首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Recently published compression tests on PMMA/bone specimens extracted after vertebral bone augmentation indicated that PMMA/bone composites were not reinforced by the trabecular bone at all. In this study, the reasons for this unexpected behavior should be investigated by using non-linear micro-FE models. Six human vertebral bodies were augmented with either standard or low-modulus PMMA cement and scanned with a HR-pQCT system before and after augmentation. Six cylindrical PMMA/bone specimens were extracted from the augmented region, scanned with a micro-CT system and tested in compression. Four different micro-FE models were generated from these images which showed different bone tissue material behavior (with/without damage), interface behavior (perfect bonding, frictionless contact) and PMMA shrinkage due to polymerization. The non-linear stress-strain curves were compared between the different micro-FE models as well as to the compression tests of the PMMA/bone specimens. Micro-FE models with contact between bone and cement were 20% more compliant compared to those with perfect bonding. PMMA shrinkage damaged the trabecular bone already before mechanical loading, which further reduced the initial stiffness by 24%. Progressing bone damage during compression dominated the non-linear part of the stress-strain curves. The micro-FE models including bone damage and PMMA shrinkage were in good agreement with the compression tests. The results were similar with both cements. In conclusion, the PMMA/bone interface properties as well as the initial bone damage due to PMMA polymerization shrinkage clearly affected the stress-strain behavior of the composite and explained why trabecular bone did not contribute to the stiffness and strength of augmented bone.  相似文献   

2.
Trabecular bone structure may complement bone volume/total volume fraction (BV/TV) in the prediction of the mechanical properties. Nonetheless, the direct in vivo use of information pertaining to trabecular bone structure necessitates some predictive analytical model linking structure measures to mechanical properties. In this context, the purpose of this study was to combine BV/TV and topological parameters so as to better estimate the mechanical properties of trabecular bone. Thirteen trabecular bone mid-sagittal sections were imaged by magnetic resonance (MR) imaging at the resolution of 117 x 117x 300 microm(3). Topological parameters were evaluated in applying the 3D-line skeleton graph analysis (LSGA) technique to the binary MR images. The same images were used to estimate the elastic moduli by finite element analysis (FEA). In addition to the mid-sagittal section, two cylindrical samples were cored from each vertebra along vertical and horizontal directions. Monotonic compression tests were applied to these samples to measure both vertical and horizontal ultimate stresses. BV/TV was found as a strong predictor of the mechanical properties, accounting for 89-94% of the variability of the elastic moduli and for 69-86% of the variability of the ultimate stresses. Topological parameters and BV/TV were combined following two analytical formulations, based on: (1) the normalization of the topological parameters; and on (2) an exponential fit-model. The normalized parameters accounted for 96-98% of the variability of the elastic moduli, and the exponential model accounted for 80-95% of the variability of the ultimate stresses. Such formulations could potentially be used to increase the prediction of the mechanical properties of trabecular bone.  相似文献   

3.
Osteoporosis is a progressive systemic skeletal condition characterized by low bone mass and microarchitectural deterioration, with a consequent increase in susceptibility to fracture. Hence, osteoporosis would be best diagnosed by in vivo measurements of bone strength. As this is not clinically feasible, our goal is to estimate bone strength through the assessment of elastic properties, which are highly correlated to strength. Previously established relations between morphological parameters (volume fraction and fabric) and elastic constants could be applied to estimate cancellous bone stiffness in vivo. However, these relations were determined for normal cancellous bone. Cancellous bone from osteoporotic patients may require different relations. In this study we set out to answer two questions. First, can the elastic properties of osteoporotic cancellous bone be estimated from morphological parameters? Second, do the relations between morphological parameters and elastic constants, determined for normal bone, apply to osteoporotic bone as well? To answer these questions we used cancellous bone cubes from femoral heads of patients with (n=26) and without (n=32) hip fractures. The elastic properties of the cubes were determined using micro-finite element analysis, assuming equal tissue moduli for all specimens. The morphological parameters were determined using microcomputed tomography. Our results showed that, for equal tissue properties, the elastic properties of cancellous bone from fracture patients could indeed be estimated from morphological parameters. The morphology-based relations used to estimate the elastic properties of cancellous bone are not different for women with or without fractures.  相似文献   

4.
Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure–function properties of the skeleton. With recent advances in computing power of personal computers, virtual alternatives to mechanical testing are gaining acceptance and use. We have previously introduced such a technique called structural rigidity analysis to assess mechanical strength of skeletal tissue with defects. The application of this technique is predicated upon the use of relationships defining the strength of bone as a function of its density for a given loading mode. We are to apply this technique in rat models to assess their compressive skeletal response subjected to a host of biological and pharmaceutical stimulations. Therefore, the aim of this study is to derive a relationship expressing axial compressive mechanical properties of rat cortical and cancellous bone as a function of equivalent bone mineral density, bone volume fraction or apparent density over a range of normal and pathologic bones.We used bones from normal, ovariectomized and partially nephrectomized animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial compression to failure.We obtained univariate relationships describing 71–78% of the mechanical properties of rat cortical and cancellous bone based on equivalent mineral density, bone volume fraction or apparent density over a wide range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity analysis introduced by the authors to provide a non-invasive method to assess the compressive strength of bones affected by pathology and/or treatment options.  相似文献   

