首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA-dependent protein kinase (DNA-PK) is composed of a 460-kDa catalytic subunit and the regulatory subunits Ku70 and Ku80. The complex is activated on DNA damage and plays an essential role in double-strand-break repair and V(D)J recombination. In addition, DNA-PK is involved in S-phase checkpoint arrest following irradiation, although its role in damage-induced checkpoint arrest is not clear. In an effort to understand the role of DNA-PK in damage signaling, human and mouse cells containing the DNA-PK catalytic subunit (DNA-PKcs proficient) were compared with those lacking DNA-PKcs for c-Jun N-terminal kinase (JNK) activity that mediates physiologic responses to DNA damage. The DNA-PKcs-proficient cells showed much tighter regulation of JNK activity after DNA damage, while the level of JNK protein in both cell lines remained unchanged. The JNK proteins physically associated with DNA-PKcs and Ku70/Ku80 heterodimer, and the interaction was significantly stimulated after DNA damage. Various JNK isoforms not only contained a DNA-PK phosphorylation consensus site (serine followed by glutamine) but also were phosphorylated by DNA-PK in vitro. Together, our results suggest that DNA damage induces physical interaction between DNA-PK and JNK, which may in turn negatively affect JNK activity through JNK phosphorylation by DNA-PK.  相似文献   

2.
RNA synthesis and DNA replication cease after DNA damage. We studied RNA synthesis using an in situ run-on assay and found ribosomal RNA (rRNA) synthesis was inhibited 24 h after UV light, gamma radiation or DNA cross-linking by cisplatin in human cells. Cisplatin led to accumulation of cells in S phase. Inhibition of the DNA repair proteins DNA-dependent protein kinase (DNA-PK) or poly(ADP-ribose) polymerase 1 (PARP-1) prevented the DNA damage-induced block of rRNA synthesis. However, DNA-PK and PARP-1 inhibition did not prevent the cisplatin-induced arrest of cell cycle in S phase, nor did it induce de novo BrdU incorporation. Loss of DNA-PK function prevented activation of PARP-1 and its recruitment to chromatin in damaged cells, suggesting regulation of PARP-1 by DNA-PK within a pathway of DNA repair. From these results, we propose a sequential activation of DNA-PK and PARP-1 in cells arrested in S phase by DNA damage causes the interruption of rRNA synthesis after DNA damage.  相似文献   

3.
DNA-dependent protein kinase (DNA-PK) is a key non-homologous-end-joining (NHEJ) nuclear serine/threonine protein kinase involved in various DNA metabolic and damage signaling pathways contributing to the maintenance of genomic stability and prevention of cancer. To examine the role of DNA-PK in processing of non-DSB clustered DNA damage, we have used three models of DNA-PK deficiency, i.e., chemical inactivation of its kinase activity by the novel inhibitors IC86621 and NU7026, knockdown and complete absence of the protein in human breast cancer (MCF-7) and glioblastoma cell lines (MO59-J/K). A compromised DNA-PK repair pathway led to the accumulation of clustered DNA lesions induced by γ-rays. Tumor cells lacking protein expression or with inhibited kinase activity showed a marked decrease in their ability to process oxidatively induced non-DSB clustered DNA lesions measured using a modified version of pulsed-field gel electrophoresis or single-cell gel electrophoresis (comet assay). In all cases, DNA-PK inactivation led to a higher level of lesion persistence even after 24–72 h of repair. We suggest a model in which DNA-PK deficiency affects the processing of these clusters first by compromising base excision repair and second by the presence of catalytically inactive DNA-PK inhibiting the efficient processing of these lesions owing to the failure of DNA-PK to disassociate from the DNA ends. The information rendered will be important for understanding not only cancer etiology in the presence of an NHEJ deficiency but also cancer treatments based on the induction of oxidative stress and inhibition of cluster repair.  相似文献   

