首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photosynthetic bacteria (PSB) wastewater treatment is a novel method that can simultaneously achieve wastewater purification and recourse recovery. Oxygen conditions can significantly influence PSB metabolism and wastewater treatment; however, the roles of key enzymes in this process have been unclear. This study investigated the effects of different oxygen conditions on respiratory enzymes (hexokinase, HK; phosphofructokinase, PFK; and pyruvate kinase, PK) and the photosynthetic enzyme RuBisCO of PSB. The results showed that HK activity was almost the highest under anaerobic condition; PFK activity was the highest (311 nmol/min∙g) and PK the most quickly reached its peak under aerobic condition; and RuBisCO activity was the highest (107 nmol/min g) under anaerobic condition. The above results illustrated that HK might simultaneously regulate PSB growth and COD degradation, and its main role might be PSB growth regulation. PFK and PK might function in COD degradation while RuBisCO might function in PSB growth. Further, oxygen was beneficial for COD degradation and detrimental for PSB growth. This study provides a theoretical basis for the development of PSB wastewater treatment.  相似文献   

2.
Lu H  Zhang G  Dong S 《Bioresource technology》2011,102(8):4968-4973
Contribution and relationship between oxidative phosphorylation and photophosphorylation pathways in purple non-sulfur bacteria (PNSB) wastewater treatment under weak light-micro oxygen condition were studied quantitatively. Results showed that under weak light-anaerobic condition, PNSB followed photophosphorylation with the first-order degradation kinetic constant k3 of 0.0585. Under dark-micro aerobic condition, it followed oxidative phosphorylation with k2 of 0.0896. Under weak light-micro oxygen condition, both pathways existed with k1 of 0.108. When light and oxygen both existed, oxidative phosphorylation had a strong competitiveness, it played a dominative role and counted for 92.7% in pollutants degradation, and meanwhile photophosphorylation was restrained by 81.6%. Theoretical analysis showed the common part from coenzyme Q (CoQ) to cytochrome c2 (Cyt c2) in both respiration and photosynthetic chains might cause the competition. When oxygen existed, respiration electron transport would be enhanced. Other potential explanations included that oxygen might damage the pigment and membrane system vital to photophosphorylation.  相似文献   

3.
Due to the unique properties of subcritical water (marked change in water's dielectric constant and viscosity), the extraction by subcritical water offers a great opportunity to remediate soil contaminated with organic pollutants as an alternative and green remediation method. In this study, subcritical water extraction is proposed as an efficient remediation technique for the Gulf War oil spill contaminated soil. The subcritical water extraction experiment was carried out in a lab-scale continuous flow apparatus. The three major operating factors, temperature, time and water flow rate, were evaluated in terms of optimum removal efficiency. The results show that crude oil removal depended largely on water temperature, whereas an extraction run time higher than 1 h and a water flow rate higher than 1.5 mL/min marginally or negatively affected removal efficiency. During subcritical water treatment at 300°C for 1 h at a flow rate of 1.5 mL/min, removal efficiency was almost 95%. Under these operating conditions, the subcritical water treatment demonstrated a similar removal efficiency to those of organic solvents like acetone. In contrast, the efficiency of oil recovery decreased with an increase in extraction temperature, due to degradation by a water self-oxidizing agent. Several degradation products identified in the treated soil and in the effluent sample (which initially were absent in the contaminated soil) were oxygen-containing aromatic compounds, confirming the oxidation-degradation.  相似文献   

4.
Electrochemical oxidation for the treatment of textile industry wastewater   总被引:2,自引:0,他引:2  
This study elucidates the reduction of organics from textile effluents through electrochemical oxidation technique. Effect of pH and current intensity were investigated in this system. It was found that degradation was maximum at the current intensity of 0.6 A and at a pH of 1.3. Under the same experimental conditions the removal of chemical oxygen demand (COD), total solids, total dissolved solids and total organic carbon were found to be approximately 68%, 49.2%, 50.7% and 96.8%, respectively. Effect of current intensity on color removal was also investigated as a function of electrolysis time (30-210 minutes) and it showed that maximum removal efficiency (96%) was reached within 60 minutes at 0.6 A. While studying the effect of pH on COD removal, it was observed that a decrease in pH to an optimum of 1.3 showed maximum COD reduction of 68%. These results suggest an important role of these parameters in electrochemical process for removing organic pollutants.  相似文献   

