首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Intracellular activation and trafficking of extracellular signal-regulated protein kinases (ERK) play a significant role in cell cycle progression, contributing to developmental brain activities. Additionally, mitochondria participate in cell signalling through energy-linked functions, redox metabolism and activation of pro- or anti-apoptotic proteins. The purpose of the present study was to analyze the presence of ERK1/2 in mitochondria during rat brain development. Immunoblotting, immune electron microscopy and activity assays demonstrated that ERK1/2 are present in fully active brain mitochondria at the outer membrane/intermembrane space fraction. Besides, it was observed that ERK1/2 translocation to brain mitochondria follows a developmental pattern which is maximal between E19-P2 stages and afterwards declines at P3, just before maximal translocation to nucleus, and up to adulthood. Most of mitochondrial ERK1/2 were active; upstream phospho-MAPK/ERK kinases (MEK1/2) were also detected in the brain organelles. Mitochondrial phospho-ERK1/2 increased at 1 microm hydrogen peroxide (H(2)O(2)) concentration, but it decreased at higher 50-100 microm H(2)O(2), almost disappearing after the organelles were maximally stimulated to produce H(2)O(2) with antimycin. Our results suggest that developmental mitochondrial activation of ERK1/2 cascade contributes to its nuclear translocation effects, providing information about mitochondrial energetic and redox status to the proliferating/differentiating nuclear pathways.  相似文献   

2.
3.
Paclitaxel is a potential anti-cancer agent for several malignancies including ovary, breast, and head and neck cancers. This study investigated the kinetics of paclitaxel-induced cell cycle perturbation in two human nasopharyngeal carcinoma (NPC) cell lines, NPC-TW01 and NPC-TW04. NPC cells treated with higher concentrations (0.1 or 1 μM) of paclitaxel showed obvious G2/M arrest and then converted to a cell population with reduced DNA content, which was detected as a sub-G2 peak in the flow cytometric histographs. If a low concentration (5 nM) of paclitaxel was used instead, transient G2/M arrest was observed in NPC cells, which subsequently converted to a sub-G1 form during the treatment period. Internucleosomal fragmentation and chromatin condensation were detectable in these sub-G1 and sub-G2 cells, suggesting that persistent or transient G2/M arrest is a prerequisite step for apoptosis elicited by varying doses of paclitaxel. The levels of cyclins A, B1, D1, E, CDK 1 (CDC 2), CDK 2 and proliferating cell nuclear antigen (PCNA) were unchanged in NPC cells following treatment with any concentration of paclitaxel; however, apoptosis-related cyclin B1-associated CDC 2 kinase was highly activated by paclitaxel even at concentrations as low as 5 nM, which is consistent with the finding that low-dose paclitaxel is also able to induce apoptosis in NPC cells. Activation of cyclin B1-associated CDC 2 kinase seems to be an important G2/M event required for paclitaxel-induced apoptosis, and this activation of cyclin B1/CDC 2 kinase could be attributed to the increased activity of CDK 7 kinase. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

4.
化学方法合成是新药研发的一种重要途径。结合抗肿瘤药物的作用机制以及蒽醌类衍生物的构效关系,设计合成了一类新的蒽醌类衍生物1-硝基-2-酰基蒽醌-缬氨酸(简称C3),发现其具有很好的抗肿瘤活性。为了确定蒽醌类衍生物C3对结肠癌HCT116和HT29细胞的作用及其分子机制,首先通过MTT比色法检测C3对结肠癌HCT116和HT29细胞活性的影响。结果显示,C3对这两种结肠癌细胞具有明显的抑制作用,呈时间和剂量依赖性。60μg/mL的C3处理HCT116和HT29细胞48 h,细胞活性分别是50.67%和59.77%,达到了半抑制浓度;同时,其细胞形态和细胞核发生明显变化。进一步采用Western印迹和qRT-PCR技术,检测C3对DNA切除修复交叉互补1(excision repair cross-complementation group 1,ERCC1)转录水平和蛋白质水平表达及其稳定性的影响。结果表明,C3降低了ERCC1转录水平和蛋白质水平的表达,并且减弱了ERCC1转录水平和蛋白质水平的稳定性。最后,用U0126(MEK1/2抑制剂)和C3联合作用结肠癌HCT116和HT29细胞,通过Western印迹检测ERCC1蛋白质水平的表达。结果表明,C3通过降低p-ERK1/2的蛋白质水平的表达,从而抑制ERCC1的表达。上述结果证明,C3通过细胞外调节蛋白激酶(extracellular regulated protein kinases, ERK1/2)信号通路,降低了ERCC1转录水平和蛋白质水平的稳定性,使ERCC1转录水平和蛋白质水平表达发生下调,进而抑制结肠癌HCT116和HT29细胞的活性。  相似文献   

