首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epac1 and Epac2 are cAMP-dependent guanine-nucleotide-exchange factors for the small GTPases Rap1 and Rap2, and are known to be important mediators of cAMP signaling. The recent determination of the crystal structure of Epac2 has indicated a mechanism for the activation of the multi-domain Epac proteins. In addition, these proteins have been implicated in various cellular processes such as integrin-mediated cell adhesion and cell-cell junction formation, the control of insulin secretion and neurotransmitter release. In most of these processes, cAMP signaling through protein kinase A (PKA) is also involved, stressing the interconnectivity between Epac- and PKA-mediated signaling.  相似文献   

2.
3.
Cyclic AMP (cAMP)-dependent processes are pivotal during the early stages of adipocyte differentiation. We show that exchange protein directly activated by cAMP (Epac), which functions as a guanine nucleotide exchange factor for the Ras-like GTPases Rap1 and Rap2, was required for cAMP-dependent stimulation of adipocyte differentiation. Epac, working via Rap, acted synergistically with cAMP-dependent protein kinase (protein kinase A [PKA]) to promote adipogenesis. The major role of PKA was to down-regulate Rho and Rho-kinase activity, rather than to enhance CREB phosphorylation. Suppression of Rho-kinase impaired proadipogenic insulin/insulin-like growth factor 1 signaling, which was restored by activation of Epac. This interplay between PKA and Epac-mediated processes not only provides novel insight into the initiation and tuning of adipocyte differentiation, but also demonstrates a new mechanism of cAMP signaling whereby cAMP uses both PKA and Epac to achieve an appropriate cellular response.  相似文献   

4.
Like other small G proteins of the Ras superfamily, Rap1 is activated by distinct guanine nucleotide exchange factors (GEFs) in response to different signals to elicit cellular responses. Activation of Rap1 by cyclic AMP (cAMP) can occur via cAMP-dependent protein kinase A (PKA)-independent and PKA-dependent mechanisms. PKA-independent activation of Rap1 by cAMP is mediated by direct binding of cAMP to Rap1-guanine nucleotide exchange factors (Rap1-GEFs) Epac1 (exchange protein directly activated by cAMP 1) and Epac2 (Epac1 and Epac2 are also called cAMP-GEFI and -GEFII). The availability of cAMP analogues that selectively activate Epacs, but not PKA, provides a specific tool to activate Rap1. It has been argued that the inability of these analogues to regulate extracellular signal-regulated kinases (ERKs) signaling despite activating Rap1 provides evidence that Rap1 is incapable of regulating ERKs. We confirm that the PKA-independent activation of Rap1 by Epac1 activates a perinuclear pool of Rap1 and that this does not result in ERK activation. However, we demonstrate that this inability to regulate ERKs is not a property of Rap1 but is rather a property of Epacs themselves. The addition of a membrane-targeting motif to Epac1 (Epac-CAAX) relocalizes Epac1 from its normal perinuclear locale to the plasma membrane. In this new locale it is capable of activating ERKs in a Rap1- and cAMP-dependent manner. Rap1 activation by Epac-CAAX, but not wild-type Epac, triggers its association with B-Raf. Therefore, we propose that its intracellular localization prevents Epac1 from activating ERKs. C3G (Crk SH3 domain Guanine nucleotide exchanger) is a Rap1 exchanger that is targeted to the plasma membrane upon activation. We show that C3G can be localized to the plasma membrane by cAMP/PKA, as can Rap1 when activated by cAMP/PKA. Using a small interfering RNA approach, we demonstrate that C3G is required for the activation of ERKs and Rap1 by cAMP/PKA. This activation requires the GTP-dependent association of Rap1 with B-Raf. These data demonstrate that B-Raf is a physiological target of Rap1, but its utilization as a Rap1 effector is GEF specific. We propose a model that specific GEFs activate distinct pools of Rap1 that are differentially coupled to downstream effectors.  相似文献   

