首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mycelial growth of 10 Fusarium culmorum strains isolated from water of the Andarax riverbed in the provinces of Granada and Almeria in southeastern Spain was tested on potato-dextrose-agar adjusted to different osmotic potentials with either KCl or NaCl (?1.50 to ?144.54 bars) at 10°C intervals ranging from 15° to 35°C. Fungal growth was determined by measuring colony diameter after 4 d of incubation. Mycelial growth was maximal at 25°C. The quantity and capacity of mycelial growth of F. culmorum were similar at 15 and 25°C, with maximal growth occurring at ?13.79 bars water potential and a lack of growth at 35°C. The effect of water potential was independent of salt composition. The general growth pattern of Fusarium culmorum growth declined at potentials below ?13.79 bars. Fungal growth at 25°C was always greater than growth at 15°C, at all of the water potentials tested. Significant differences were observed in the response of mycelia to water potential and temperature as main and interactive effects. The number of isolates that showed growth was increasingly inhibited as the water potential dropped, but some growth was still observable at ?99.56 bars. These findings could indicate that F. culmorum strains isolated from water have a physiological mechanism that permits survival in environments with low water potential. Propagules of Fusarium culmorum are transported long distances by river water, which could explain the severity of diseases caused by F. culmorum on cereal plants irrigated with river water and its interaction under hydric stress or moderate soil salinity. The observed differences in growth magnitude and capacity could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.  相似文献   

2.
Fusarium head blight (FHB), mainly caused by Fusarium graminearum and F. culmorum, can significantly reduce the grain quality of wheat (Triticum aestivum L.) due to mycotoxin contamination. The objective of this study was to identify quantitative trait loci (QTLs) for FHB resistance in a winter wheat population developed by crossing the resistant German cultivar Dream with the susceptible British cultivar Lynx. A total of 145 recombinant inbred lines (RILs) were evaluated following spray inoculation with a F. culmorum suspension in field trials in 2002 in four environments across Germany. Based on amplified fragment length polymorphism and simple sequence repeat marker data, a 1,734 cM linkage map was established assuming that the majority of the polymorphic parts of the genome were covered. The area under disease progress curve (AUDPC) was calculated based on the visually scored FHB symptoms. The population segregated quantitatively for FHB severity. Composite interval mapping analysis for means across the environments identified four FHB resistance QTLs on chromosomes 6AL, 1B, 2BL and 7BS. Individually the QTLs explained 19%, 12%, 11% and 21% of the phenotypic variance, respectively, and together accounted for 41%. The QTL alleles conferring resistance on 6AL, 2BL and 7BS originated from cv. Dream. The resistance QTL on chromosome 6AL partly overlapped with a QTL for plant height. The FHB resistance QTL on 7BS coincided with a QTL for heading date, but the additive effect on heading date was of minor importance. The resistance QTL on chromosome 1B was associated with the T1BL.1RS wheat-rye translocation of Lynx.  相似文献   

3.
To identify quantitative trait loci (QTLs) responsible for regulating plasma lipid concentration associated with obesity, linkage analysis was carried out on the 190 F2 progeny of a cross between C57BL/6J female and KK-Ay (Ay allele at the agouti locus congenic) male. In F2 a/a (agouti locus genotype) mice, two QTLs were identified on chromosome 1 and a QTL on chromosome 3 for total-cholesterol. A QTL for HDL-cholesterol was identified on chromosome 1 and a QTL for NEFA on chromosome 9. In F2 Ay/a mice, two QTLs for HDL-cholesterol were found on chromosome 1. Loci for other lipids with suggestive linkage were also identified. In both F2 mice, one QTL on chromosome 1 for total- and HDL-cholesterol was mapped near D1Mit150, in the vicinity of the apolipoprotein A-II (Apoa2) locus. Seven nucleotide substitutions out of 309 nucleotide apolipoprotein A-II cDNA sequences were identified between KK and C57BL/6J. The Ay allele may be an indication of the plasma lipid levels, but its influence was less apparent than in the case of weight control. The loci for lipids were not on identical chromosomes with those previously identified for obesity, suggesting that hyperlipidemia in KK does not coincidentally occur with obesity.  相似文献   