4.
Protein phosphatases regulate DNA-dependent protein kinase activity   总被引:12,自引:0,他引:12  
DNA-dependent protein kinase (DNA-PK) is a complex of DNA-PK catalytic subunit (DNA-PKcs) and the DNA end-binding Ku70/Ku80 heterodimer. DNA-PK is required for DNA double strand break repair by the process of nonhomologous end joining. Nonhomologous end joining is a major mechanism for the repair of DNA double strand breaks in mammalian cells. As such, DNA-PK plays essential roles in the cellular response to ionizing radiation and in V(D)J recombination. In vitro, DNA-PK undergoes phosphorylation of all three protein subunits (DNA-PK catalytic subunit, Ku70 and Ku80) and phosphorylation correlates with inactivation of the serine/threonine protein kinase activity of DNA-PK. Here we show that phosphorylation-induced loss of the protein kinase activity of DNA-PK is restored by the addition of the purified catalytic subunit of either protein phosphatase 1 or protein phosphatase 2A (PP2A) and that this reactivation is blocked by the potent protein phosphatase inhibitor, microcystin. We also show that treating human lymphoblastoid cells with either okadaic acid or fostriecin, at PP2A-selective concentrations, causes a 50-60% decrease in DNA-PK protein kinase activity, although the protein phosphatase 1 activity in these cells was unaffected. In vivo phosphorylation of DNA-PKcs, Ku70, and Ku80 was observed when cells were labeled with [(32)P]inorganic phosphate in the presence of the protein phosphatase inhibitor, okadaic acid. Together, our data suggest that reversible protein phosphorylation is an important mechanism for the regulation of DNA-PK protein kinase activity and that the protein phosphatase responsible for reactivation in vivo is a PP2A-like enzyme.  相似文献   

5.
DNA-dependent protein kinase (DNA-PK) is activated in a two-step process whereby the Ku heterodimer first binds to the DNA double-strand breaks (dsbs) and then the DNA-PK catalytic subunit (cs) is recruited to form a repair complex. Oxidative stress is simultaneously generated along with DNA damage by ionizing radiation or chemotherapeutic agents whose impact on the DNA-PK activity has not previously been investigated. Here we show that the DNA damage-induced kinase activity of DNA-PK was modulated by oxidative stress, which was induced along with DNA dsbs in chlorambucil (Cbl)-exposed cells. Pretreatment with the antioxidants, 2(3)-t-butyl-4-hydroxyanisole or N-acetyl-l-cysteine enhanced the amount of DNA-PKcs phosphorylated at threonine 2609 (DNA-PKpThr2609) at the DNA dsbs and DNA-PK activity. Conversely, oxidative stress induced by l-buthionine (SR)-sulfoximine or glucose oxidase decreased the DNA-PK activity in Cbl-exposed cells. In addition, DNA-PKpThr2609 was poorly detectable at the site of DNA dsbs, as shown by colocalization to DNA-end-binding pH2AX or p53BP1. There was no change in the protein levels of DNA-PKcs, Ku70, or Ku86. Data from these studies provide the first evidence that oxidative stress effects posttranslational modification and assembly of DNA-PK complex at DNA dsbs, and thereby repair of DNA dsbs.  相似文献   

6.
Liaw H  Lee D  Myung K 《PloS one》2011,6(6):e21424
Hyperphosphorylation of RPA2 at serine 4 and serine 8 (S4, S8) has been used as a marker for activation of the DNA damage response. What types of DNA lesions cause RPA2 hyperphosphorylation, which kinase(s) are responsible for them, and what is the biological outcome of these phosphorylations, however, have not been fully investigated. In this study we demonstrate that RPA2 hyperphosphorylation occurs primarily in response to genotoxic stresses that cause high levels of DNA double-strand breaks (DSBs) and that the DNA-dependent protein kinase complex (DNA-PK) is responsible for the modifications in vivo. Alteration of S4, S8 of RPA2 to alanines, which prevent phosphorylations at these sites, caused increased mitotic entry with concomitant increases in RAD51 foci and homologous recombination. Taken together, our results demonstrate that RPA2 hyperphosphorylation by DNA-PK in response to DSBs blocks unscheduled homologous recombination and delays mitotic entry. This pathway thus permits cells to repair DNA damage properly and increase cell viability.  相似文献   