5.
cAMP controls many cellular processes mainly through the activation of protein kinase A (PKA). However, more recently PKA-independent pathways have been established through the exchange protein directly activated by cAMP (Epac), a guanine nucleotide exchange factor for the small GTPases Rap1 and Rap2. In this report, we show that cAMP can induce integrin-mediated cell adhesion through Epac and Rap1. Indeed, when Ovcar3 cells were treated with cAMP, cells adhered more rapidly to fibronectin. This cAMP effect was insensitive to the PKA inhibitor H-89. A similar increase was observed when the cells were transfected with Epac. Both the cAMP effect and the Epac effect on cell adhesion were abolished by the expression of Rap1-GTPase-activating protein, indicating the involvement of Rap1 in the signaling pathway. Importantly, a recently characterized cAMP analogue, 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate, which specifically activates Epac but not PKA, induced Rap-dependent cell adhesion. Finally, we demonstrate that external stimuli of cAMP signaling, i.e., isoproterenol, which activates the G alpha s-coupled beta 2-adrenergic receptor can induce integrin-mediated cell adhesion through the Epac-Rap1 pathway. From these results we conclude that cAMP mediates receptor-induced integrin-mediated cell adhesion to fibronectin through the Epac-Rap1 signaling pathway.  相似文献   

6.
Exchange proteins activated by cAMP (cyclic AMP) 2 (Epac2) is a guanine nucleotide exchange factor for Rap1, a small G protein involved in many cellular functions, including cell adhesion, differentiation, and exocytosis. Epac2 interacts with Ras-GTP via a Ras association (RA) domain. Previous studies have suggested that the RA domain was dispensable for Epac2 function. Here we show for the first time that Ras and cAMP regulate Epac2 function in a parallel fashion and the Ras-Epac2 interaction is required for the cAMP-dependent activation of endogenous Rap1 by Epac2. The mechanism for this requirement is not allosteric activation of Epac2 by Ras but the compartmentalization of Epac2 on the Ras-containing membranes. A computational modeling is consistent with this compartmentalization being a function of both the level of Ras activation and the affinity between Ras and Epac2. In PC12 cells, a well-established model for sympathetic neurons, the Epac2 signaling is coupled to activation of mitogen-activated protein kinases and contributes to neurite outgrowth. Taken together, the evidence shows that Epac2 is not only a cAMP sensor but also a bona fide Ras effector. Coincident detection of both cAMP and Ras signals is essential for Epac2 to activate Rap1 in a temporally and spatially controlled manner.  相似文献   

7.
cAMP regulates a wide range of processes through its downstream effectors including PKA, and the family of guanine nucleotide exchange factors. Depending on the cell type, cAMP inhibits or stimulates growth and proliferation in a PKA-dependent or independent manner. PKA-independent effects are mediated by PI 3-kinases-Akt signaling and EPAC1 (exchange protein directly activated by cAMP) activation. Recently, we reported PKA-independent activation of the protein kinase Akt as well co-immunoprecipitation of Epac1 with Rap1, p-Akt(Thr-308), and p-Akt(Ser-473) in forskolin-stimulated macrophages. To further probe the role of Epac1 in Akt protein kinase activation and cellular proliferation, we employed the cAMP analog 8-CPT-2-O-Me-cAMP, which selectively binds to Epac1 and triggers Epac1 signaling. We show the association of Epac1 with activated Akt kinases by co-immunoprecipitation and GST-pulldown assays. Silencing Epac1 gene expression by RNA interference significantly reduced levels of Epac1 mRNA, Epac protein, Rap1 GTP, p-ERK1/2, p-B-Raf, p110alpha catalytic subunit of PI 3-kinase, p-PDK, and p-p(70s6k). Silencing Epac1 gene expression by RNA interference also suppressed 8-CPT-2-O-Me-cAMP-upregulated protein and DNA synthesis. Concomitantly, 8-CPT-2-O-Me-cAMP-mediated upregulation of Akt(Thr-308) protein kinase activity and p-Akt(Thr-308) levels was prevented in plasma membranes and nuclei of the cells. In contrast, silencing Epac1 gene expression reduced Akt(Ser-473) kinase activity and p-Akt(Ser-473) levels in plasma membranes, but showed negligible effects on nuclear activity. In conclusion, we show that cAMP-induced Akt kinase activation and cellular proliferation is mediated by Epac1 which appears to function as an accessory protein for Akt activation.  相似文献   