4.
Interspecies interactions between Fusarium avenaceum, Fusarium culmorum, Fusarium graminearum, Fusarium poae, and Fusarium tricinctum were studied during early growth stages of isolates on model surfaces. Additionally, germination and germ tube growth of the pathogens were studied on attached and detached wheat leaves at 10 °C and 22 °C. Two-species interactions between Fusarium isolates during germination and germ tube growth were assessed after 8 hours of incubation. All species except F. tricinctum germinated and grew faster at higher than lower temperature. All species were able to germinate with more than one germ tube per conidium cell; and germination and germ tube growth were faster on leaves than on glass surface. Interactions among Fusarium species during germination and germ tube growth were predominantly competitive with macroconidia-producing species being more competitive. It is concluded that the type of conidia as well as environmental factors influence the competitiveness of Fusarium species during early stages of growth.  相似文献   

5.
Fusarium head blight (FHB, scab) causes severe yield and quality losses, but the most serious concern is the mycotoxin contamination of cereal food and feed. The cultivation of resistant varieties may contribute to integrated control of this fungal disease. Breeding for FHB resistance by conventional selection is feasible, but tedious and expensive. The aim of this work was to detect QTLs for combined type I and type II resistance against FHB and estimate their effects in comparison to the QTLs identified previously for type II resistance. A population of 364, F1 derived doubled-haploid (DH) lines from the cross 'CM-82036' (resistant)/'Remus' (susceptible) was evaluated for components of FHB resistance during 2 years under field conditions. Plants were inoculated at anthesis with a conidial suspension of Fusarium graminearum or Fusarium culmorum. The crop was kept wet for 20 h after inoculation by mist-irrigation. Disease severity was assessed by visual scoring. Initial QTL analysis was performed on 239 randomly chosen DH lines and extended to 361 lines for putative QTL regions. Different marker types were applied, with an emphasis on PCR markers. Analysis of variance, as well as simple and composite interval mapping, revealed that two genomic regions were significantly associated with FHB resistance. The two QTLs on chromosomes 3B (Qfhs.ndsu-3BS) and 5A (Qfhs.ifa-5A) explained 29 and 20% of the phenotypic variance, respectively, for visual FHB severity. Qfhs.ndsu-3BS appeared to be associated mainly with resistance to fungal spread, and Qfhs.ifa-5A primarily with resistance to fungal penetration. Both QTL regions were tagged with flanking SSR markers. These results indicate that FHB resistance was under the control of two major QTLs operating together with unknown numbers of minor genes. Marker-assisted selection for these two major QTLs appears feasible and should accelerate the development of resistant and locally adapted wheat cultivars.  相似文献   

6.
The kinetics of the production of fusaproliferin by Fusarium subglutinans ITEM 2404 in maize and rice cultures was investigated at various incubation temperatures. The growth rate of F. subglutinans was highest at 20 degrees C and 25 degrees C in maize cultures and at 15 degrees C in rice cultures. Although the growth rate was higher in rice than in maize, the maximal production of fusaproliferin was obtained in maize cultures, with a maximum yield (4309 microg g(-1)) at 20 degrees C for 6 weeks. In rice cultures the optimal incubation regimen was at 15 degrees C for 6 weeks, with a fusaproliferin level of 1557 microg g(-1). The production of fusaproliferin at 25 degrees C and 30 degrees C in both substrates was very low, with maximal yield at 25 degrees C of 979 microg g(-1) after 2 weeks and 143 microg g(-1) after 3 weeks in maize and rice cultures, respectively.  相似文献   