5.
The goal of this study was to provide material property data for the cement/bone composite resulting from the introduction of PMMA bone cement into human vertebral bodies. A series of quasistatic tensile and compressive mechanical tests were conducted using cement/bone composite structures machined from cement-infiltrated vertebral bodies. Experiments were performed both at room temperature and at body temperature. We found that the modulus of the composite structures was lower than bulk cement (p<0.0001). For compression at 37( composite function)C: composite =2.3+/-0.5GPa, cement =3.1+/-0.2GPa; at 23( composite function)C: composite =3.0+/-0.3GPa, cement =3.4+/-0.2GPa. Specimens tested at room temperature were stiffer than those tested at body temperature (p=0.0004). Yield and ultimate strength factors for the composite were all diminished (55-87%) when compared to cement properties. In general, computational models have assumed that cement/bone composite had the same modulus as cement. The results of this study suggest that computational models of cement infiltrated vertebrae and cemented arthroplasties could be improved by specifying different material properties for cement and cement/bone composite.  相似文献   

6.
The purpose of the work described in this note was to determine whether drying bone, and then re-wetting it, had any important effect on its mechanical properties. Bending tests were performed on cow's bone. The effect on Young's modulus was extremely small, and insignificant in these experiments. Drying and re-wetting produced a statistically significant 5% reduction in bending strength. The work under the load deformation curve was not apparently altered by the treatment, but his value had a large variance, and the effect of drying would have to be very marked to be observable. The effect of drying and re-wetting on the mechanical properties of bone tested here can probably be ignored.  相似文献   

7.
Loading of extracted muscle fibers causes a small, sudden lengthening, followed by a slower, plastic extension, which is reversed only by active contraction. Polyphosphates in the presence of Mg strongly accelerate plastic extension, but elastic changes in length remain the same as during rigor. The modulus of elasticity on the average is about 6.2 x 107 dynes per cm.2 This value is about 40 times larger than that of rubber, if compared on a water-free basis. Extension of muscle, therefore, is almost entirely due to plastic deformation. Mg is essential for the softening action of adenosinetriphosphate (ATP) and can produce partial relaxation in the absence of a relaxation factor. After partial removal of bound Mg, ATP causes strong contraction, but only slight softening. The same condition is produced by very low concentrations of ATP in the presence of phosphocreatine. These observations show that during contraction passive mechanical properties may remain essentially like those during rigor. The constancy of elastic extensibility distinguishes contraction produced by ATP from contraction induced by non-specific agents in various fibrous structures and caused by an increase in configurational entropy.  相似文献   

8.
A control group of geese (Anser anser) on a normal calcium diet for egg laying poultry was compared to egg laying geese on a calcium deficient diet. The ultimate compressive strength and modulus of elasticity of femoral cortical bone from each group were determined by compressing right circular cylinders which were 2.4 mm in height and 0.8 mm in diameter. The bending strength and bending modulus of elasticity of tibial cortical bone were determined by three point bend tests on rectangular prisms which were approximately 25 mm by 0.8 mm by 0.8 mm. Bone calcium content and eggshell calcium content were determined by atomic absorption spectrophotometry. Blood samples were analyzed for free calcium ion concentration. Histological observations included studies of cross-sectional microradiographs, examinations of cross sections stained by a modified Masson's technique, and a determination of fractional area of voids by quantitative microscopy. The average compressive modulus for the control birds was 12.0 GPa (S.D.: 6.2 GPa) while the ultimate compressive strength was 165 MPa (S.D.: 27 MPa). Calcium deprived birds showed slight, but not statistically significant, decreases in both the compressive modulus and compressive strength. The tibial three point bending modulus for the control birds was 16.5 GPa (S.D.: 2.6 GPa) while the ultimate bending strength was 256 MPa (S.D.: 58 MPa). Once again, slight though not statistically significant decreases in the bending modulus and strength were seen in the geese on the calcium deficient diet. The average calcium content (wt%) of the femora of the control birds was 20.5% (S.D.: 4.3%) and 20.6% (S.D.: 4.8%) for the tibiae. No significant differences were noted in the calcium deprived birds. The average fractional void area for the control bird femoral bone was 12.0% (S.D.: 2.6%) and 9.8% (S.D.: 1.8%) for the tibial bone. Significantly greater fractional void areas were noted in the calcium deficient birds as were profound changes in the macrocellular structure of these bones.  相似文献   

