. Analysis of phospho-Akt (p-Akt) revealed that FGF-23 significantly activated Akt, but Akt inhibition did not affect the FGF-23-induced T-type channel current increase. The cell-permeable protein kinase A (PKA) inhibitor KT-5720 pretreatment and intracellular application of PKI 6–22 both abolished the stimulatory effects of FGF-23 on T-type channels, but inhibition of PKC had no effect. In summary, these findings indicate that FGF-23 stimulates T-type channel activity via activation of FGFR1, which is coupled to the PI3K-dependent PKA signalling cascade in small DRG neurons.  相似文献   

10.
Ca2+ plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca2+ is controlled primarily by the mitochondrial Ca2+ uniporter and the mitochondrial Na+/Ca2+ exchanger, influencing NADH production through Ca2+-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca2+-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca2+ release. Here we selectively measure Ca2+ influx rate through the mitochondrial Ca2+ uniporter and Ca2+ efflux rates through Na+-dependent and Na+-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na+/Ca2+ exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨm loss, Ca2+ release, NADH oxidation, swelling) of high extramitochondrial Ca2+ additions, allowing mitochondria to tolerate total mitochondrial Ca2+ loads of > 400 nmol/mg protein. For Ca2+ pulses up to 15 μM, Na+-independent Ca2+ efflux through the permeability transition pore accounted for ~ 5% of the total Ca2+ efflux rate compared to that mediated by the mitochondrial Na+/Ca2+ exchanger (in 5 mM Na+). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na+/Ca2+ exchanger-mediated Ca2+ efflux at higher concentrations (IC50 = 2 μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~ 40% at 10 μM cyclosporine A, while having no effect on the mitochondrial Ca2+ uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca2+ load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.  相似文献   

11.
Acetylcholine (ACh) causes a wide variety of anti-nociceptive effects. The dentate gyrus (DG) region of the hippocampal formation (HF) has been demonstrated to be involved in nociceptive perception. However, the mechanisms underlying this anti-nociceptive role have not yet been elucidated in the cholinergic pain-related neurons of DG. The electrical activities of pain-related neurons of DG were recorded by a glass microelectrode. Two kinds of pain-related neurons were found: pain-excited neurons (PEN) and pain-inhibited neurons (PIN). The experimental protocol involved intra-DG administration of muscarinic cholinergic receptor (mAChR) agonist or antagonist. Intra-DG microinjection of 1 μl of ACh (0.2 μg/μl) or 1 μl of pilocarpine (0.4 μg/μl) decreased the discharge frequency of PEN and prolonged firing latency, but increased the discharge frequency of PIN and shortened PIN inhibitory duration (ID). Intra-DG administration of 1 μl of atropine (1.0 μg/μl) showed exactly the opposite effects. According to the above experimental results, we can presume that cholinergic pain-related neurons in DG are involved in the modulation of the nociceptive response by affecting the discharge of PEN and PIN.  相似文献   

12.
In inside-out bovine heart sarcolemmal vesicles, p-chloromercuribenzenesulfonate (PCMBS) and n-ethylmaleimide (NEM) fully inhibited MgATP up-regulation of the Na+/Ca2+ exchanger (NCX1) and abolished the MgATP-dependent PtdIns-4,5P2 increase in the NCX1-PtdIns-4,5P2 complex; in addition, these compounds markedly reduced the activity of the PtdIns(4)-5kinase. After PCMBS or NEM treatment, addition of dithiothreitol (DTT) restored a large fraction of the MgATP stimulation of the exchange fluxes and almost fully restored PtdIns(4)-5kinase activity; however, in contrast to PCMBS, the effects of NEM did not seem related to the alkylation of protein SH groups. By itself DTT had no effect on the synthesis of PtdIns-4,5P2 but affected MgATP stimulation of NCX1: moderate inhibition at 1 mM MgATP and 1 μM Ca2+ and full inhibition at 0.25 mM MgATP and 0.2 μM Ca2+. In addition, DDT prevented coimmunoprecipitation of NCX1 and PtdIns(4)-5kinase. These results indicate that, for a proper MgATP up-regulation of NCX1, the enzyme responsible for PtdIns-4,5P2 synthesis must be (i) functionally competent and (ii) set in the NCX1 microenvironment closely associated to the exchanger. This kind of supramolecular structure is needed to optimize binding of the newly synthesized PtdIns-4,5P2 to its target region in the exchanger protein.  相似文献   

