首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Recently published compression tests on PMMA/bone specimens extracted after vertebral bone augmentation indicated that PMMA/bone composites were not reinforced by the trabecular bone at all. In this study, the reasons for this unexpected behavior should be investigated by using non-linear micro-FE models. Six human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Six cylindrical PMMA/bone specimens were extracted from the augmented region, scanned with a micro-CT system and tested in compression. Four different micro-FE models were generated from these images which showed different bone tissue material behavior (with/without damage), interface behavior (perfect bonding, frictionless contact) and PMMA shrinkage due to polymerization. The non-linear stress-strain curves were compared between the different micro-FE models as well as to the compression tests of the PMMA/bone specimens. Micro-FE models with contact between bone and cement were 20% more compliant compared to those with perfect bonding. PMMA shrinkage damaged the trabecular bone already before mechanical loading, which further reduced the initial stiffness by 24%. Progressing bone damage during compression dominated the non-linear part of the stress-strain curves. The micro-FE models including bone damage and PMMA shrinkage were in good agreement with the compression tests. The results were similar with both cements. In conclusion, the PMMA/bone interface properties as well as the initial bone damage due to PMMA polymerization shrinkage clearly affected the stress-strain behavior of the composite and explained why trabecular bone did not contribute to the stiffness and strength of augmented bone.  相似文献   

2.
Trabecular bone structure may complement bone volume/total volume fraction (BV/TV) in the prediction of the mechanical properties. Nonetheless, the direct in vivo use of information pertaining to trabecular bone structure necessitates some predictive analytical model linking structure measures to mechanical properties. In this context, the purpose of this study was to combine BV/TV and topological parameters so as to better estimate the mechanical properties of trabecular bone. Thirteen trabecular bone mid-sagittal sections were imaged by magnetic resonance (MR) imaging at the resolution of 117 x 117x 300 microm(3). Topological parameters were evaluated in applying the 3D-line skeleton graph analysis (LSGA) technique to the binary MR images. The same images were used to estimate the elastic moduli by finite element analysis (FEA). In addition to the mid-sagittal section, two cylindrical samples were cored from each vertebra along vertical and horizontal directions. Monotonic compression tests were applied to these samples to measure both vertical and horizontal ultimate stresses. BV/TV was found as a strong predictor of the mechanical properties, accounting for 89-94% of the variability of the elastic moduli and for 69-86% of the variability of the ultimate stresses. Topological parameters and BV/TV were combined following two analytical formulations, based on: (1) the normalization of the topological parameters; and on (2) an exponential fit-model. The normalized parameters accounted for 96-98% of the variability of the elastic moduli, and the exponential model accounted for 80-95% of the variability of the ultimate stresses. Such formulations could potentially be used to increase the prediction of the mechanical properties of trabecular bone.  相似文献   

3.
Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure–function properties of the skeleton. With recent advances in computing power of personal computers, virtual alternatives to mechanical testing are gaining acceptance and use. We have previously introduced such a technique called structural rigidity analysis to assess mechanical strength of skeletal tissue with defects. The application of this technique is predicated upon the use of relationships defining the strength of bone as a function of its density for a given loading mode. We are to apply this technique in rat models to assess their compressive skeletal response subjected to a host of biological and pharmaceutical stimulations. Therefore, the aim of this study is to derive a relationship expressing axial compressive mechanical properties of rat cortical and cancellous bone as a function of equivalent bone mineral density, bone volume fraction or apparent density over a range of normal and pathologic bones.We used bones from normal, ovariectomized and partially nephrectomized animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial compression to failure.We obtained univariate relationships describing 71–78% of the mechanical properties of rat cortical and cancellous bone based on equivalent mineral density, bone volume fraction or apparent density over a wide range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity analysis introduced by the authors to provide a non-invasive method to assess the compressive strength of bones affected by pathology and/or treatment options.  相似文献   

4.
The purpose of the work described in this note was to determine whether drying bone, and then re-wetting it, had any important effect on its mechanical properties. Bending tests were performed on cow's bone. The effect on Young's modulus was extremely small, and insignificant in these experiments. Drying and re-wetting produced a statistically significant 5% reduction in bending strength. The work under the load deformation curve was not apparently altered by the treatment, but his value had a large variance, and the effect of drying would have to be very marked to be observable. The effect of drying and re-wetting on the mechanical properties of bone tested here can probably be ignored.  相似文献   