5.
6.
最大或然数法在光合细菌计数中的应用及效果研究   总被引:1,自引:1,他引:0  
1引言光合细菌(photosynthetic bacteria,PSB)是能进行不放氧光合作用的一大类细菌的总称,属水圈微生物,广泛分布于地球生物圈,无论江、河、湖、海,水田、旱地都有存在[3].光合细菌在水体自净、调节微生态平衡、促进动植物生长、增加产量和提高产品质量、防病、固氮等方面具有重要作用[3,22].近年来,光合细菌菌剂在水产养殖、家畜养殖、污水处理及植物生产上的应用日益广泛[3,13,19,27,28,31],相继推出多种产品,包括单菌菌剂、复合菌剂,剂型上有液体菌剂、浓缩菌剂和固体菌剂(粉剂)等[20].为保证产品质量和应用效果,有必要对光合细菌菌剂…  相似文献   

7.
Batch studies were conducted on degradation of anaerobically digested distillery wastewater by three bacterial strains, viz. Xanthomonas fragariae, Bacillus megaterium and Bacillus cereus in free and immobilized form, isolated from the activated sludge of a distillery wastewater treatment plant. The removal of COD and colour with all the three strains increased with time up to 48 hr and only marginal increase in COD and colour removal efficiency was observed beyond this period up to 72 hr. After this period removal efficiency remained fairly constant up to 120 hr. The maximum COD and colour removal efficiency varied from 66 to 81% and 65 to 75%, respectively for both free and immobilized cells of all the three strains. The strain Bacillus cereus showed the maximum efficiency of COD (81%) and colour (75%) removal out of the three strains. An interrelationship between the percent COD and colour removal was carried out by correlation and regression analysis and was justified by high values of coefficient of correlation (r = 0.99) for all the cases. The first order removal rate kinetics was also applied and rate constants were evaluated for COD and colour removal efficiencies.  相似文献   

8.
Laboratory-scale biofilters packed with a mixture of peat, bark and wood were used for xylene and toluene removal from waste air. Two kinds of peat, which differed in the resulting pH of the leachate, were chosen for degradation of the pollutants by a mixed culture. Using peat with the lower pH value, the feasibility of single and multiple pollutant loading during the start-up period and augmentation withPseudomonas putida strains were characterized. The lower pH value of the bed resulted in higher efficiency of toluene degradation from the mixture of pollutants. At higher pH values better degradation of both pollutants was achieved. Regarding the manner of loading during the start-up period, the best results were obtained using toluene as a single pollutant in the initial phase of operation.Pseudomonas strains demonstrated a high ability to degrade both pollutants; more efficient degradation for xylene than for toluene was observed at high loading rates.  相似文献   

9.
Hai FI  Li X  Price WE  Nghiem LD 《Bioresource technology》2011,102(22):10386-10390
This study reveals for the first time that near-anoxic conditions (dissolved oxygen, DO=0.5 mg/L) can be a favorable operating regime for the removal of the persistent micropollutant carbamazepine by MBR treatment. The removal efficiencies of carbamazepine and sulfamethoxazole by an MBR were systematically examined and compared under near-anoxic (DO=0.5 mg/L) and aerobic (DO>2 mg/L) conditions. Preliminary batch tests confirmed that sulfamethoxazole is amenable to both aerobic and anoxic biotransformation. However, carbamazepine-a known persistent compound-showed degradation only under an anoxic environment. In good agreement with the batch tests, during near-anoxic operation, under a high loading of 750 μg/Ld, an exceptionally high removal (68±10%) of carbamazepine was achieved. In contrast, low removal efficiency (12±11%) of carbamazepine was observed during operation under aerobic conditions. On the other hand, an average removal efficiency of 65% of sulfamethoxazole was achieved irrespective of the DO concentrations.  相似文献   

10.
A comparative study was made on features of the induced synthesisof RuDP carboxylase in three strains of R. spheroides with differentbiochemical properties. In strains Sb and Sa, which were able to grow under either light-anaerobicor dark-aerobic conditions, activities of RuDP carboxylase inthe light-grown cells were much higher than those in dark-growncells. The level of RuDP carboxylase activity in dark-growncells of the Sb strain (wild type strain) increased two to threetimes in the dark by incubating the heavy cell suspension underlow aeration, but, for a further increase in enzyme activity,a light-anaerobic condition was required. This is in contrastto the induced formation of bacteriochlorophyll which has beenshown to proceed actively in the dark as well as in the light.On the other hand, with dark-grown cells of the Sa strain, whichhad possible partial defects in the chlorophyll synthesis system,the induced synthesis of RuDP carboxylase under the light-anaerobiccondition was markedly retarded as compared to that with theSb strain. RuDP carboxylase formation was not induced in L-57(a colorless mutant) under any of these conditions. The induced formation of RuDP carboxylase, as well as of bacteriochlorophyll,under the light-anaerobic condition was considerably suppressedby hydroxyurea and mitomycin C. This suggests that the geneticcontrol systems of RuDP carboxylase synthesis may be closelyrelated with those for the formation of the photosynthetic apparatus. 1This work was supported in part by Public Health Research GrantAM 08016 from the National Institute of Arthritis and MetabolicDiseases, U.S.A. (G. K.). 2Present address: Laboratory of Radioisotope Experiment, TohokuUniversity School of Medicine, Sendai, Japan. (Received September 6, 1968; )  相似文献   