8.
β1 and β2 adrenergic receptors (βARs) are highly homologous but fulfill distinct physiological and pathophysiological roles. Here we show that both βAR subtypes activate the cAMP-binding protein Epac1, but they differentially affect its signaling. The distinct effects of βARs on Epac1 downstream effectors, the small G proteins Rap1 and H-Ras, involve different modes of interaction of Epac1 with the scaffolding protein β-arrestin2 and the cAMP-specific phosphodiesterase (PDE) variant PDE4D5. We found that β-arrestin2 acts as a scaffold for Epac1 and is necessary for Epac1 coupling to H-Ras. Accordingly, knockdown of β-arrestin2 prevented Epac1-induced histone deacetylase 4 (HDAC4) nuclear export and cardiac myocyte hypertrophy upon β1AR activation. Moreover, Epac1 competed with PDE4D5 for interaction with β-arrestin2 following β2AR activation. Dissociation of the PDE4D5–β-arrestin2 complex allowed the recruitment of Epac1 to β2AR and induced a switch from β2AR non-hypertrophic signaling to a β1AR-like pro-hypertrophic signaling cascade. These findings have implications for understanding the molecular basis of cardiac myocyte remodeling and other cellular processes in which βAR subtypes exert opposing effects.  相似文献   

9.
Acute lung injury, sepsis, lung inflammation, and ventilator-induced lung injury are life-threatening conditions associated with lung vascular barrier dysfunction, which may lead to pulmonary edema. Increased levels of atrial natriuretic peptide (ANP) in lung circulation reported in these pathologies suggest its potential role in the modulation of lung injury. Besides well recognized physiological effects on vascular tone, plasma volume, and renal function, ANP may exhibit protective effects in models of lung vascular endothelial cell (EC) barrier dysfunction. However, the molecular mechanisms of ANP protective effects are not well understood. The recently described cAMP-dependent guanine nucleotide exchange factor (GEF) Epac activates small GTPase Rap1, which results in activation of small GTPase Rac-specific GEFs Tiam1 and Vav2 and Rac-mediated EC barrier protective responses. Our results show that ANP stimulated protein kinase A and the Epac/Rap1/Tiam/Vav/Rac cascade dramatically attenuated thrombin-induced pulmonary EC permeability and the disruption of EC monolayer integrity. Using pharmacological and molecular activation and inhibition of cAMP-and cGMP-dependent protein kinases (PKA and PKG), Epac, Rap1, Tiam1, Vav2, and Rac we linked ANP-mediated protective effects to the activation of Epac/Rap and PKA signaling cascades, which dramatically inhibited the Rho pathway of thrombin-induced EC hyper-permeability. These results suggest a novel mechanism of ANP protective effects against agonist-induced pulmonary EC barrier dysfunction via inhibition of Rho signaling by Epac/Rap1-Rac and PKA signaling cascades.  相似文献   

10.
11.
12.
Cyclic adenosine monophosphate (cAMP) is a second messenger that relays a wide range of hormone responses. In this paper, we demonstrate that the nuclear pore component RanBP2 acts as a negative regulator of cAMP signaling through Epac1, a cAMP-regulated guanine nucleotide exchange factor for Rap. We show that Epac1 directly interacts with the zinc fingers (ZNFs) of RanBP2, tethering Epac1 to the nuclear pore complex (NPC). RanBP2 inhibits the catalytic activity of Epac1 in vitro by binding to its catalytic CDC25 homology domain. Accordingly, cellular depletion of RanBP2 releases Epac1 from the NPC and enhances cAMP-induced Rap activation and cell adhesion. Epac1 also is released upon phosphorylation of the ZNFs of RanBP2, demonstrating that the interaction can be regulated by posttranslational modification. These results reveal a novel mechanism of Epac1 regulation and elucidate an unexpected link between the NPC and cAMP signaling.  相似文献   