5.
A control group of geese (Anser anser) on a normal calcium diet for egg laying poultry was compared to egg laying geese on a calcium deficient diet. The ultimate compressive strength and modulus of elasticity of femoral cortical bone from each group were determined by compressing right circular cylinders which were 2.4 mm in height and 0.8 mm in diameter. The bending strength and bending modulus of elasticity of tibial cortical bone were determined by three point bend tests on rectangular prisms which were approximately 25 mm by 0.8 mm by 0.8 mm. Bone calcium content and eggshell calcium content were determined by atomic absorption spectrophotometry. Blood samples were analyzed for free calcium ion concentration. Histological observations included studies of cross-sectional microradiographs, examinations of cross sections stained by a modified Masson's technique, and a determination of fractional area of voids by quantitative microscopy. The average compressive modulus for the control birds was 12.0 GPa (S.D.: 6.2 GPa) while the ultimate compressive strength was 165 MPa (S.D.: 27 MPa). Calcium deprived birds showed slight, but not statistically significant, decreases in both the compressive modulus and compressive strength. The tibial three point bending modulus for the control birds was 16.5 GPa (S.D.: 2.6 GPa) while the ultimate bending strength was 256 MPa (S.D.: 58 MPa). Once again, slight though not statistically significant decreases in the bending modulus and strength were seen in the geese on the calcium deficient diet. The average calcium content (wt%) of the femora of the control birds was 20.5% (S.D.: 4.3%) and 20.6% (S.D.: 4.8%) for the tibiae. No significant differences were noted in the calcium deprived birds. The average fractional void area for the control bird femoral bone was 12.0% (S.D.: 2.6%) and 9.8% (S.D.: 1.8%) for the tibial bone. Significantly greater fractional void areas were noted in the calcium deficient birds as were profound changes in the macrocellular structure of these bones.  相似文献   

6.
Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure-function properties of the skeleton. Tensile properties of cancellous and cortical bone have been reported previously; however, no relationships describing these properties for rat bone as a function of volumetric bone mineral density (ρ(MIN)), apparent density or bone volume fraction (BV/TV) have been reported in the literature. We have shown that at macro level, compression and torsion properties of rat cortical and cancellous bone can be well described as a function of BV/TV, apparent density or ρ(MIN) using non-destructive micro-computed tomographic imaging and mechanical testing to failure. Therefore, the aim of this study is to derive a relationship expressing the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of normal and pathologic bones. We used bones from normal, ovariectomized and osteomalacic animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial tension to failure. We obtained univariate relationships describing 74-77% of the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity to provide a non-invasive method to assess the tensile behavior of bones affected by pathology and/or treatment options.  相似文献   

7.
The evolution of the mechanical properties of amniote bone   总被引:1,自引:0,他引:1  
J.D. Currey 《Journal of biomechanics》1987,20(11-12):1035-1044
162 specimens from 19 species of amniote were tested for various mechanical and physical properties to ascertain whether there were characteristic differences between different groups. All mechanical properties showed very great variation. In general the reptiles were not inferior to the mammals and birds. The histology of living forms was compared to that of fossil forms, to see whether 'weak' histology was more characteristic of primitive amniotes. The earliest reptiles probably had rather complaint bone, but it was probably tough. Modern types of bone appeared over two hundred million years ago. Very specialised bone, like that of the bullae of whales and antlers, may have evolved only in the mammals, but the fossil record is not complete enough to assert this confidently.  相似文献   

8.
9.
10.
The effects of hydration on the dynamic mechanical properties of elastin   总被引:1,自引:0,他引:1  
M A Lillie  J M Gosline 《Biopolymers》1990,29(8-9):1147-1160
The dynamic mechanical properties of elastin have been quantified over a temperature and hydration range appropriate for a biological polymer. Composite curves of the tensile properties at constant water contents between 28.1 and 44.6% (g water/100 g protein) were typical of an amorphous polymer going through its glass transition. Water content had no effect on the shape of the curves, but shifted them a distance aC along the frequency axis. The combined effects of hydration and temperature are given in a series of isoshift curves where elastin's properties are constant along any one curve. A 1% change in hydration has the same effect as a 1 degrees-2 degrees change in temperature, depending on the initial water content and temperature. Theoretical isoshift curves that matched the experimental data were predicted using the WLF equation and coefficients determined from the data. These data form a basis to predict the role of elastin in arterial disease based on changes in its chemical and physical environment.  相似文献   

11.
Bone mechanical properties are typically evaluated at relatively low strain rates. However, the strain rate related to traumatic failure is likely to be orders of magnitude higher and this higher strain rate is likely to affect the mechanical properties. Previous work reporting on the effect of strain rate on the mechanical properties of bone predominantly used nonhuman bone. In the work reported here, the effect of strain rate on the tensile and compressive properties of human bone was investigated. Human femoral cortical bone was tested longitudinally at strain rates ranging between 0.14-29.1 s(-1) in compression and 0.08-17 s(-1) in tension. Young's modulus generally increased, across this strain rate range, for both tension and compression. Strength and strain (at maximum load) increased slightly in compression and decreased (for strain rates beyond 1 s(-1)) in tension. Stress and strain at yield decreased (for strain rates beyond 1 s(-1)) for both tension and compression. In general, there seemed to be a relatively simple linear relationship between yield properties and strain rate, but the relationships between postyield properties and strain rate were more complicated and indicated that strain rate has a stronger effect on postyield deformation than on initiation of yielding. The behavior seen in compression is broadly in agreement with past literature, while the behavior observed in tension may be explained by a ductile to brittle transition of bone at moderate to high strain rates.  相似文献   