5.
The MEK–ERK pathway plays a role in DNA damage response (DDR). This has been thoroughly studied by modulating MEK activation. However, much less has been done to directly examine the contributions of ERK1 and ERK2 kinases to DDR. Etoposide induces G2/M arrest in a variety of cell lines, including MCF7 cells. DNA damage-induced G2/M arrest depends on the activation of the protein kinase ataxia-telangiectasia mutated (ATM). ATM subsequently activates CHK2 by phosphorylating CHK2 threonine 68 (T68) and CHK2 inactivates CDC25C via phosphorylation of its serine 216 (S216), resulting in G2/M arrest. To determine the contribution of ERK1 and ERK2 to etoposide-induced G2/M arrest, we individually knocked-down ERK1 and ERK2 in MCF7 cells using specific small interfering RNA (siRNA). Knockdown of either kinases significantly reduced ATM activation in response to etoposide treatment, and thereby attenuated phosphorylation of the ATM substrates, including the S139 of H2AX (γH2AX), p53 S15, and CHK2 T68. Consistent with these observations, knockdown of either ERK1 or ERK2 reduced etoposide-induced CDC25C S216 phosphorylation and significantly compromised etoposide-induced G2/M arrest in MCF7 cells. Taken together, we demonstrated that both ERK1 and ERK2 kinases play a role in etoposide-induced G2/M arrest by facilitating activation of the ATM pathway. These observations suggest that a cellular threshold level of ERK kinase activity is required for the proper checkpoint activation in MCF7 cells.  相似文献   

6.
IGFBP7 as an early biomarker has been used to identify patients at risk of developing acute kidney injury (AKI). Nevertheless, its role in AKI remains obscure. The aim of our study is to determine the role and mechanism of IGFBP7 in lipopolysaccharide (LPS)-induced HK-2 cells in vitro and on sepsis-induced AKI by cecal ligation and puncture (CLP) in vivo. Here, we identified that IGFBP7 expression was increased in patients with AKI and HK-2 cells with LPS (1, 2, and 5 μg/mL) induction. HK-2 cells with LPS induction showed cell cycle arrest at G1-G0 phases and cell apoptosis and activated ERK1/2 parallel with the changes in the proteins belonging to the ERK1/2 pathway, including Cyclin D1, P21, Bax, and Bcl-2, which were inhibited by the IGFBP7 knockdown. Moreover, IGFBP7 overexpression significantly induced cell cycle arrest at G1-G0 phases and cell apoptosis of HK-2 cells, which were inhibited by PD98509, an ERK1/2 signaling inhibitor. IGFBP7 knockdown effectively alleviated the severity of the renal injury, evidenced by decreases in the urinary levels of creatinine, blood urea nitrogen, and albumin, cell apoptosis, and activation of ERK1/2 signaling in CLP mice. Taken together, our findings indicate that IGFBP7 regulates sepsis-induced AKI through ERK1/2 signaling.  相似文献   

7.
Heat stress can inhibit follicular development in dairy cows, and thus can affect their reproductive performance. Follicular granulosa cells can synthesize estrogen, that affects the development and differentiation of follicles by apoptosis. Heme oxygenase 1 (HO-1/heat shock protein 32) plays an antiapoptotic and cytoprotective role in various cells during stress-induced apoptosis, but little is known about its definitive function in bovine (ovarian) granulosa cells (bGCs). In our study, the roles and mechanism of HO-1 on the heat stress-induced apoptosis of bGCs were studied. Our results show that the expression of HO-1 was significantly increased under heat stress. Moreover, HO-1 silencing increased apoptosis, whereas its overexpression dampened apoptosis by regulating the expression of Bax/Bcl-2 and the levels of cleaved caspase-3. In addition, HO-1 can also play a cytoprotective role by affecting estrogen levels and decomposing heme to produce biologically active metabolite carbon monoxide (CO). Meanwhile, CO significantly increased the level of HO-1, decreased Bax/Bcl-2 levels, and inhibited the activation of extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway. The apoptosis of ovarian GCs can affect the secretion of estrogen and lead to disorder of the ovarian microenvironment, thus affecting the normal function of the ovary. Our results indicate that HO-1 acts as a cytoprotective enzyme and plays a protective role in heat-induced apoptosis of bGCs. In conclusion, HO-1 and its metabolite CO inhibit the apoptosis of bGCs induced by heat stress through the ERK1/2 pathway. The results of this study provide a valuable clue for improving the fertility of heat stressed cows in summer.  相似文献   