13.
Neurotensin (NT), a gut peptide, plays important roles in gastrointestinal secretion, inflammation, and growth of normal and neoplastic tissues. cAMP regulates the secretion of hormones via its effector proteins protein kinase A (PKA) or Epac (exchange protein directly activated by cAMP). The small GTPase Rap1 can be activated by both PKA and Epac; however, the role of Rap1 in hormone secretion is unknown. Here, using the BON human endocrine cell line, we found that forskolin (FSK)-stimulated NT secretion was reduced by inhibition of Rap1 expression and activity. FSK-stimulated NT secretion was enhanced by overexpression of either wild-type or constitutively active Rap1. Epac activators and wild-type Epac enhanced NT release and Rap1 activity. In contrast, overexpression of a cAMP binding mutant, EpacR279E, decreased NT release and Rap1 activity. PKA activation increased NT release and Rap1 activity. FSK-stimulated NT release was reduced by PKA inhibition and the dominant negative Rap1N17. NT secretion, stimulated by Epac activation, was reduced by PKA inhibition; NT release, stimulated by PKA activation, was enhanced by wild-type Epac but reduced by the mutant EpacR279E. Finally, prostaglandin E2 (PGE2), a physiological agent that increases cAMP, stimulated NT secretion via cAMP/PKA/Rap1. Importantly, we demonstrate that PKA and Epac mediate the cAMP-induced NT secretion synergistically by converging at the common downstream target protein Rap1. Moreover, PGE2, a potent mediator of inflammation and associated with colorectal carcinogenesis, stimulates NT release suggesting a possible link between PGE2 and NT on intestinal inflammatory disorders and colorectal cancers.  相似文献   

14.
Guanine nucleotide exchange factors (GEFs) and their associated GTP-binding proteins (G-proteins) are key regulatory elements in the signal transduction machinery that relays information from the extracellular environment into specific intracellular responses. Among them, the MAPK cascades represent ubiquitous downstream effector pathways. We have previously described that, analogous to the Ras-dependent activation of the Erk-1/2 pathway, members of the Rho family of small G-proteins activate the JNK cascade when GTP is loaded by their corresponding GEFs. Searching for novel regulators of JNK activity we have identified Epac (exchange protein activated by cAMP) as a strong activator of JNK-1. Epac is a member of a growing family of GEFs that specifically display exchange activity on the Rap subfamily of Ras small G-proteins. We report here that while Epac activates the JNK severalfold, a constitutively active (G12V) mutant of Rap1b does not, suggesting that Rap-GTP is not sufficient to transduce Epac-dependent JNK activation. Moreover, Epac signaling to the JNKs was not blocked by inactivation of endogenous Rap, suggesting that Rap activation is not necessary for this response. Consistent with these observations, domain deletion mutant analysis shows that the catalytic GEF domain is dispensable for Epac-mediated activation of JNK. These studies identified a region overlapping the Ras exchange motif domain as critical for JNK activation. Consistent with this, an isolated Ras exchange motif domain from Epac is sufficient to activate JNK. We conclude that Epac signals to the JNK cascade through a new mechanism that does not involve its canonical catalytic action, i.e. Rap-specific GDP/GTP exchange. This represents not only a novel way to activate the JNKs but also a yet undescribed mechanism of downstream signaling by Epac.  相似文献   

15.
Signaling by the B cell antigen receptor (BCR) is essential for B lymphocyte homeostasis and immune function. In immature B cells, ligation of the BCR promotes growth arrest and apoptosis, and BCR-driven balancing between pro-apoptotic extracellular signal-regulated kinase 1 and 2 (ERK1/2) and anti-apoptotic phosphoinositide 3-kinase-dependent Akt seems to define the final cellular apoptotic response. Dysfunction of these late BCR signaling events can lead to the development of immunological diseases. Here we report on novel cyclic AMP-dependent mechanisms of BCR-induced growth arrest and apoptosis in the immature B lymphoma cell line WEHI-231. BCR signaling to ERK1/2 and Akt requires cyclic AMP-regulated Epac, the latter acting as a guanine nucleotide exchange factor for Rap1 and H-Ras independent of protein kinase A. Importantly, activation of endogenously expressed Epac by a specific cyclic AMP analog enhanced the induction of growth arrest (reduced DNA synthesis) and apoptosis (nuclear condensation, annexin V binding, caspase-3 cleavage and poly-ADP-ribose polymerase processing) by the BCR. Our data indicate that cyclic AMP-dependent Epac signals to ERK1/2 and Akt upon activation of Rap1 and H-Ras, and is involved in BCR-induced growth arrest and apoptosis in WEHI-231 cells.  相似文献   