7.
The DNA-dependent protein kinase (DNA-PK) is required for double-strand break repair in mammalian cells. DNA-PK contains the heterodimer Ku and a 460-kDa serine/threonine kinase catalytic subunit (p460). Ku binds in vitro to DNA termini or other discontinuities in the DNA helix and is able to enter the DNA molecule by an ATP-independent process. It is clear from in vitro experiments that Ku stimulates the recruitment to DNA of p460 and activates the kinase activity toward DNA-binding protein substrates in the vicinity. Here, we have examined in human nuclear cell extracts the influence of the kinase catalytic activity on Ku binding to DNA. We demonstrate that, although Ku can enter DNA from free ends in the absence of p460 subunit, the kinase activity is required for Ku translocation along the DNA helix when the whole Ku/p460 assembles on DNA termini. When the kinase activity is impaired, DNA-PK including Ku and p460 is blocked at DNA ends and prevents their processing by either DNA polymerization, degradation, or ligation. The control of Ku entry into DNA by DNA-PK catalytic activity potentially represents an important regulation of DNA transactions at DNA termini.  相似文献   

8.
Replication protein A (RPA) is a DNA single-strand binding protein essential for DNA replication, recombination and repair. In human cells treated with the topoisomerase inhibitors camptothecin or etoposide (VP-16), we find that RPA2, the middle-sized subunit of RPA, becomes rapidly phosphorylated. This response appears to be due to DNA-dependent protein kinase (DNA-PK) and to be independent of p53 or the ataxia telangiectasia mutated (ATM) protein. RPA2 phosphorylation in response to camptothecin required ongoing DNA replication. Camptothecin itself partially inhibited DNA synthesis, and this inhibition followed the same kinetics as DNA-PK activation and RPA2 phosphorylation. DNA-PK activation and RPA2 phosphorylation were prevented by the cell-cycle checkpoint abrogator 7-hydroxystaurosporine (UCN-01), which markedly potentiates camptothecin cytotoxicity. The DNA-PK catalytic subunit (DNA-PKcs) was found to bind RPA which was replaced by the Ku autoantigen upon camptothecin treatment. DNA-PKcs interacted directly with RPA1 in vitro. We propose that the encounter of a replication fork with a topoisomerase-DNA cleavage complex could lead to a juxtaposition of replication fork-associated RPA and DNA double-strand end-associated DNA-PK, leading to RPA2 phosphorylation which may signal the presence of DNA damage to an S-phase checkpoint mechanism. Keywords: camptothecin/DNA damage/DNA-dependent protein kinase/RPA2 phosphorylation  相似文献   

9.
Lee SH  Kim CH 《Molecules and cells》2002,13(2):159-166
DNA-dependent protein kinase (DNA-PK) is a nuclear serine/threonine protein kinase that is activated upon DNA damage generated by ionizing radiation or UV-irradiation. It is a three-protein complex consisting of a 470-kDa catalytic subunit (DNA-PKcs) and the regulatory DNA binding subunits, Ku heterodimer (Ku70 and Ku80). Mouse and human cells deficient in DNA-PKcs are hypersensitive to ionizing radiation and defective in V(D)J recombination, suggesting a role for the kinase in double-strand break repair and recombination. The Ku heterodimer binds to double-strand DNA breaks produced by either DNA damage or recombination, protects DNA ends from degradation, orients DNA ends for re-ligation, and recruits its catalytic subunit and additional factors necessary for successful end-joining. DNA-PK is also involved in an early stage of damage-induced cell cycle arrest, however, it remains unclear how the enzyme senses DNA damage and transmits signals to downstream gene(s) and proteins.  相似文献   

10.
DNA-dependent protein kinase phosphorylation sites in Ku 70/80 heterodimer   总被引:5,自引:0,他引:5  
  相似文献   

11.
DNA damage triggers a complex signaling cascade involving a multitude of phosphorylation events. We found that the threonine 7 (Thr-7) residue of heat shock protein 90α (Hsp90α) was phosphorylated immediately after DNA damage. The phosphorylated Hsp90α then accumulated at sites of DNA double strand breaks and formed repair foci with slow kinetics, matching the repair kinetics of complex DNA damage. The phosphorylation of Hsp90α was dependent on phosphatidylinositol 3-kinase-like kinases, including the DNA-dependent protein kinase (DNA-PK) in particular. DNA-PK plays an essential role in the repair of DNA double strand breaks by nonhomologous end-joining and in the signaling of DNA damage. It is also present in the cytoplasm of the cell and has been suggested to play a role in cytoplasmic signaling pathways. Using stabilized double-stranded DNA molecules to activate DNA-PK, we showed that an active DNA-PK complex could be assembled in the cytoplasm, resulting in phosphorylation of the cytoplasmic pool of Hsp90α. In vivo, reverse phase protein array data for tumors revealed that basal levels of Thr-7-phosphorylated Hsp90α were correlated with phosphorylated histone H2AX levels. The Thr-7 phosphorylation of the ubiquitously produced and secreted Hsp90α may therefore serve as a surrogate biomarker of DNA damage. These findings shed light on the interplay between central DNA repair enzymes and an essential molecular chaperone.  相似文献   