7.
As part of ongoing studies regarding the genetic basis of quantitative variation in phenotype, we have determined the chromosomal locations of quantitative trait loci (QTLs) affecting fruit size, soluble solids concentration, and pH, in a cross between the domestic tomato (Lycopersicon esculentum Mill.) and a closely-related wild species, L. cheesmanii. Using a RFLP map of the tomato genome, we compared the inheritance patterns of polymorphisms in 350 F2 individuals with phenotypes scored in three different ways: (1) from the F2 progeny themselves, grown near Davis, California; (2) from F3 families obtained by selfing each F2 individual, grown near Gilroy, California (F3-CA); and (3) from equivalent F3 families grown near Rehovot, Israel (F3-IS). Maximum likelihood methods were used to estimate the approximate chromosomal locations, phenotypic effects (both additive effects and dominance deviations), and gene action of QTLs underlying phenotypic variation in each of these three environments. A total of 29 putative QTLs were detected in the three environments. These QTLs were distributed over 11 of the 12 chromosomes, accounted for 4.7-42.0% of the phenotypic variance in a trait, and showed different types of gene action. Among these 29 QTLs, 4 were detected in all three environments, 10 in two environments, and 15 in only a single environment. The two California environments were most similar, sharing 11/25 (44%) QTLs, while the Israel environment was quite different, sharing 7/20 (35%) and 5/26 (19%) QTLs with the respective California environments. One major goal of QTL mapping is to predict, with maximum accuracy, which individuals will produce progeny showing particular phenotypes. Traditionally, the phenotype of an individual alone has been used to predict the phenotype of its progeny. Our results suggested that, for a trait with low heritability (soluble solids), the phenotype of F3 progeny could be predicted more accurately from the genotype of the F2 parent at QTLs than from the phenotype of the F2 individual. For a trait with intermediate heritability (fruit pH), QTL genotype and observed phenotype were about equally effective at predicting progeny phenotype. For a trait with high heritability (mass per fruit), knowing the QTL genotype of an individual added little if any predictive value, to simply knowing the phenotype. The QTLs mapped in the L. esculentum X L. cheesmanii F2 appear to be at similar locations to many of those mapped in a previous cross with a different wild tomato (L. chmielewskii).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

8.
Fusarium fujikuroi and Fusarium proliferatum are two phylogenetically closely related species of the Gibberella fujikuroi species complex (GFC). In some cases, strains of these species can cross and produce a few ascospores. In this study, we analyzed 26 single ascospore isolates of an interspecific cross between F. fujikuroi C1995 and F. proliferatum D4854 for their ability to produce four secondary metabolites: gibberellins (GAs), the mycotoxins fusarin C and fumonisin B(1), and a family of red polyketides, the fusarubins. Both parental strains contain the biosynthetic genes for all four metabolites, but differ in their ability to produce these metabolites under certain conditions. F. fujikuroi C1995 produces GAs and fusarins, while F. proliferatum D4854 produces fumonisins and fusarubins. The segregation amongst the progeny of these traits is not the expected 1:1 Mendelian ratio. Only eight, six, three and three progeny, respectively, produce GAs, fusarins, fumonisin B(1) and fusarubins in amounts similar to those synthesized by the producing parental strain. Beside the eight highly GA(3)-producing progeny, some of the progeny produce small amounts of GAs, predominantly GA(1), although these strains contain the GA gene cluster of the non-GA-producing F. proliferatum parental strain. Some progeny had recombinant secondary metabolite profiles under the conditions examined indicating that interspecific crosses can yield secondary metabolite production profiles that are atypical of the parent species.  相似文献   