8.
Our previous study demonstrated that ultrasound is able to promote differentiation on neural stem cells (NSCs), and dual-frequency ultrasound promotes this effect due to enhanced acoustic cavitation compared with single-frequency ultrasound. However, the underlying biological reasons have not been well disclosed. The purpose of this study was to investigate the underlying bioeffects, mechanisms and signaling pathways of dual-frequency ultrasound on NSC differentiation. The morphology, neurite outgrowth, and differentiation percentages were investigated under various dual-frequency simulation parameters with exposure periods varying from 5 to 15 min. Morphological observations identified that dual-frequency ultrasound stimulation promoted ultrasound dose-dependent neurite outgrowth. In particular, cells exposed for 10 min/2 days showed optimal neurite outgrowth and neuron differentiation percentages. In addition, live cell calcium images showed that dual-frequency ultrasound enhanced the internal calcium content of the cells, and calcium ions entering cells from the extracellular environment could be observed. Dual frequency ultrasound exposure enhanced extracellular calcium influx and upregulated extracellular signal-regulated kinases 1/2 (ERK1/2) expression. Observations from immunostaining and protein expression examinations also identified that dual-frequency ultrasound promoted brain-derived neurotrophic factor (BDNF) secretion from astrocytes derived from NSCs. In summary, evidence supports that dual-frequency ultrasound effectively enhances functional neuron differentiation via calcium channel regulation via the downstream ERK1/2 pathway and promotes BDNF secretion to serve as feedback to cascade neuron differentiation. The results may provide an alternative for cell-based therapy in brain injury.  相似文献   

9.
Injury-induced by ionizing radiation (IR) severely reduces the quality of life of victims. The development of radiation protectors is regarded as one of the most resultful strategies to alleviate damages caused by IR exposure. In the present study, we investigated the radioprotective effects of the agonist of nucleotide-binding-oligomerization-domain-containing proteins 2 called murabutide (MBD) and clarified the potential mechanisms. Our results showed that the pretreatment with MBD effectively protected cultured cells and mice against IR-induced toxicity and the pretreatment with MBD in vitro and in vitro also inhibited apoptosis caused by IR exposure. The downregulation of γ-H2AX and the upregulation of ATR signaling pathways by MBD treatment indicated that the radioprotective effects of MBD were due to the stimulation of DNA damage response (DDR) pathway to repair DNA double-strand breaks caused by IR exposure. As the radioprotective effects of MBD were diminished by the ATR selective inhibitor rather than the ATM inhibitor, ATR pathway was confirmed to be a more crucial checkpoint pathway in mediating the stimulation of DDR pathway by MBD. Taken together, our data provide a novel and effective protector to relieve the injury induced by IR exposure.  相似文献   

10.
Li Z  Li J  Mo B  Hu C  Liu H  Qi H  Wang X  Xu J 《Cell biology and toxicology》2008,24(5):401-409
Genistein is an isoflavonoid present in soybeans that exhibits anti-carcinogenic effect. Several studies have shown that genistein can trigger G2/M cell cycle arrest and inhibit cell growth in human breast cancer cells. In the present study, we assessed the role of MEK-ERK cascade in regulation of genistein-mediated G2/M cell cycle arrest in the hormone-independent cell line MDA-MB-231. Flow cytometric analysis showed that treatment of MDA-MB-231 cells with genistein induced a concentration-dependent accumulation of cells in the G2/M phase of the cell cycle, with a parallel depletion of the percentage of cells in G0/G1. Genistein-mediated G2/M arrest was associated with a decrease in the protein levels of Cdk1, cyclinB1, and Cdc25C as determined by Western blot analysis. Genistein induced a slow and stable activation of phosphorylated ERK1/2 in a concentration- and time-dependent manner in MDA-MB-231 cells. MEK1/2-specific inhibitor PD98059 blocked genistein-induced activation of ERK1/2 and markedly attenuated genistein-induced G2/M arrest. Furthermore, genistein induced the expression of Ras and Raf-1 protein. Genistein also up-regulated steady-state levels of both c-Jun and c-Fos. PD98059 did not depress genistein-induced up-regulation of Ras and Raf-1 protein. However, it markedly blocked genistein-induced up-regulation of c-Jun and c-Fos. These results suggest that the Ras/MAPK/AP-1 signal pathway may be involved in genistein-induced G2/M cell cycle arrest in MDA-MB-231 breast cancer cells.  相似文献   