11.
The application of biological processes in restoring oil polluted sites is growing due to their efficiency in removing different classes of pollutants. The aim of this study was to determine the ability of microorganisms present in a drilling-waste polluted soil (36,200 mg TPH kg?1 soil) to remove weathered hydrocarbons under stimulated and non-stimulated soil conditions. The hypothesis under study was whether petroleum hydrocarbons removal could be enhanced by manipulating C/N ratio, water content and addition of three agroindustrial wastes. A Box-Behnken design was employed to evaluate the effect of each variable. Results demonstrated that, for orange peels and banana trunk treatments, the variable with the largest effect (p < 0.01) on hydrocarbon removal was the C/N ratio, indicating that higher ratio (100/3) improved removal (79.5–82%). The largest effect (p < 0.001) on hydrocarbon removal for pineapple wastes was observed with higher water content (60%) achieving the highest removal (89%). After 90 days of experimentation, the type of agricultural waste and the agricultural waste/soil ratio were not statistically significant in any treatment. However, their addition was important relative to non-stimulated soil, which showed a hydrocarbon removal of 17%. Data reported in this study showed the application of bioremediation in clay and drilling waste-polluted soils.  相似文献   

12.
Five varieties of Sorghum bicolor (L.) Moench., differing in their drought tolerance under field conditions have been used to study the effect of individual components of drought stress, namely high light intensity stress, heat stress and water stress, on their photosynthetic performance. Chlorophyll content, chlorophyll fluorescence, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39) content, phosphoenolpyruvate carboxylase (PEPcase, EC 4.1.1.31) activity and photo-synthetic oxygen evolution were used as key parameters to assess photosynthetic performance. The results indicated that photochemical efficiency of photosystem II (PSII) was severely reduced by all three stress components, whereas PEPcase activity was more specifically reduced by water stress. Degradation of Rubisco and chlorophyll loss occurred under high light and water stress conditions. Of the four drought-tolerant varieties, E 36-1 showed higher PEPcase activity, Rubisco content and photochemical efficiency of PSII, and was able to sustain a higher maximal rate of photosynthetic oxygen evolution under each stress condition as compared to the other varieties. A high stability to stress-induced damage, or acclimation of photosynthesis to the individual components of drought stress may contribute to the high yields of E 36-1 under drought conditions. In the E 36-1 variety markedly higher levels of the chloroplastic chaperonin 60 (cpn 60) were observed under all stress conditions than in the susceptible variety CSV 5.Key words: Chlorophyll fluorescence, drought stress, oxygen evolution, phosphoenopyruvate carboxylase, Sorghum.   相似文献   

13.
Various environmental conditions affecting total phosphorus removal from farm wastewater in a biofilm filter, process were investigated using loess balls andChromobacterium LEE-38 at a pilot plant. WhenChromobacterium LEE-38 was used, the removal efficiency of total phosphorous was approximately 10- or 5-fold higher than that ofAcinetobacter CHA-2-14 orAcinetobacter CHA-4-5, respectively. When a loess ball of 11–14 mm manufactured at a 960°C calcining temperature was used, the removal efficiency of total phosphorous was 90.0%. When 70% of the volume fraction was used, the maximum efficiency of total phosphorus removal was 93.1%. Notably, when the initial pH was in the range of 6.0 to 8.0, the maximum removal efficiency of total phosphorus was obtained after 30 days. When the operating temperature was in the range of 30 to 55°C, the maximum removal efficiencies of total phosphorus, 95.6 to 94.6%, were obtained. On the other hand, at operating temperatures below 20°C or above 40°C, the removal efficiency of total phosphorous decreased. Among the various processes, biofilm filter process A gave the highest removal efficiency of 96.4%. Pilot tests of total phosphorus removal using farm wastewater from the biofilm filter process A were carried out for 60 days under optimal condition. WhenAcinetobacters sp. Lee-11 was used, the average removal efficiency in thep-adsorption area was only 32.5%, and the removal efficiencies of chemical oxygen demand (COD) and biological oxygen demand (BOD) were 56.7 and 62.5%, respectively. On the other hand, whenChromobacterium LEE-38 was used, the average removal efficiency was 95.1%, and the removal efficiencies of COD and BOD were 91.3 and 93.2%, respectively. The first two authors contributed equally to this work.  相似文献   