9.
《Mycological Research》2006,110(8):979-984
Quantitative trait loci (QTL) for mycelial growth rate were identified and positioned on a genetic linkage map of Heterobasidion annosum sensu lato (s.l.), an important root rot pathogen on conifers. The mycelial growth rate among 84 progeny isolates were analysed in two different temperature regimes, 12 and 24 °C on malt extract agar and found to segregate as a continuous character. The assay identified three QTL for growth rate at low temperature positioned on the linkage groups 1, 17 and 19 with peak LOD values of 3.2, 2.9 and 4.8, respectively. At the QTL for high temperature growth, peak LOD values of 1.3, 2.8 and 2.2, were identified. The three QTL for the low temperature regime explained 20.9, 18.1 and 24.0 % of the variation in the mycelial growth rate, respectively. The broad-sense heritability was estimated to be 0.97 and 0.95 for growth rate at low and high temperatures, respectively. Two of the QTL for the mycelial growth rate were shown to be tightly linked to the intersterility genes S and P, which control mating within and between closely related species and intersterility groups of H. annosum s.lat. Isolates with a plus allele at the intersterility loci had a higher growth rate than isolates that harboured minus alleles.  相似文献   

10.
Fusarium head blight of wheat is an extremely damaging disease, causing severe losses in seed yield and quality. The objective of the current study was to examine and characterize alternate sources of resistance to Fusarium head blight (FHB). Ninety-one F1-derived doubled haploid lines from the cross Triticum aestivum 'Wuhan-1' x Triticum aestivum 'Maringa' were examined for disease reaction to Fusarium graminearum by single-floret injection in replicated greenhouse trials and by spray inoculation in replicated field trials. Field and greenhouse experiments were also used to collect agronomic and spike morphology characteristics. Seed samples from field plots were used for deoxynivalenol (DON) determination. A total of 328 polymorphic microsatellite loci were used to construct a genetic linkage map in this population and together these data were used to identify QTL controlling FHB resistance, accumulation of DON, and agronomic and spike morphology traits. The analysis identified QTL for different types of FHB resistance in four intervals on chromosomes 2DL, 3BS, and 4B. The QTLs on 4B and 3BS proximal to the centromere are novel and not reported elsewhere. QTL controlling accumulation of DON independent of FHB resistance were located on chromosomes 2DS and 5AS. Lines carrying FHB resistance alleles on 2DL and 3BS showed a 32% decrease in disease spread after single-floret injection. Lines carrying FHB resistance alleles on 3BS and 4B showed a 27% decrease from the mean in field infection. Finally, lines carrying favourable alleles on 3BS and 5AS, showed a 17% reduction in DON accumulation. The results support a polygenic and quantitative mode of inheritance and report novel FHB resistance loci. The data also suggest that resistance to FHB infection and DON accumulation may be controlled, in part, by independent loci and (or) genes.  相似文献   

11.
Different thermal environments impose strong, differential selection on populations, leading to local adaptation, but the genetic basis of thermal adaptation is poorly understood. We used quantitative trait locus (QTL) mapping in the fungal wheat pathogen Zymoseptoria tritici to study the genetic architecture of thermal adaptation and identify candidate genes. Four wild-type strains originating from the same thermal environment were crossed to generate two mapping populations with 263 (cross 1) and 261 (cross 2) progeny. Restriction site-associated DNA sequencing was used to genotype 9745 (cross 1) and 7333 (cross 2) single-nucleotide polymorphism markers segregating within the mapping population. Temperature sensitivity was assessed using digital image analysis of colonies growing at two different temperatures. We identified four QTLs for temperature sensitivity, with unique QTLs found in each cross. One QTL had a logarithm of odds score >11 and contained only six candidate genes, including PBS2, encoding a mitogen-activated protein kinase kinase associated with low temperature tolerance in Saccharomyces cerevisiae. This and other QTLs showed evidence for pleiotropy among growth rate, melanization and growth morphology, suggesting that many traits can be correlated with thermal adaptation in fungi. Higher temperatures were highly correlated with a shift to filamentous growth among the progeny in both crosses. We show that thermal adaptation has a complex genetic architecture, with natural populations of Z. tritici harboring significant genetic variation for this trait. We conclude that Z. tritici populations have the potential to adapt rapidly to climate change and expand into new climatic zones.  相似文献   