11.
The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) gene, a widely known cancer inhibitor, could effectively suppress cancer metastasis and angiogenesis. Downregulation or loss of RECK expression frequently occurs during cancer progression. However, the mechanism underlying RECK dysregulation has not been fully elucidated. Herein, we reported for the first time that enhancer of zeste homolog 2 (EZH2), a histone methyltransferase, could epigenetically attenuate RECK expression via catalyzing H3K27 trimethylation (H3K27me3) within the RECK promoter. Furthermore, we also proved, for the first time, the involvement of EZH2 in the inhibition of RECK by extracellular signal-related kinases (ERK)-1/2 signaling. Next, we revealed that the modulation of the enzymic activity of EZH2 resulting from posttranslational phosphorylation at the serine-21 site was responsible for the increased enrichment of H3K27me3 at the RECK promoter region by ERK1/2 signaling. Collectively, the results of our study shed more light on the mechanisms responsible for the dysregulation of RECK by the ERK1/2 pathway.  相似文献   

12.
Ischemic stroke is characterized by the presence of both brain ischemic and reperfusion-induced injuries in the brain, leading to neuronal dysfunction and death. Artemisinin, an FDA-approved antimalarial drug, has been reported to have neuroprotective properties. However, the effect of artemisinin on ischemic stroke is not known. In the present study, we investigated the effect of artemisinin on ischemic stroke using an oxygen-glucose deprivation/reperfusion (OGD/RP) cellular model and a mouse middle cerebral artery occlusion (MCAO) animal model and examined the underlying mechanisms. The obtained results revealed that a subclinical antimalarial concentration of artemisinin increased cell viability and decreased LDH release and cell apoptosis. Artemisinin also attenuated the production of reactive oxygen species (ROS) and the loss of mitochondrial membrane potential (Δψm). Importantly, artemisinin attenuated the infarction volume and the brain water content in the MCAO animal model. Artemisinin also improved neurological and behavioural outcomes and restored grasp strength and the recovery of motor function in MCAO animals. Furthermore, artemisinin treatment significantly inhibited the molecular indices of apoptosis, oxidative stress and neuroinflammation and activated the ERK1/2/CREB/BCL-2 signaling pathway. Further validation of the involved signaling pathway by the ERK1/2 inhibitor PD98059 revealed that inhibiting the ERK1/2 signaling pathway or silencing ERK1/2 reversed the neuroprotective effects of artemisinin. These results indicate that artemisinin provides neuroprotection against ischemic stroke via the ERK1/2/CREB/BCL-2 signaling pathway. Our study suggests that artemisinin may play an important role in the prevention and treatment of stroke.  相似文献   

13.
We previously reported that cyclic compressive force (CCF) induced interleukin-6 mRNA expression in osteocyte-like MLO-Y4 cells. But little is known about how the stimuli are converted into the biochemical signals in MLO-Y4 cells. The aim of this research was to study the effect of CCF on the IL-6 secretion and the role of extracellular signal-regulated kinases 1/2 (ERK1/2) in this process. The cells were exposed to CCF with different magnitudes (1000, 2000 and 4000 μstrain), frequencies (0.5, 1.0 and 2.0 Hz) and durations (10 min, 30 min, 1 h, 3 h and 6 h) by a four-point bending system. The IL-6 secretion and ERK1/2 phosphorylation of the cells were determined by ELISA and Western blotting, respectively. The results showed that IL-6 protein secretion was significantly up-regulated in response to CCF in a magnitude-, frequency- and duration-dependent fashion. The phosphorylation of ERK1/2 also increased in all cases but not depended on the magnitude, frequency or duration of CCF. Furthermore, the inhibition of the ERK1/2 pathway by its specific inhibitor PD098059 decreased but not completely abrogated the IL-6 secretion from stressed MLO-Y4 cells. These findings demonstrate that CCF-induced IL-6 secretion occurs via a mechanism that involves ERK1/2 signaling pathway and suggest that modulation of this event contributes to the pathogenesis of osteoporosis and stress-induced pathological bone resorption as well.  相似文献   