12.
13.
The purpose of the present study was to compare the effects of alendronate and alfacalcidol on cancellous and cortical bone mass and bone mechanical properties in ovariectomized rats. Twenty-six female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into four groups: the sham-operated control (Sham) group and the three ovariectomy (OVX) groups, namely, OVX + vehicle, OVX + alendronate (2.5 mg/kg, p.o., daily), and OVX + alfacalcidol (0.5 mug/kg, p.o., daily). At the end of the 8-week experimental period, bone histomorphometric analyses of cancellous bone at the proximal tibial metaphysis and cortical bone at the tibial diaphysis were performed, and the mechanical properties of the femoral distal metaphysis and femoral diaphysis were evaluated. OVX decreased cancellous bone volume per total tissue volume (BV/TV), and the maximum load of the femoral distal metaphysis, as a result of increases in serum osteocalcin (OC) levels, and also the number of osteoclasts (N.Oc), osteoclast surface (OcS) and bone formation rate (BFR) per bone surface (BS), and BFR/BV, without any effect on cortical area (Ct Ar), or maximum load of the femoral diaphysis. Alendronate prevented this decrease in cancellous BV/TV by suppressing increases in N.Oc/BS, OcS/BS, BFR/BS, and BFR/BV, without any apparent effect on Ct Ar, or maximum load of the femoral distal metaphysis and femoral diaphysis. On the other hand, alfacalcidol increased cancellous BV/TV, Ct Ar, and the maximum load of the femoral distal metaphysis and femoral diaphysis, by mildly decreasing trabecular BFR/BV, maintaining trabecular mineral apposition rate and osteoblast surface per BS, increasing periosteal and endocortical BFR/BS, and preventing an increase in endocortical eroded surface per BS. The present study clearly showed the differential skeletal effects of alendronate and alfacalcidol in ovariectomized rats. Alendronate prevented OVX-induced cancellous bone loss by suppressing bone turnover, while alfacalcidol improved cancellous and cortical bone mass and bone strength by suppressing bone resorption and maintaining or even increasing bone formation.  相似文献   

14.
A common technique to aid in implant fixation into surrounding bone is to inject bone cement into the space between the implant and surrounding bone. The most common bone cement material used clinically today is poly(methyl methacrylate), or PMMA. Although promising, there are numerous disadvantages of using PMMA in bone fixation applications which has limited its wide spread use. Specifically, the PMMA polymerization reaction is highly exothermic in situ, thus, damaging surrounding bone tissue while curing. In addition, PMMA by itself is not visible using typical medical imaging techniques (such as X-rays required to assess new bone formation surrounding the implant). Lastly, although PMMA does support new bone growth, studies have highlighted decreased osteoblast (bone forming cell) functions on PMMA compared to other common orthopedic coating materials, such as calcium phosphates and hydroxyapatite. For these reasons, the goal of this study was to begin to investigate novel additives to PMMA which can enhance its cytocompatibility properties with osteoblasts, decrease its exothermic reaction when curing, and increase its radiopacity. Results of this study demonstrated that compared to conventional (or micron) equivalents, PMMA with nanoparticles of MgO and BaSO4 reduced harmful exothermic reactions of PMMA during solidification and increased radiopacity, respectively. Moreover, osteoblast adhesion increased on PMMA with nanoparticles of MgO and BaSO4 compared with PMMA alone. This study, thus, suggests that nanoparticles of MgO and BaSO4 should be further studied for improving properties of PMMA for orthopedic applications.  相似文献   

15.
16.
Pyruvate kinase was extracted from Me2CO-dried tissue of various parts of tomato plants. Recovery of the enzyme was improved by the inclusion of thiols in the extraction medium, and its stability was increased considerably in the presence of glycerol and to a lesser extent tetramethylammonium chloride. A phosphatase was present in the tissue extracts which hydrolyses phosphoenolpyruvate in the absence of added ADP. ATP inhibited pyruvate kinase but stimulated the phosphatase, while Mg2+ stimulated both enzymes. Data obtained suggest that tomato leaf pyruvate kinase has an absolute dependence on monovalent cations for activity, K+ being the principal activator. The phosphatase was inhibited non-selectively by monovalent cations. The total activity of pyruvate kinase and its concentration on a tissue fresh weight basis was greatest in the leaves, activity increasing with the maturity of the tissue. Less enzyme was present in roots, and least in the fruit.  相似文献   