12.
Ten of 19 (53%) tested isolates of Fusarium acuminatum , from different geographical origins and sources, showed in vitro antagonistic activity (inhibition at distance) to mycelial growth of F. moniliforme. Moreover, when F. acuminatum ITEM-728 was tested against 25 different fungal species, an initial inhibition at a distance was observed which was followed by the spread of the F. acuminatum mycelium over the opposite fungal colony to various degrees. Most of the F. acuminatum isolates which showed antagonistic activity proved to be enniatin B (EB) producers, and some of them also formed moniliformin (MF). The toxic activity of the methanol extract of F. acuminatum ITEM-728 towards some test microorganisms was closely related to the EB concentration. In particular, Bacillus subtilis proved to be a very sensitive test microorganism.  相似文献   

13.
The kinetics of the production of fumonisin B1 (FB1) by Fusarium moniliforme MRC 826 in corn cultures was investigated as a function of fungal growth at various incubation temperatures. The growth rate of F. moniliforme, as measured by ergosterol concentration, was higher at 25 degrees C than at 20 degrees C, reaching a stationary phase after 4 to 6 weeks in both cases. FB1 production commenced after 2 weeks during the active growth phase, continued to increase during the stationary phase, and decreased after 13 weeks. The overall maximal yield of FB1 (17.9 g/kg, dry weight) was obtained in corn cultures incubated at 20 degrees C for 13 weeks, but it was not significantly (P greater than 0.05) higher than the maximum yield (16.5 g/kg, dry weight) obtained at 25 degrees C after 11 weeks. However, a significantly (P less than 0.05) higher mean yield was detected at 25 degrees C (9.5 g/kg, dry weight) than at 20 degrees C (8.7 g/kg, dry weight). Production reached a plateau after 7 weeks of incubation at 25 degrees C or 9 weeks of incubation at 20 degrees C. The maximal production of FB1 at 30 degrees C was very low (0.6 g/kg, dry weight). FB1 was also found to be heat stable, as there was no reduction in the FB1 concentration after boiling culture material of F. moniliforme MRC 826.  相似文献   

14.
Validation of quantitative trait loci (QTLs) is a prerequisite to marker assisted selection (MAS), however, only a fraction of QTLs identified for important plant traits have been independently tested for validation. Resistance to the diseases kernel discoloration (KD) and Fusarium head blight (FHB) in barley is complex and technically difficult to assess, and therefore QTLs for these traits are suitable targets for MAS. We selected two lines, from a QTL mapping population created using the resistant variety Chevron, and crossed them to susceptible parents to generate two validation populations. Genetic maps of both populations were developed for five chromosomes covering 15 selected regions containing QTLs for FHB severity, KD score and concentration of deoxynivalenol (DON), a mycotoxin produced by the FHB pathogen. QTL analyses using these validation populations confirmed that five of the possible 15 QTL regions were associated with at least one of the three traits. While some QTL were detected inconsistently across environments, QTL that could be subjected to validation in both populations were confirmed in both populations in seven out of eight instances. A QTL for KD score on chromosome 6(6H) was confirmed in both validation populations in eight of nine environments and was also associated with FHB in three of six environments. A QTL for FHB on chromosome 2(2H) was confirmed and was also associated with KD and heading date. Marker assisted selection at these two QTLs should enhance disease resistance, however, the QTL on chromosome 2(2H) will also delay heading date.  相似文献   