9.
Mechanical testing has been regarded as the gold standard to investigate the effects of pathologies on the structure-function properties of the skeleton. Tensile properties of cancellous and cortical bone have been reported previously; however, no relationships describing these properties for rat bone as a function of volumetric bone mineral density (ρ(MIN)), apparent density or bone volume fraction (BV/TV) have been reported in the literature. We have shown that at macro level, compression and torsion properties of rat cortical and cancellous bone can be well described as a function of BV/TV, apparent density or ρ(MIN) using non-destructive micro-computed tomographic imaging and mechanical testing to failure. Therefore, the aim of this study is to derive a relationship expressing the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of normal and pathologic bones. We used bones from normal, ovariectomized and osteomalacic animals. All specimens underwent micro-computed tomographic imaging to assess bone morphometric and densitometric indices and uniaxial tension to failure. We obtained univariate relationships describing 74-77% of the tensile properties of rat cortical bone as a function of BV/TV, apparent density or ρ(MIN) over a range of density and common skeletal pathologies. The relationships reported in this study can be used in the structural rigidity to provide a non-invasive method to assess the tensile behavior of bones affected by pathology and/or treatment options.  相似文献   

10.
The evolution of the mechanical properties of amniote bone   总被引:1,自引:0,他引:1  
J.D. Currey 《Journal of biomechanics》1987,20(11-12):1035-1044
162 specimens from 19 species of amniote were tested for various mechanical and physical properties to ascertain whether there were characteristic differences between different groups. All mechanical properties showed very great variation. In general the reptiles were not inferior to the mammals and birds. The histology of living forms was compared to that of fossil forms, to see whether 'weak' histology was more characteristic of primitive amniotes. The earliest reptiles probably had rather complaint bone, but it was probably tough. Modern types of bone appeared over two hundred million years ago. Very specialised bone, like that of the bullae of whales and antlers, may have evolved only in the mammals, but the fossil record is not complete enough to assert this confidently.  相似文献   

11.
12.
Euglena gracilis, a type of microalgae, contains several nutrients and accumulates paramylon, a β-1,3-glucan. In recent studies, paramylon has shown to exhibit various activities including immunomoduratory and hepatoprotective effects. In the present study, using an in vitro cell culture system, we aimed to determine whether paramylon derived from the E. gracilis EOD-1 strain, which produces large amounts of paramylon, can augment SIRT1 expression in epidermal cells via activating gut–skin interactions. Results showed that paramylon augmented the expression of SIRT1 in Caco-2 cells, a human intestinal cell line. Furthermore, microarray analysis of Caco-2 cells treated with paramylon showed that paramylon activates epidermal cells through inducing the secretion of factors from intestinal cells. Then, we focused on skin cells as target cells of paramylon-activated intestinal cells. Results showed that secretory factors from Caco-2 cells treated with paramylon augmented the expression of SIRT1 in HaCaT cells, a human keratinocyte cell line, and that expression level of genes related to the growth and maintenance of epidermal cells were significantly changed in Caco-2 cells treated with paramylon as evidenced by microarray analysis. All these results suggest that paramylon can activate epidermal cells by inducing the production of secretory factors from intestinal cells.  相似文献   

13.
The effects of hydration on the dynamic mechanical properties of elastin   总被引:1,自引:0,他引:1  
M A Lillie  J M Gosline 《Biopolymers》1990,29(8-9):1147-1160
The dynamic mechanical properties of elastin have been quantified over a temperature and hydration range appropriate for a biological polymer. Composite curves of the tensile properties at constant water contents between 28.1 and 44.6% (g water/100 g protein) were typical of an amorphous polymer going through its glass transition. Water content had no effect on the shape of the curves, but shifted them a distance aC along the frequency axis. The combined effects of hydration and temperature are given in a series of isoshift curves where elastin's properties are constant along any one curve. A 1% change in hydration has the same effect as a 1 degrees-2 degrees change in temperature, depending on the initial water content and temperature. Theoretical isoshift curves that matched the experimental data were predicted using the WLF equation and coefficients determined from the data. These data form a basis to predict the role of elastin in arterial disease based on changes in its chemical and physical environment.  相似文献   

14.
15.
16.
Bone mechanical properties are typically evaluated at relatively low strain rates. However, the strain rate related to traumatic failure is likely to be orders of magnitude higher and this higher strain rate is likely to affect the mechanical properties. Previous work reporting on the effect of strain rate on the mechanical properties of bone predominantly used nonhuman bone. In the work reported here, the effect of strain rate on the tensile and compressive properties of human bone was investigated. Human femoral cortical bone was tested longitudinally at strain rates ranging between 0.14-29.1 s(-1) in compression and 0.08-17 s(-1) in tension. Young's modulus generally increased, across this strain rate range, for both tension and compression. Strength and strain (at maximum load) increased slightly in compression and decreased (for strain rates beyond 1 s(-1)) in tension. Stress and strain at yield decreased (for strain rates beyond 1 s(-1)) for both tension and compression. In general, there seemed to be a relatively simple linear relationship between yield properties and strain rate, but the relationships between postyield properties and strain rate were more complicated and indicated that strain rate has a stronger effect on postyield deformation than on initiation of yielding. The behavior seen in compression is broadly in agreement with past literature, while the behavior observed in tension may be explained by a ductile to brittle transition of bone at moderate to high strain rates.  相似文献   