13.
14.
In addition to the classic genomic effects, it is well known that glucocorticoids also have rapid, nongenomic effects on neurons. In the present study, the effect of corticosterone (CORT) on ATP-induced Ca2+ mobilization in cultured dorsal root ganglion (DRG) neurons were detected with confocal laser scanning microscopy using fluo-4/AM as a calcium fluorescent indicator that could monitor real-time alterations of intracellular calcium concentration ([Ca2+]i). ATP, an algesic agent, caused [Ca2+]i increase in DRG neurons by activation of P2X receptor. Pretreatment with CORT (1 nM–1 μM for 5 min) inhibited ATP-induced [Ca2+]i increase in DRG neurons. The rapid inhibition of ATP-induced Ca2+ response by CORT was concentration-dependent, reversible and could be blocked by glucocorticoid receptor antagonist RU38486 (10 μM). Furthermore, the inhibitory effect of CORT was abolished by protein kinase A inhibitor H89 (10 μM), but was not influenced by protein kinase C inhibitor Chelerythrine chloride (10 μM). On the other hand, membrane-impermeable bovine serum albumin-conjugated corticosterone had no effect on ATP-induced [Ca2+]i transients. These observations suggest that a nongenomic pathways may be involved in the effect of CORT on ATP-induced [Ca2+]i transients in cultured DRG neurons.  相似文献   

15.
Sergio de la Fuente 《BBA》2010,1797(10):1727-1735
We have investigated the kinetics of mitochondrial Ca2+ influx and efflux and their dependence on cytosolic [Ca2+] and [Na+] using low-Ca2+-affinity aequorin. The rate of Ca2+ release from mitochondria increased linearly with mitochondrial [Ca2+] ([Ca2+]M). Na+-dependent Ca2+ release was predominant al low [Ca2+]M but saturated at [Ca2+]M around 400 μM, while Na+-independent Ca2+ release was very slow at [Ca2+]M below 200 μM, and then increased at higher [Ca2+]M, perhaps through the opening of a new pathway. Half-maximal activation of Na+-dependent Ca2+ release occurred at 5-10 mM [Na+], within the physiological range of cytosolic [Na+]. Ca2+ entry rates were comparable in size to Ca2+ exit rates at cytosolic [Ca2+] ([Ca2+]c) below 7 μM, but the rate of uptake was dramatically accelerated at higher [Ca2+]c. As a consequence, the presence of [Na+] considerably reduced the rate of [Ca2+]M increase at [Ca2+]c below 7 μM, but its effect was hardly appreciable at 10 μM [Ca2+]c. Exit rates were more dependent on the temperature than uptake rates, thus making the [Ca2+]M transients to be much more prolonged at lower temperature. Our kinetic data suggest that mitochondria have little high affinity Ca2+ buffering, and comparison of our results with data on total mitochondrial Ca2+ fluxes indicate that the mitochondrial Ca2+ bound/Ca2+ free ratio is around 10- to 100-fold for most of the observed [Ca2+]M range and suggest that massive phosphate precipitation can only occur when [Ca2+]M reaches the millimolar range.  相似文献   

16.
Interstitial cells of Cajal (ICC) serve as electrical pacemakers in the rabbit urethra. Pacemaking activity in ICC results from spontaneous intracellular Ca2+ waves that rely on Ca2+ release from endoplasmic reticulum (ER) stores. The purpose of this study was to investigate if the action of protein kinase A (PKA) affected the generation of Ca2+ waves in ICC. Intracellular [Ca2+] was measured in fluo-4 loaded ICC, freshly isolated from the rabbit urethra using a Nipkow spinning disc confocal microscope. Application of the PKA inhibitor H-89 (10 μM) significantly inhibited the generation of spontaneous Ca2+ waves in ICC and this was associated with a significant decrease in the ER Ca2+ load, measured with 10 mM caffeine responses. Ca2+ waves could be rescued in the presence of H-89 by stimulating ryanodine receptors (RyRs) with 1 mM caffeine but not by activation of inositol 1,4,5 tri-phosphate receptors (IP3Rs) with 10 μM phenylephrine. Increasing intracellular PKA with the cAMP agonists forskolin and 8-bromo-cAMP failed to yield an increase in Ca2+ wave activity. We conclude that PKA may be maximally active under basal conditions in ICC and that inhibition of PKA with H-89 leads to a decreased ER Ca2+ load sufficient to inactivate IP3Rs but not RyRs.  相似文献   

17.
It is well established that intracellular calcium ([Ca2+]i) controls the inotropic state of the myocardium, and evidence mounts that a “Ca2+ clock” controls the chronotropic state of the heart. Recent findings describe a calcium-activated nonselective cation channel (NSCCa) in various cardiac preparations sharing hallmark characteristics of the transient receptor potential melastatin 4 (TRPM4). TRPM4 is functionally expressed throughout the heart and has been implicated as a NSCCa that mediates membrane depolarization. However, the functional significance of TRPM4 in regards to Ca2+ signaling and its effects on cellular excitability and pacemaker function remains inconclusive. Here, we show by Fura2 Ca-imaging that pharmacological inhibition of TRPM4 in HL-1 mouse cardiac myocytes by 9-phenanthrol (10 μM) and flufenamic acid (10 and 100 μM) decreases Ca2+ oscillations followed by an overall increase in [Ca2+]i. The latter occurs also in HL-1 cells in Ca2+-free solution and after depletion of sarcoplasmic reticulum Ca2+ with thapsigargin (10 μM). These pharmacologic agents also depolarize HL-1 cell mitochondrial membrane potential. Furthermore, by on-cell voltage clamp we show that 9-phenanthrol reversibly inhibits membrane current; by fluorescence immunohistochemistry we demonstrate that HL-1 cells display punctate surface labeling with TRPM4 antibody; and by immunoblotting using this antibody we show these cells express a 130–150 kDa protein, as expected for TRPM4. We conclude that 9-phenanthrol inhibits TRPM4 ion channels in HL-1 cells, which in turn decreases Ca2+ oscillations followed by a compensatory increase in [Ca2+]i from an intracellular store other than the sarcoplasmic reticulum. We speculate that the most likely source is the mitochondrion.  相似文献   