12.
The DNA-dependent protein kinase (DNA-PK) and Poly(ADP-ribose) polymerase-1 (PARP1) are critical enzymes that reduce genomic damage caused by DNA lesions. They are both activated by DNA strand breaks generated by physiological and environmental factors, and they have been shown to interact. Here, we report in vivo evidence that DNA-PK and PARP1 are equally necessary for rapid repair. We purified a DNA-PK/PARP1 complex loaded on DNA and performed electron microscopy and single particle analysis on its tetrameric and dimer-of-tetramers forms. By comparison with the DNA-PK holoenzyme and fitting crystallographic structures, we see that the PARP1 density is in close contact with the Ku subunit. Crucially, PARP1 binding elicits substantial conformational changes in the DNA-PK synaptic dimer assembly. Taken together, our data support a functional, in-pathway role for DNA-PK and PARP1 in double-strand break (DSB) repair. We also propose a NHEJ model where protein-protein interactions alter substantially the architecture of DNA-PK dimers at DSBs, to trigger subsequent interactions or enzymatic reactions.  相似文献   

13.
Accumulation of DNA damage and deficiency in DNA repair potentially contribute to the progressive neuronal loss in neurodegenerative disorders, including Alzheimer disease (AD). In multicellular eukaryotes, double strand breaks (DSBs), the most lethal form of DNA damage, are mainly repaired by the nonhomologous end joining pathway, which relies on DNA-PK complex activity. Both the presence of DSBs and a decreased end joining activity have been reported in AD brains, but the molecular player causing DNA repair dysfunction is still undetermined. β-Amyloid (Aβ), a potential proximate effector of neurotoxicity in AD, might exert cytotoxic effects by reactive oxygen species generation and oxidative stress induction, which may then cause DNA damage. Here, we show that in PC12 cells sublethal concentrations of aggregated Aβ(25-35) inhibit DNA-PK kinase activity, compromising DSB repair and sensitizing cells to nonlethal oxidative injury. The inhibition of DNA-PK activity is associated with down-regulation of the catalytic subunit DNA-PK (DNA-PKcs) protein levels, caused by oxidative stress and reversed by antioxidant treatment. Moreover, we show that sublethal doses of Aβ(1-42) oligomers enter the nucleus of PC12 cells, accumulate as insoluble oligomeric species, and reduce DNA-PK kinase activity, although in the absence of oxidative stress. Overall, these findings suggest that Aβ mediates inhibition of the DNA-PK-dependent nonhomologous end joining pathway contributing to the accumulation of DSBs that, if not efficiently repaired, may lead to the neuronal loss observed in AD.  相似文献   

14.
Mouse embryonic stem (mES) cells will give rise to all of the cells of the adult mouse, but they failed to rejoin half of the DNA double-strand breaks (dsb) produced by high doses of ionizing radiation. A deficiency in DNA-PK(cs) appears to be responsible since mES cells expressed <10% of the level of mouse embryo fibroblasts (MEFs) although Ku70/80 protein levels were higher than MEFs. However, the low level of DNA-PK(cs) found in wild-type cells appeared sufficient to allow rejoining of dsb after doses <20Gy even in G1 phase cells. Inhibition of DNA-PK(cs) with wortmannin and NU7026 still sensitized mES cells to radiation confirming the importance of the residual DNA-PK(cs) at low doses. In contrast to wild-type cells, mES cells lacking H2AX, a histone protein involved in the DNA damage response, were radiosensitive but they rejoined double-strand breaks more rapidly. Consistent with more rapid dsb rejoining, H2AX(-/-) mES cells also expressed 6 times more DNA-PK(cs) than wild-type mES cells. Similar results were obtained for ATM(-/-) mES cells. Differentiation of mES cells led to an increase in DNA-PK(cs), an increase in dsb rejoining rate, and a decrease in Ku70/80. Unlike mouse ES, human ES cells were proficient in rejoining of dsb and expressed high levels of DNA-PK(cs). These results confirm the importance of homologous recombination in the accurate repair of double-strand breaks in mES cells, they help explain the chromosome abnormalities associated with deficiencies in H2AX and ATM, and they add to the growing list of differences in the way rodent and human cells deal with DNA damage.  相似文献   