15.
The kinetics of the production of fumonisin B1 (FB1) by Fusarium moniliforme MRC 826 in corn cultures was investigated as a function of fungal growth at various incubation temperatures. The growth rate of F. moniliforme, as measured by ergosterol concentration, was higher at 25 degrees C than at 20 degrees C, reaching a stationary phase after 4 to 6 weeks in both cases. FB1 production commenced after 2 weeks during the active growth phase, continued to increase during the stationary phase, and decreased after 13 weeks. The overall maximal yield of FB1 (17.9 g/kg, dry weight) was obtained in corn cultures incubated at 20 degrees C for 13 weeks, but it was not significantly (P greater than 0.05) higher than the maximum yield (16.5 g/kg, dry weight) obtained at 25 degrees C after 11 weeks. However, a significantly (P less than 0.05) higher mean yield was detected at 25 degrees C (9.5 g/kg, dry weight) than at 20 degrees C (8.7 g/kg, dry weight). Production reached a plateau after 7 weeks of incubation at 25 degrees C or 9 weeks of incubation at 20 degrees C. The maximal production of FB1 at 30 degrees C was very low (0.6 g/kg, dry weight). FB1 was also found to be heat stable, as there was no reduction in the FB1 concentration after boiling culture material of F. moniliforme MRC 826.  相似文献   

16.
Mouse fibroblast senescence in vitro is an important model for the study of aging at cellular level. However, common laboratory mouse strains may have lost some important allele variations related to aging processes. In this study, growth in vitro of tail skin fibroblasts (TSFs) derived from a wild-derived stock, Pohnpei (Pohn) mice, differed from growth of control C57BL/6 J (B6) TSFs. Pohn TSFs exhibited higher proliferative ability, fewer apoptotic cells, decreased expression of Cip1, smaller surface areas, fewer cells positive for senescence associated-beta-galactosidase (SA-beta-gal) and greater resistance to H(2)O(2)-induced SA-beta-gal staining and Cip1 expression. These data suggest that TSFs from Pohn mice resist cellular senescence-like changes. Using large clone ratio (LCR) as the phenotype, a quantitative trait locus (QTL) analysis in a Pohn/B6 backcross population found four QTLs for LCR: Fcs1 on Chr 3 at 55 CM; Fcs2 on Chr X at 50 CM; Fcs3 on Chr 4 at 51 CM and Fcs4 on Chr 10 at 25 CM. Together, these four QTLs explain 26.1% of the variations in LCRs in the N2 population. These are the first QTLs reported that regulate fibroblast growth. Glutathione S transferase mu (GST-mu) genes are overrepresented in the 95% confidence interval of Fcs1, and Pohn TSFs have higher H(2)O(2)-induced GST-mu 4, 5 and 7 mRNA levels than B6 TSFs. These enzymes may protect Pohn TSFs from oxidation.  相似文献   

17.
Fusarium avenaceum is reported for the first time as a cause of rotting of potato tubers in Britain. The progress of rotting in tubers infected with F. avenaceum has been compared with dry rot due to F. caeruleum in the laboratory, clamp and potato store. Of the four varieties, Majestic, King Edward, Doon Star and Arran Pilot, tested for susceptibility, King Edward was the most susceptible to F. avenaceum and Doon Star to F. caeruleum.
Optimum temperatures for growth on potato-dextrose agar were 20-25 C. for F. avenaceum and 20 C. for F. caeruleum ; maximum temperatures were > 30 and 30 C. respectively. For infection of wounded potato tubers, cardinal temperatures for F. avenaceum were similar to those on agar, but for F. caeruleum the optimum was 15 C. and the maximum 25 C. The optimum temperature for rotting tended, with both species, to be higher in the more susceptible potato varieties. At low temperatures F. caeruleum caused quicker rotting than did F. avenaceum , even though its rate of growth on agar was scarcely more than half that of the latter.
High humidity favoured rotting especially by F. avenaceum; F. caeruleum was more tolerant of relatively low humidity. Both species caused quicker rotting in the clamp than in store, even though there was no appreciable difference in mean temperature between the clamp and the store. This was attributed to the higher atmospheric humidity in the clamp.  相似文献   