14.
为解决氨氮积累导致水体污染的问题,从北京南宫垃圾堆肥厂的垃圾渗滤液中筛选出1株具有氨氮降解能力的菌株Z-5。通过对该菌株的形态观察以及ITS基因序列同源性对比分析,鉴定该菌株为褐红篮状菌(Talaromyces pinophilus),命名为褐红篮状菌Z-5。进一步分析筛选菌株Z-5在不同培养条件(接种量、氨氮初始浓度、碳源、pH)下各单因素以及多因素对氨氮降解性能的影响,并进行了二元分布和三因素三水平的正交试验。结果表明,当接种量为1%、氨氮初始浓度为100 mg·L-1、碳源为红糖以及pH为7.0时,氨氮去除率达到了94.75%,效果最佳。研究结果为垃圾废水处理中氨氮的去除奠定了基础。  相似文献   

15.
Velvizhi G  Mohan SV 《Bioresource technology》2011,102(23):10784-10793
Biocatalyst behavior was comparatively evaluated under diverse microenvironments viz., self-induced electrogenic (bioelectrochemical treatment, BET) and anaerobic treatment (AnT) microenvironments, with real-field pharmaceutical wastewater. Relatively higher treatment efficiency was observed with BET (COD removal, 78.70%) over AnT (32%) along with the power output. Voltammetric profiles of AnT showed persistent reduction behavior, while BET depicted simultaneous redox behavior. BET operation documented significantly higher bio-electrocatalytic activity (kapp, 245.22 s−1) than AnT (kapp, 7.35 s−1). The electron accepting conditions due to the presence of electrode in the BET might contributed to higher electrogenesis leading to enhanced substrate degradation along with the removal of multiple pollutants accounting for the effective reduction of toxicity levels of wastewater. Even at higher organic loads, BET operation showed good treatment efficiency without process inhibition. Introduction of electrode-membrane assembly in anaerobic microenvironment showed significant change in the electrocatalytic behavior of biocatalyst resulting in enhanced treatment of complex wastewater.  相似文献   

16.
Biological phenol degradation in a draft tube gas-liquid-solid fluidized bed (DTFB) bioreactor containing a mixed culture immobilized on spherical activated carbon particles was investigated. The characteristics of biofilms including the biofilm dry density and thickness, the volumetric oxygen mass transfer coefficient, and the phenol removal rates under different operating conditions in the DTFB were evaluated. A phenol degradation rate as high as 18 kg/m(3)-day with an effluent phenol concentration less than 1 g/m(3) was achieved, signifying the high treatment efficiency of using a DTFB.  相似文献   

17.
南方红豆杉根际溶无机磷细菌的筛选、鉴定及其促生效果   总被引:5,自引:0,他引:5  
Ren J  Liu H  Wu X  Wang Q  Ren Y  Liu Y  Feng Y 《微生物学报》2012,52(3):295-303
【目的】对南方红豆杉(Taxus chinensis var.mairei)根际溶无机磷细菌进行了分离、筛选与鉴定,并对获得的高效溶磷菌株进行了温室盆栽试验。本研究为通过生物途径改善南方红豆杉磷素供应,促进其生长提供了优良的菌株资源。【方法】利用选择培养基从南方红豆杉根际土壤中共分离出具溶磷能力的细菌;采用NBRI-BPB培养基进行复筛获得溶磷能力较强的溶无机磷细菌;并采用钼锑抗比色法测量其在NBRIP培养基中经4d发酵后的可溶性磷含量;通过形态指标、生理生化测定、Biolog系统和16S rDNA序列分析鉴定细菌种类;并进行了溶磷菌株的室内盆栽实生苗接种试验。【结论】从南方红豆杉根际共分离出4株高效溶磷细菌,分别鉴定为荧光假单胞菌(Pseudomonas fluorescens)、蜡状芽胞杆菌(Bacillus cereus)、草木樨中华根瘤菌(Sinorhizobium meliloti)和地衣芽胞杆菌(Bacillus licheniformis);4株细菌对南方红豆杉苗期的生长有明显的促进作用。  相似文献   