18.
There is increasing evidence that a functional interaction exists between interleukin-1β (IL-1β) and N-methyl-d-aspartate (NMDA) receptors. The present study attempted to elucidate the effect of IL-1β on the NMDA-induced outward currents in mechanically dissociated hippocampal neurons using a perforated patch recording technique. IL-1β (30-100 ng/ml) inhibited the mean amplitude of the NMDA-induced outward currents that were mediated by charybdotoxin (ChTX)-sensitive Ca2+-activated K+ (KCa) channels. IL-1β (100 ng/ml) also significantly increased the mean ratio of the NMDA-induced inward current amplitudes measured at the end to the beginning of a 20-s application of NMDA. In hippocampal neurons from acute slice preparations, IL-1β significantly inhibited ChTX-sensitive KCa currents induced by a depolarizing voltage-step. IL-1 receptor antagonist antagonized effects of IL-1β. These results strongly suggest that IL-1β increases the neuronal excitability by inhibition of ChTX-sensitive KCa channels activated by Ca2+ influx through both NMDA receptors and voltage-gated Ca2+ channels.  相似文献   

19.
20-Hydroxyecdysone (20E) triggers programmed cell death (PCD) and regulates de novo gene expression in the anterior silk glands (ASGs) of the silkworm Bombyx mori. PCD is mediated via a nongenomic pathway that includes Ca2+ as a second messenger and the activation of protein kinase C/caspase-3-like protease; however, the steps leading to a concomitant buildup of intracellular Ca2+ are unknown. We employed pharmacological tools to identify the components of this pathway. ASGs were cultured in the presence of 1 μM 20E and one of the following inhibitors: a G-protein-coupled receptor (GPCR) inhibitor, a phospholipase C (PLC) inhibitor, an inositol 1,4,5-trisphosphate receptor (IP3R) antagonist, and an L- or T-type Ca2+ channel blocker. The T-type Ca2+ channel blocker inhibited 20E-induced nuclear and DNA fragmentation; in contrast, PCD was induced by 20E in Ca2+-free medium, indicating that the source of Ca2+ is an intracellular reservoir. The IP3R antagonist inhibited nuclear and DNA fragmentation, suggesting that the endoplasmic reticulum may be the Ca2+ source. Finally, the GPCR and PLC inhibitors effectively blocked nuclear and DNA fragmentation. Our results indicate that 20E increases the intracellular level of Ca2+ by activating IP3R, and that this effect may be brought about by the serial activation of GPCR, PLC, and IP3.  相似文献   

20.
Voltage-gated Ca2+ channels (VGCCs) are recognized for their superb ability for the preferred passage of Ca2+ over any other more abundant cation present in the physiological saline. Most of our knowledge about the mechanisms of selective Ca2+ permeation through VGCCs was derived from the studies on native and recombinant L-type representatives. However, the specifics of the selectivity and permeation of known recombinant T-type Ca2+-channel α1 subunits, Cav3.1, Cav3.2 and Cav3.3, are still poorly defined. In the present study we provide comparative analysis of the selectivity and permeation Cav3.1, Cav3.2, and Cav3.3 functionally expressed in Xenopus oocytes. Our data show that all Cav3 channels select Ca2+ over Na+ by affinity. Cav3.1 and Cav3.2 discriminate Ca2+, Sr2+ and Ba2+ based on the ion's effects on the open channel probability, whilst Cav3.3 discriminates based on the ion's intrapore binding affinity. All Cav3s were characterized by much smaller difference in the KD values for Na+ current blockade by Ca2+ (KD1 ∼ 6 μM) and for Ca2+ current saturation (KD2 ∼ 2 mM) as compared to L-type channels. This enabled them to carry notable mixed Na+/Ca2+ current at close to physiological Ca2+ concentrations, which was the strongest for Cav3.3, smaller for Cav3.2 and the smallest for Cav3.1. In addition to intrapore Ca2+ binding site(s) Cav3.2, but not Cav3.1 and Cav3.3, is likely to possess an extracellular Ca2+ binding site that controls channel permeation. Our results provide novel functional tests for identifying subunits responsible for T-type Ca2+ current in native cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号