18.
Pitch canker, caused by Fusarium circinatum, is a destructive disease of Pinus species and has recently been shown to represent a substantial threat to natural and commercial forests in northern Spain. The genetic diversity of F. circinatum in the Basque Country of Spain was assessed by characterising 96 isolates based on vegetative compatibility groups (VCGs), mating type assays, polymorphic DNA-markers and amplified fragment length polymorphism (AFLP) analyses. For this purpose, F. circinatum isolates were collected from diseased Pinus radiata as well as from insects associated with this host. Overall, a low level of diversity was detected in the population. The isolates represented only two VCGs and they were all of the same mating type. AFLP analyses revealed three genotypes and polymorphic DNA-markers specific for F.?circinatum showed nine genotypes. The most common genotypes represented 97% of all isolates for AFLP analysis and 68% of isolates for the polymorphic DNA-marker sets. Over all, this indicates that pitch canker in the Basque Country of Spain is caused by a clonally propagating population of F. circinatum, typical of a recently introduced pathogen.  相似文献   

19.
The mycelial growth of 18 Fusarium solani strains isolated from sea beds of the south-eastern coast of Spain was tested on potato-dextrose-agar adjusted to different osmotic potentials with either KCl or NaCl (−1.50 to −144.54 bars) in 10 °C intervals ranging from 15 to 35 °C. Fungal growth was determined by measuring colony diameter after 4 days of incubation. Mycelial growth was maximal at 25 °C. The quantity and frequency pattern of mycelial growth of F. solani differ significantly at 15 and 25 °C, with maximal growth occurring at the highest water potential tested (−1.50 bars); and at 35 °C, with a maximal mycelial growth at −13.79 bars. The effect of water potential was independent of salt composition. The general growth pattern of F. solani showed declining growth at potentials below −41.79 bars. Fungal growth at 35 °C was always higher than that grow at 15 °C, of all the water potentials tested. Significant differences observed in the response of mycelia to water potential and temperature as main and interactive effects. The viability of cultures was increasingly inhibited as the water potential dropped, but some growth was still observed at −99.56 bars. These findings could indicate that marine strains of F. solani have a physiological mechanism that permits survival in environments with low water potential. The observed differences in viability and the magnitude of growth could indicate that the biological factors governing potential and actual growth are affected by osmotic potential in different ways.  相似文献   

20.
Fusarium head blight (FHB) in barley and wheat, caused by Fusarium graminearum, is a continual problem worldwide. Primarily, FHB reduces yield and quality, and results in the production of the toxin deoxynivalenol (DON), which can affect food safety. Identification of QTLs for FHB severity, DON level and related traits heading-date (HD) and plant-height (HT) with consistent effects across a set of environments, would provide the basis for marker-assisted selection (MAS) and potentially increase the efficiency of selection for resistance. A segregating population of 75 double-haploid lines, developed from the three-way cross Zhedar 2/ND9712//Foster, was used for genome mapping and FHB severity evaluation. A linkage map of 214 RFLP, SSR and AFLP markers was constructed. Phenotypic data were collected in replicated field trials from five environments in two growing seasons. The data were analyzed using MQTL software to detect quantitative trait locus (QTL) × environment (E) interactions. Because of the presence of QTL × E, the MQM procedure in MAPQTL was applied to identify QTLs in single environments. We identified nine QTLs for FHB severity and five for low DON. Many of the disease-related QTLs identified were coincident with FHB QTLs identified in previous studies. Only two of the QTLs identified in this study were consistent across all five environments, and both were Zhedar 2 specific. Five of the FHB QTLs were associated with HD, and two were associated with HT. Regions that appear to be promising candidates for MAS and further genetic analysis include the two FHB QTLs on chromosome 2H and one on 6H, which were also associated with low DON and later heading-date in multiple environments. This study provides a starting point for manipulating Zhedar 2-derived resistance by MAS in barley to develop cultivars that will show effective resistance under disease pressure.Communicated by H.F. Linskens  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号