15.
Ku86 is one of the two regulatory subunits of the DNA-PK (DNA-dependent protein kinase) complex that is required for DNA double-strand break repair in mammalian cells. In a previous study, by means of somatic gene targeting, we generated human cell lines deficient in Ku86 (XRCC5). Heterozygous human Ku86 cells exhibited a wide array of haploinsufficient phenotypes, including sensitivity to ionizing radiation, defects in DNA-PK and DNA end-binding activities, elevated levels of p53 (TP53) and gamma-H2AX foci, and a defect in cell proliferation with an increase in the frequency of aneuploid cells. Here we demonstrate that the overexpression of a human Ku86 cDNA complemented the deficiencies of these cells to wild-type levels. In contrast, Ku86 overexpression only partially rescued the telomere defects characteristic of Ku86 heterozygous cells and did not rescue their genetic instability. Additionally, in stark contrast to every other species described to date, we had shown earlier that homozygous human Ku86(-/-) cells are inviable, because they undergo 8 to 10 rounds of cell division before succumbing to apoptosis. The tumor suppressor protein p53 regulates the DNA damage response in mammalian cells and triggers apoptosis in the face of excessive DNA damage. Correspondingly, ablation of p53 expression has repeatedly been shown to significantly ameliorate the pathological effects of loss-of-function mutations for a large number of DNA repair genes. Surprisingly, however, even in a p53-null genetic background, the absence of Ku86 proved lethal. Thus the gene encoding Ku86 (XRCC5) is an essential gene in human somatic cells, and its absence cannot be suppressed by the loss of p53 function. These results suggest that Ku86 performs an essential role in telomere maintenance in human cells.  相似文献   

16.
DNA-dependent protein kinase (DNA-PK) is activated in a two-step process whereby the Ku heterodimer first binds to the DNA double-strand breaks (dsbs) and then the DNA-PK catalytic subunit (cs) is recruited to form a repair complex. Oxidative stress is simultaneously generated along with DNA damage by ionizing radiation or chemotherapeutic agents whose impact on the DNA-PK activity has not previously been investigated. Here we show that the DNA damage-induced kinase activity of DNA-PK was modulated by oxidative stress, which was induced along with DNA dsbs in chlorambucil (Cbl)-exposed cells. Pretreatment with the antioxidants, 2(3)-t-butyl-4-hydroxyanisole or N-acetyl-l-cysteine enhanced the amount of DNA-PKcs phosphorylated at threonine 2609 (DNA-PKpThr2609) at the DNA dsbs and DNA-PK activity. Conversely, oxidative stress induced by l-buthionine (SR)-sulfoximine or glucose oxidase decreased the DNA-PK activity in Cbl-exposed cells. In addition, DNA-PKpThr2609 was poorly detectable at the site of DNA dsbs, as shown by colocalization to DNA-end-binding pH2AX or p53BP1. There was no change in the protein levels of DNA-PKcs, Ku70, or Ku86. Data from these studies provide the first evidence that oxidative stress effects posttranslational modification and assembly of DNA-PK complex at DNA dsbs, and thereby repair of DNA dsbs.  相似文献   

17.
Checkpoints are biochemical pathways that provide cells a mechanism to detect DNA damage and respond by arresting the cell cycle to allow DNA repair. The conserved checkpoint kinase, Chk1, regulates mitotic progression in response to DNA damage by blocking the activation of Cdk1/cyclin B. In this study, we investigate the regulatory interaction between Chk1 and members of the Atm family of kinases and the functional role of the C-terminal non-catalytic domains of Chk1. Chk1 stimulates the kinase activity of DNA-PK (protein kinase) complexes, which leads to increased phosphorylation of p53 on Ser-15 and Ser-37. In addition, Chk1 stimulates DNA-PK-dependent end-joining reactions in vitro. We also show that Chk1 protein complexes bind to single-stranded DNA and DNA ends. These results indicate a connection between components that regulate the checkpoint pathways and DNA-PK complex proteins, which have a role in the repair of double strand breaks.  相似文献   