14.
The mechanism of agonist-induced activation of Pyk2 and its relationship with ERK1/2 phosphorylation was analyzed in HEK293 cells stably expressing the gonadotropin releasing hormone (GnRH) receptor. GnRH stimulation caused rapid and sustained phosphorylation of ERK1/2 and Pyk2 that was accompanied by their nuclear translocation. Pyk2 was also localized on cell membranes and at focal adhesions. Dominant negative Pyk2 (PKM) had no effect on GnRH-induced ERK1/2 phosphorylation and c-fos expression. These actions of GnRH on ERK1/2 and Pyk2 were mimicked by activation of protein kinase C (PKC) and were abolished by its inhibition. GnRH caused translocation of PKC and δ, but not of , ι and λ, to the cell membrane, as well as phosphorylation of Raf at Ser338, a major site in the activation of MEK/ERK1/2. Stimulation of HEK293 cells by EGF caused marked ERK1/2 phosphorylation that was attenuated by the selective EGFR receptor (EGF-R) kinase inhibitor, AG1478. However, GnRH-induced ERK1/2 activation was independent of EGF-R activation. These results indicate that activation of PKC is responsible for GnRH-induced phosphorylation of both ERK1/2 and Pyk2, and that Pyk2 activation does not contribute to GnRH signaling. Moreover, GnRH-induced phosphorylation of ERK1/2 and expression of c-fos in HEK293 cells is independent of Src and EGF-R transactivation, and is mediated through the PKC/Raf/MEK cascade.  相似文献   

15.
16.
The epithelial to mesenchymal transition (EMT) is characterized by a loss of cell polarity, a decrease in the epithelial cell marker E-cadherin, and an increase in mesenchymal markers including the zinc-finger E-box binding homeobox (ZEB1). The EMT is also associated with an increase in cell migration and anchorage-independent growth. Induction of a reversal of the EMT, a mesenchymal to epithelial transition (MET), is an emerging strategy being explored to attenuate the metastatic potential of aggressive cancer types, such as triple-negative breast cancers (TNBCs) and tamoxifen-resistant (TAMR) ER-positive breast cancers, which have a mesenchymal phenotype. Patients with these aggressive cancers have poor prognoses, quick relapse, and resistance to most chemotherapeutic drugs. Overexpression of extracellular signal-regulated kinase (ERK) 1/2 and ERK5 is associated with poor patient survival in breast cancer. Moreover, TNBC and tamoxifen resistant cancers are unresponsive to most targeted clinical therapies and there is a dire need for alternative therapies.In the current study, we found that MAPK3, MAPK1, and MAPK7 gene expression correlated with EMT markers and poor overall survival in breast cancer patients using publicly available datasets. The effect of ERK1/2 and ERK5 pathway inhibition on MET was evaluated in MDA-MB-231, BT-549 TNBC cells, and tamoxifen-resistant MCF-7 breast cancer cells. Moreover, TU-BcX-4IC patient-derived primary TNBC cells were included to enhance the translational relevance of our study. We evaluated the effect of pharmacological inhibitors and lentivirus-induced activation or inhibition of the MEK1/2-ERK1/2 and MEK5-ERK5 pathways on cell morphology, E-cadherin, vimentin and ZEB1 expression. Additionally, the effects of pharmacological inhibition of trametinib and XMD8-92 on nuclear localization of ERK1/2 and ERK5, cell migration, proliferation, and spheroid formation were evaluated. Novel compounds that target the MEK1/2 and MEK5 pathways were used in combination with the AKT inhibitor ipatasertib to understand cell-specific responses to kinase inhibition. The results from this study will aid in the design of innovative therapeutic strategies that target cancer metastases.  相似文献   