18.
文章以四溴联苯醚(BDE-47)为目标污染物, 利用共沉淀法制备Zn-Fe LDHs覆膜改性石英砂基质, 在好氧、厌氧及两者交替条件下, 研究腐败希瓦氏菌CN32(Shewanella putrefaciens CN32) 在LDHs改性基质上生物膜形成过程及其对培养液中BDE-47的去除效果; 通过监测反应体系中Fe2+和H2O2浓度变化探讨BDE-47的生物及非生物去除机制。结果表明, LDHs改性不影响石英砂基质表面生物膜的形成, 但在好氧条件下, Zn-Fe LDHs石英砂改性基质对CN32电子传递链活性存在一定抑制作用, 而在厌氧条件下, LDHs改性会影响基质生物膜胞外聚合物(EPS)组成特性, 使多糖占比升高。无论在好氧还是厌氧条件下, 基质生物膜反应体系中EPS总浓度均显著高于纯菌CN32体系; 且在好氧与交替条件下, 基质生物膜的形成均显著提高反应体系中BDE-47的去除效果(约25%)。在交替条件下, 前3次循环(72h内)BDE-47的去除以基质吸附为主; 72h后, 生物膜吸附与生物降解共同发挥作用, 且LDHs改性基质在后期上升潜力更大。研究报道了LDHs改性基质生物膜形成特性及其对水相中PBDEs去除的潜力, 为强化人工湿地中PBDEs生物降解提供新思路。  相似文献   

19.
Degradation of chlorophenols catalyzed by laccase   总被引:1,自引:0,他引:1  
The degradations of 2,4-dichlorophenol (2,4-DCP), 4-chlorophenol (4-CP) and 2-chlorophenol (2-CP) catalyzed by laccase were carried out. The optimal condition regarding degradation efficiency was also discussed, which included reaction time, pH value, temperature, concentration series of chlorophenols and laccase. Results showed that the capability of laccase was the best, while to oxidize 2,4-DCP among the above-mentioned chlorophenols. Within 10 h, the removal efficiency of 2,4-DCP, 2-CP and 4-CP could reach 94%, 75% and 69%, respectively. The optimal pH for laccase to degrade chlorophenols was around 5.5. The increase of laccase concentration or temperature might result in the degradation promotion. The trends of degradation percentage were various among these three chlorophenols with the concentration increase of chlorophenols. Degradation of 2,4-DCP is a first-order reaction and the reaction activation energy is about 44.8 kJ mol−1. When laccase was immobilized on chitosan, crosslinked with glutaraldehyde, the activity of immobilized laccase was lower than that of free laccase, but the stability improved significantly. The removal efficiency of immobilized laccase to 2,4-DCP still remained over 65% after six cycles of operation.  相似文献   

20.
In this investigation, a laboratory-scale enhanced biological phosphorus removal (EBPR) process was operated under controlled conditions to study the impact of varying the influent ratio of chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN) and total phosphorus (TP), and the consequential biochemical reactions on oxygen transfer parameters. The data showed that the experiment with high influent phosphorus relative to nitrogen (COD/TP = 51 and TKN/TP = 3.1) achieved higher alpha and oxygen transfer efficiency (OTE(f)). On the other hand, the experiment with high influent nitrogen relative to phosphorus (TKN/TP = 14.7 and COD/TP = 129) resulted in approximately 50% reduction in alpha and OTE(f) under similar organic loading. This suggested that the intracellular carbon storage and the enhanced biological P removal phenomenon associated with the phosphorus-accumulating organisms (PAOs) had a positive influence on OTE(f) in the high phosphorus experiment compared to an active population of nitrifying and denitrifying organisms in the high nitrogen experiment. The intracellular carbon storage by the glycogen-accumulating organisms also appeared to have had a positive effect on oxygen transfer efficiency, although to a lesser extent in comparison to the PAOs. It was also found that oxygen uptake rate (OUR) was not a good indicator of the measured alpha and OTE(f), because it was a combined effect of several biochemical reactions, each having a varying degree of influence. It is difficult to underestimate the crucial role of flocs in mass transfer of oxygen, because microorganisms associated with flocs carry out the biochemical reactions. It seems that the combination of influent characteristics and biochemical reactions in each experiment produced a unique biomass quality (determined by the biomass N to P ratio), ultimately affecting the mass transfer of oxygen. A theoretical explanation for the observed oxygen transfer efficiency under the process conditions is also proposed in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号