18.
Replication protein A (RPA) is a single-stranded DNA (ssDNA) binding protein involved in various processes, including nucleotide excision repair and DNA replication. The 32 kDa subunit of RPA (RPA32) is phosphorylated in response to various DNA-damaging agents, and two protein kinases, ataxia-telangiectasia mutated (ATM) and the DNA-dependent protein kinase (DNA-PK) have been implicated in DNA damage-induced phosphorylation of RPA32. However, the relative roles of ATM and DNA-PK in the site-specific DNA damage-induced phosphorylation of RPA32 have not been reported. Here we generated a phosphospecific antibody that recognizes Thr21-phosphorylated RPA32. We show that both DNA-PK and ATM phosphorylate RPA32 on Thr21 in vitro. Ionizing radiation (IR)-induced phosphorylation of RPA32 on Thr21 was defective in ATM-deficient cells, while camptothecin (CPT)-induced phosphorylation of RPA32 on Thr21 was defective in cells lacking functional DNA-PK. Neither ATM nor DNA-PK was required for etoposide (ETOP)-induced RPA32 Thr21 phosphorylation. However, two inhibitors of the ATM- and Rad3-related (ATR) protein kinase activity prevented ETOP-induced Thr21 phosphorylation. Inhibition of DNA replication prevented both the IR- and CPT-induced phosphorylation of Thr21, whereas ETOP-induced Thr21 phosphorylation did not require active DNA replication. Thus, the regulation of RPA32 Thr21 phosphorylation by multiple DNA damage response protein kinases suggests that Thr21 phosphorylation of RPA32 is a crucial step within the DNA damage response.  相似文献   

19.
Human polynucleotide kinase/phosphatase (PNKP) is a dual specificity 5'-DNA kinase/3'-DNA phosphatase, with roles in base excision repair, DNA single-strand break repair and non-homologous end joining (NHEJ); yet precisely how PNKP functions in the repair of DNA double strand breaks (DSBs) remains unclear. We demonstrate that PNKP is phosphorylated by the DNA-dependent protein kinase (DNA-PK) and ataxia-telangiectasia mutated (ATM) in vitro. The major phosphorylation site for both kinases was serine 114, with serine 126 being a minor site. Ionizing radiation (IR)-induced phosphorylation of cellular PNKP on S114 was ATM dependent, whereas phosphorylation of PNKP on S126 required both ATM and DNA-PK. Inactivation of DNA-PK and/or ATM led to reduced PNKP at DNA damage sites in vivo. Cells expressing PNKP with alanine or aspartic acid at serines 114 and 126 were modestly radiosensitive and IR enhanced the association of PNKP with XRCC4 and DNA ligase IV; however, this interaction was not affected by mutation of PNKP phosphorylation sites. Purified PNKP protein with mutation of serines 114 and 126 had decreased DNA kinase and DNA phosphatase activities and reduced affinity for DNA in vitro. Together, our results reveal that IR-induced phosphorylation of PNKP by ATM and DNA-PK regulates PNKP function at DSBs.  相似文献   

20.
Expression of DNA-dependent protein kinase in human granulocytes   总被引:3,自引:0,他引:3  
Human polymorphonuclear leukocytes (PMN) have been reported to completely lack of DNA-dependent protein kinase (DNA-PK) which is composed of Ku protein and the catalytic subunit DNA-PKcs, needed for nonhomologous end-joining (NHEJ) of DNA double-strand breaks. Promyelocytic HL-60 cells express a variant form of Ku resulting in enhanced radiation sensitivity. This raises the question if low efficiency of NHEJ, instrumental for the cellular repair of oxidative damage, is a normal characteristic of myeloid differentiation. Here we confirmed the complete lack of DNAPK in PMN protein extracts, and the expression of the truncated Ku86 variant form in HL-60. However, this degradation of DNA-PK was shown to be due to a DNA-PK-degrading protease in PMN and HL-60. In addition, by using a protease-resistant whole cell assay, both Ku86 and DNA-PKcs could be demonstrated in PMN, suggesting the previously reported absence in PMN of DNA-PK to be an artefact. The levels of Ku86 and DNA-PKcs were much reduced in PMN, as compared with that of the lymphocytes, whereas HL-60 displayed a markedly elevated DNA-PK concentration. In conclusion, our findings provide evidence of reduced, not depleted expression of DNA-PK during the mature stages of myeloid differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号