17.
Interleukin-6 (IL-6) is a potent stimulator of osteoclastic bone resorption. Osteocyte secretion of IL-6 plays an important role in bone metabolism. Serotonin (5-HT) has recently been reported to regulate bone metabolism. The aim of this study was to evaluate the effect of serotonin on osteocyte expression of IL-6. The requirement for the 5-HT receptor(s) and the role of the extracellular signal-regulated kinase 1/2 (ERK1/2) in serotonin-induced IL-6 synthesis were examined. In this study, real-time PCR and ELISA were used to analyse IL-6 gene and protein expression in serotonin-stimulated MLO-Y4 cells. ERK1/2 pathway activation was determined by Western blot. We found that serotonin significantly activated the ERK1/2 pathway and induced IL-6 mRNA expression and protein synthesis in cultured MLO-Y4 cells. However, these effects were abolished by pre-treatment of MLO-Y4 cells with a 5-HT2B receptor antagonist, RS127445 or the ERK1/2 inhibitor, PD98059. Our results indicate that serotonin stimulates osteocyte secretion of IL-6 and that this effect is associated with activation of 5-HT2B receptor and the ERK1/2 pathway. These findings provide support for a role of serotonin in bone metabolism by indicating serotonin regulates bone remodelling by mediating an inflammatory cytokine.  相似文献   

18.
Bennett LN  Clarke PR 《FEBS letters》2006,580(17):4176-4181
Claspin is involved in ATR-dependent activation of Chk1 during DNA replication and in response to DNA damage. We show that degradation of Claspin by the ubiquitin-proteosome pathway is regulated during the cell cycle. Claspin is stabilized in S-phase but is abruptly degraded in mitosis and is absent from early G(1) cells in which the phosphorylation of Chk1 by ATR is abrogated. In response to hydroxyurea, UV or aphidicolin, Claspin is phosphorylated in the Chk1-binding domain and its protein levels are increased in an ATR-dependent manner. Thus, the Chk1 pathway is regulated through both phosphorylation of Claspin and its controlled degradation.  相似文献   

19.
In the current study, we investigated the effects of genistein on adipogenic differentiation of mouse bone marrow-derived mesenchymal stem cell (BMSC) cultures and its potential signaling pathway. The terminal adipogenic differentiation was assessed by western-blotting analysis of adipogenic-specific proteins such as PPARgamma, C/EBPalpha, and aP2 and the formation of adipocytes. Treatment of mouse BMSC cultures with adipogenic cocktail resulted in sustained activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which are members of the mitogen-activated protein kinase (MAPK) family, at the early phase of adipogenesis (from days 3 to 9). Inhibition of ERK1/2 activation by PD98059, a specific MEK inhibitor, reversed the induced adipogenic differentiation. Genistein dose-dependently decreased the phosphorylation of ERK1/2 in mouse BMSC cultures. Genistein incubation for the entire culture period, as well as that applied during the early phase of the culture period, significantly inhibited the adipogenic differentiation of mouse BMSC cultures. While genistein was incubated at the late stage (after day 9), no inhibitory effect on adipogenic differentiation was observed. BMSC cultures treated with genistein in the presence of fibroblast growth factor-2 (FGF-2), an activator of the ERK1/2 signaling pathway, expressed normal levels of ERK1/2 activity, and, in so doing, are capable of undergoing adipogenesis. Our results suggest that activation of the ERK1/2 signaling pathway during the early phase of adipogenesis (from days 3 to 9) is essential to adipogenic differentiation of BMSC cultures, and that genistein inhibits the adipogenic differentiation through a potential downregulation of ERK1/2 activity at this early phase of adipogenesis.  相似文献   

20.
ELG1 is a conserved gene with important roles in the maintenance of genome stability. Elg1''s activity prevents gross chromosomal rearrangements, maintains proper telomere length regulation, helps repairing DNA damage created by a number of genotoxins and participates in sister chromatid cohesion. Elg1 is evolutionarily conserved, and its Fanconi Anemia-related mammalian ortholog (also known as ATAD5) is embryonic lethal when lost in mice and acts as a tumor suppressor in mice and humans. Elg1 encodes a protein that forms an RFC-like complex that unloads the replicative clamp, PCNA, from DNA, mainly in its SUMOylated form. We have identified 2 different regions in yeast Elg1 that undergo phosphorylation. Phosphorylation of one of them, S112, is dependent on the ATR yeast ortholog, Mec1, and probably is a direct target of this kinase. We show that phosphorylation of Elg1 is important for its role at telomeres. Mutants unable to undergo phosphorylation suppress the DNA damage sensitivity of Δrad5 mutants, defective for an error-free post-replicational bypass pathway. This indicates a role of phosphorylation in the regulation of DNA repair. Our results open the way to investigate the mechanisms by which the activity of Elg1 is regulated during DNA replication and in response to DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号