17.
The purpose of the present study was to compare the effects of alendronate and alfacalcidol on cancellous and cortical bone mass and bone mechanical properties in ovariectomized rats. Twenty-six female Sprague-Dawley rats, 7 months of age, were randomized by the stratified weight method into four groups: the sham-operated control (Sham) group and the three ovariectomy (OVX) groups, namely, OVX + vehicle, OVX + alendronate (2.5 mg/kg, p.o., daily), and OVX + alfacalcidol (0.5 mug/kg, p.o., daily). At the end of the 8-week experimental period, bone histomorphometric analyses of cancellous bone at the proximal tibial metaphysis and cortical bone at the tibial diaphysis were performed, and the mechanical properties of the femoral distal metaphysis and femoral diaphysis were evaluated. OVX decreased cancellous bone volume per total tissue volume (BV/TV), and the maximum load of the femoral distal metaphysis, as a result of increases in serum osteocalcin (OC) levels, and also the number of osteoclasts (N.Oc), osteoclast surface (OcS) and bone formation rate (BFR) per bone surface (BS), and BFR/BV, without any effect on cortical area (Ct Ar), or maximum load of the femoral diaphysis. Alendronate prevented this decrease in cancellous BV/TV by suppressing increases in N.Oc/BS, OcS/BS, BFR/BS, and BFR/BV, without any apparent effect on Ct Ar, or maximum load of the femoral distal metaphysis and femoral diaphysis. On the other hand, alfacalcidol increased cancellous BV/TV, Ct Ar, and the maximum load of the femoral distal metaphysis and femoral diaphysis, by mildly decreasing trabecular BFR/BV, maintaining trabecular mineral apposition rate and osteoblast surface per BS, increasing periosteal and endocortical BFR/BS, and preventing an increase in endocortical eroded surface per BS. The present study clearly showed the differential skeletal effects of alendronate and alfacalcidol in ovariectomized rats. Alendronate prevented OVX-induced cancellous bone loss by suppressing bone turnover, while alfacalcidol improved cancellous and cortical bone mass and bone strength by suppressing bone resorption and maintaining or even increasing bone formation.  相似文献   

18.
A common technique to aid in implant fixation into surrounding bone is to inject bone cement into the space between the implant and surrounding bone. The most common bone cement material used clinically today is poly(methyl methacrylate), or PMMA. Although promising, there are numerous disadvantages of using PMMA in bone fixation applications which has limited its wide spread use. Specifically, the PMMA polymerization reaction is highly exothermic in situ, thus, damaging surrounding bone tissue while curing. In addition, PMMA by itself is not visible using typical medical imaging techniques (such as X-rays required to assess new bone formation surrounding the implant). Lastly, although PMMA does support new bone growth, studies have highlighted decreased osteoblast (bone forming cell) functions on PMMA compared to other common orthopedic coating materials, such as calcium phosphates and hydroxyapatite. For these reasons, the goal of this study was to begin to investigate novel additives to PMMA which can enhance its cytocompatibility properties with osteoblasts, decrease its exothermic reaction when curing, and increase its radiopacity. Results of this study demonstrated that compared to conventional (or micron) equivalents, PMMA with nanoparticles of MgO and BaSO4 reduced harmful exothermic reactions of PMMA during solidification and increased radiopacity, respectively. Moreover, osteoblast adhesion increased on PMMA with nanoparticles of MgO and BaSO4 compared with PMMA alone. This study, thus, suggests that nanoparticles of MgO and BaSO4 should be further studied for improving properties of PMMA for orthopedic applications.  相似文献   

19.
20.
Since bone reacts to imposed loads by formation and resorption of tissue, analysis of tissue distribution within a bone provides evidence of the adaptation of that bone to a given mechanical function. Definition of these structure-function relationships permits the physical anthropologist to clarify the wide variety of behavioral/morphological adaptations to specific ecological niches in extant primates. From this information, behavior and locomotor function can ultimately be inferred in fossil primates. This paper reviews research which shows the relationships between the physical, geometrical and mechanical properties of bone, so that researchers who are investigating the properties of bone are aware of the numerous interpretations which may be made about structure and function from basic data. In addition, this paper is an attempt to apprise investigators working with primates that comparative data on the properties of primate bone are available, though sparse.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号