16.
Isoform 1 and isoform 2 of exchange protein directly activated by cAMP (Epac1 and Epac2) contribute to cAMP signaling in numerous cellular processes. Their guanine-nucleotide exchange factor (GEF) activity toward the small GTP-binding protein Rap1 is stimulated by the agonist cAMP. CE3F4, a tetrahydroquinoline analog, prevents Epac1 activation in vitro and in living cultured cells by inhibiting the GEF activity of Epac1. However, the activity of the (R)- and (S)-enantiomers of CE3F4, as well as the ability of CE3F4 and its analogs to inhibit Epac2 GEF activity, have not yet been investigated. In this study, we report that (R)-CE3F4 is a more potent cAMP antagonist than racemic CE3F4 and (S)-CE3F4, inhibiting the GEF activity of Epac1 with 10-times more efficiency than (S)-CE3F4. Epac2, in contrast to Epac1, is activated more efficiently by cAMP than by 8-(4-chlorophenylthio)-2′-O-methyladenosine-3′,5′-cyclic monophosphate (007), an Epac-selective cAMP analog. (R)-CE3F4 displays Epac isoform preference, with 10-fold selectivity for Epac1 over Epac2. Deletion of the N-terminal cyclic nucleotide-binding domain of Epac2 does not affect the characteristics of activation of Epac2 by cAMP and by 007, nor its inhibition by CE3F4. Finally, the evaluation of a series of CE3F4 structural analogs as GEF inhibitors allowed identifying structural features that are important for high Epac1 inhibitory activity of CE3F4. We conclude that the (R)-enantiomer of CE3F4 is a preferential inhibitor of Epac1 with high potency in the low micromolar range, and we suggest that this compound may be a useful pharmacological tool for investigating the functional role of Epac1 in cAMP signaling.  相似文献   

17.
18.
Cyclic adenosine monophosphate (cAMP) is a universal second messenger that, in eukaryotes, was believed to act only on cAMP-dependent protein kinase A (PKA) and cyclic nucleotide-regulated ion channels. Recently, guanine nucleotide exchange factors specific for the small GTP-binding proteins Rap1 and Rap2 (Epacs) were described, which are also activated directly by cAMP. Here, we have determined the three-dimensional structure of the regulatory domain of Epac2, which consists of two cyclic nucleotide monophosphate (cNMP)-binding domains and one DEP (Dishevelled, Egl, Pleckstrin) domain. This is the first structure of a cNMP-binding domain in the absence of ligand, and comparison with previous structures, sequence alignment and biochemical experiments allow us to delineate a mechanism for cyclic nucleotide-mediated conformational change and activation that is most likely conserved for all cNMP-regulated proteins. We identify a hinge region that couples cAMP binding to a conformational change of the C-terminal regions. Mutations in the hinge of Epac can uncouple cAMP binding from its exchange activity.  相似文献   

19.
The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.  相似文献   

20.
Although it has been shown that Epac1 mRNA is expressed ubiquitously and Epac2 mRNA predominantly in the brain and endocrine tissues, developmental and pathophysiological changes of these molecules have not been characterized. Developmental changes were analyzed in murine heart, brain, kidneys, and lungs by RT-PCR analysis, which revealed more drastic developmental changes of Epac2 mRNA than Epac1. Only the Epac2 mRNA in kidney showed a transient expression pattern with dramatic decline into adulthood. In addition to developmental changes, we found that Epac gene expression was upregulated in myocardial hypertrophy induced by chronic isoproterenol infusion or pressure overload by transverse aortic banding. Both Epac1 and Epac2 mRNA were upregulated in isoproterenol-induced left ventricular hypertrophy, whereas only Epac1 was increased in pressure overload-induced hypertrophy. Stimulation of H9c2, cardiac myoblast cells, with fetal calf serum, which can induce myocyte hypertrophy, upregulated Epac1 protein expression. We also demonstrated that Epac was the limiting moiety, relative to Rap, in the Epac-Rap signaling pathway in terms of stoichiometry and that Epac stimulation led to the activation of ERK1/2. Our data suggest the functional involvement of Epac in organogenesis and also in physiological as well as pathophysiological processes, such as cardiac hypertrophy. Furthermore, our results suggest the importance of the stoichiometry of Epac over that of Rap in cellular biological effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号