17.
Heterogeneity of the mechanical properties of demineralized bone   总被引:3,自引:0,他引:3  
Knowledge of the mechanical properties of the collagenous component of bone is required for composite modeling of bone tissue and for understanding the age- and disease-related reductions in the ductility and strength of bone. The overall goal of this study was to investigate the heterogeneity of the mechanical properties of demineralized bone which remains unexplained and may be due to differences in the collagen structure or organization or in experimental protocols. Uniaxial tension tests were conducted to measure the elastic and failure properties of demineralized human femoral (n = 10) and tibial (n = 13) and bovine humeral (n = 8) and tibial (n = 8) cortical bone. Elastic modulus differed between groups (p = 0.02), varying from 275 +/- 94 MPa (mean +/- SD) to 450 + 50 MPa. Similarly, ultimate stress varied across groups from 15 + 4.2 to 26 + 4.7 MPa (p = 0.03). No significant differences in strain-to-failure were observed between any groups in this study (pooled mean of 8.4 +/- 1.6%; p = 0.42). However, Bowman et al. (1996) reported an average ultimate strain of 12.3 +/- 0.5% for demineralized bovine humeral bone, nearly 40% higher than our value. Taken together, it follows that all the monotonic mechanical properties of demineralized bone can display substantial heterogeneity. Future studies directed at explaining such differences may therefore provide insight into aging and disease of bone tissue.  相似文献   

18.
Since bone reacts to imposed loads by formation and resorption of tissue, analysis of tissue distribution within a bone provides evidence of the adaptation of that bone to a given mechanical function. Definition of these structure-function relationships permits the physical anthropologist to clarify the wide variety of behavioral/morphological adaptations to specific ecological niches in extant primates. From this information, behavior and locomotor function can ultimately be inferred in fossil primates. This paper reviews research which shows the relationships between the physical, geometrical and mechanical properties of bone, so that researchers who are investigating the properties of bone are aware of the numerous interpretations which may be made about structure and function from basic data. In addition, this paper is an attempt to apprise investigators working with primates that comparative data on the properties of primate bone are available, though sparse.  相似文献   

19.
In 1961, Evans and King documented the mechanical properties of trabecular bone from multiple locations in the proximal human femur. Since this time, many investigators have cataloged the distribution of trabecular bone material properties from multiple locations within the human skeleton to include femur, tibia, humerus, radius, vertebral bodies, and iliac crest. The results of these studies have revealed tremendous variations in material properties and anisotropy. These variations have been attributed to functional remodeling as dictated by Wolff's Law. Both linear and power functions have been found to explain the relationship between trabecular bone density and material properties. Recent studies have re-emphasized the need to accurately quantify trabecular bone architecture proposing several algorithms capable of determining the anisotropy, connectivity and morphology of the bone. These past studies, as well as continuing work, have significantly increased the accuracy of analytical and experimental models investigating bone, and bone/implant interfaces as well as enhanced our perspective towards understanding the factors which may influence bone formation or resorption.  相似文献   

20.
P A Havre  D R Evans 《Biochemistry》1983,22(12):2852-2860
The nuclear pore complex-lamina (PCL), composed of nuclear pore structures attached to fibrous lamina, was isolated from bovine liver nuclei. We found that the highly aggregated PCL was disrupted and 75% of the constituent polypeptides could be solubilized by extraction for 1 h with 2% deoxycholate (DOC) and 3% 2-mercaptoethanol. While some differential solubilization was observed at lower detergent concentrations, all PCL proteins were solubilized equally at 2% DOC. The reducing agent was necessary to achieve maximum dispersal of the PCL and to prevent aggregation of the solubilized proteins. No tightly bound phospholipid or Triton X-100 could be detected in these preparations. Rapid removal of DOC, by dialysis or gel filtration, resulted in aggregation and precipitation of the PCL proteins, but the detergent could be removed by centrifugation through sucrose gradients. The sedimentation profiles indicated that the three major polypeptides, lamins A, B, and C, each sedimented as a single peak with a shoulder of more rapidly sedimenting material, possibly higher oligomeric forms. The sedimentation coefficient of lamins B and C, in the presence and absence of detergent, was 4.5 S. In the presence of DOC, lamin A had a sedimentation coefficient of 5.6 S, but this value was decreased to 4.1 S, when DOC was omitted from the gradient. These studies suggested that lamins B and C do not interact with or bind DOC, while lamin A may bind appreciable amounts of the detergent. The Stokes radii of lamins A, B, and C were found by gel filtration to be 75, 75, and 70 A, respectively. The molecular weights and frictional ratios estimated from the sedimentation and gel filtration data indicated that the lamins are dimeric, rod-shaped molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号