首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anticoagulant heparan sulfate proteoglycans bind and activate antithrombin by virtue of a specific 3-O-sulfated pentasaccharide. They not only occur in the vascular wall but also in extravascular tissues, such as the ovary, where their functions remain unknown. The rupture of the ovarian follicle at ovulation is one of the most striking examples of tissue remodeling in adult mammals. It involves tightly controlled inflammation, proteolysis, and fibrin deposition. We hypothesized that ovarian heparan sulfates may modulate these processes through interactions with effector proteins. Our previous work has shown that anticoagulant heparan sulfates are synthesized by rodent ovarian granulosa cells, and we now have set out to characterize heparan sulfates from human follicular fluid. Here we report the first anticoagulant heparan sulfate purified from a natural human extravascular source. Heparan sulfate chains were fractionated according to their affinity for antithrombin, and their structure was analyzed by 1H NMR and MS/MS. We find that human follicular fluid is a rich source of anticoagulant heparan sulfate, comprising 50.4% of total heparan sulfate. These antithrombin-binding chains contain more than 6% 3-O-sulfated glucosamine residues, convey an anticoagulant activity of 2.5 IU/ml to human follicular fluid, and have an anti-Factor Xa specific activity of 167 IU/mg. The heparan sulfate chains that do not bind antithrombin surprisingly exhibit an extremely high content in 3-O-sulfated glucosamine residues, which suggest that they may exhibit biological activities through interactions with other proteins.  相似文献   

2.
Cloned bovine aortic endothelial cells were cultured with [35S]Na2SO4 and proteolyzed extensively with papain. Radiolabeled heparan sulfate was isolated by DEAE-Sephacel chromatography. The mucopolysaccharide was then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate, which bound tightly to the protease inhibitor, represented 0.84% of the mucopolysaccharide mass, accounted for greater than 99% of the initial anticoagulant activity, and exhibited a specific activity of 1.16 USP units/10(6) 35S-cpm. However, the heparan sulfate that interacted minimally with the protease inhibitor constituted greater than 99% of the mucopolysaccharide mass, represented less than 1% of the starting biologic activity, and possessed a specific anticoagulant potency of less than 0.0002 USP unit/10(6) 35S-cpm. An examination of the disaccharide composition of the two populations revealed that the high-affinity heparan sulfate contained a 4-fold or greater amount of GlcA----GlcN-SO3-3-O-SO3 (where GlcA is glucuronic acid), which is a marker for the antithrombin-binding domain of commercial heparin, as compared with the depleted material. Cloned bovine aortic endothelial cells were incubated with [35S]Na2SO4 as well as tritiated amino acids and completely solubilized with 4 M guanidine hydrochloride and detergents. The double-labeled proteoglycans were isolated by DEAE-Sephacel, Sepharose CL-4B, and octyl-Sepharose chromatography. These hydrophobic macromolecules were then affinity fractionated into two separate populations utilizing immobilized antithrombin. The heparan sulfate proteoglycans which bound tightly to the protease inhibitor represented less than 1% of the starting material and exhibited a specific anticoagulant activity as high as 21 USP units/10(6) 35S-cpm, whereas the heparan sulfate proteoglycan that interacted weakly with the protease inhibitor constituted greater than 99% of the starting material and possessed a specific anticoagulant potency as high as 0.02 USP unit/10(6) 35S-cpm. The high-affinity heparan sulfate proteoglycan is responsible for more than 85% of the anticoagulant activity of the cloned bovine aortic endothelial cells. Binding studies conducted with 125I-labeled antithrombin demonstrated that these biologically active proteoglycans are located on the surface of cloned bovine aortic endothelial cells.  相似文献   

3.
Muñoz E  Xu D  Kemp M  Zhang F  Liu J  Linhardt RJ 《Biochemistry》2006,45(16):5122-5128
The 3-O-sulfonation of glucosamine residues in heparan sulfate (HS) by 3-O-sulfotransferase (3-OST) is a key substitution that is present in HS sequences of biological importance, in particular HS anticoagulant activity. Six different isoforms of 3-OST have been identified that exhibit different substrate specificity. In this paper the affinity and kinetics of the interaction between 3-O-sulfotransferase isoform 1 (3-OST-1) and HS have been examined using surface plasmon resonance (SPR). 3-OST-1 binds with micomolar affinity to HS (K(D) = 2.79 microM), and this interaction is apparently independent of the presence of the coenzyme, 3'-phosphoadenosine 5'-phosphosulfate (PAPS). A conformational change in the complex has also been detected, supporting data from previous studies. Selected 3-OST-1 mutants have provided valuable information of amino acid residues that participate in 3-OST-1 interaction with HS substrate and its catalytic activity. The results from this study contribute to understanding the substrate specificity among the 3-OST isoforms and in the mechanism of 3-OST-1-catalyzed biosynthesis of anticoagulant HS.  相似文献   

4.
Heparan sulfate proteoglycans on the cell surface act as low affinity binding sites for acidic and basic fibroblast growth factor (FGF) [Moscatelli (1887): J Cell Physiol 131:123–130] and play an important role in the interaction of FGF with the FGF receptor (FGFR). In this study, several aspects of the interaction of FGFs with cell surface heparan sulfate proteoglycans were examined. Reciprocal cross blocking studies demonstrated that acidic FGF (aFGF) and basic FGF (bFGF) bind to identical or closely associated heparan sulfate motifs on BALB/c 3T3 cell surface heparan sulfate proteoglycans. However, the binding affinity of the two growth factros for these heparan sulfate proteoglycans differs considerably, competition binding data indicating that aFGF has a 4.7-fold lower affinity than bFGF for 3T3 heparan sulfate proteoglycan. Subsequent studies of dissociation kinetics demonstrated that bFGF dissociates form the FGFR at least 10-fold slower than aFGF, whereas, following removal of cell surface heparan sulfate proteoplycan. Subsequent studies of dissociation kinetic demonstrated that bFGF dissociates from the FGFR at least 10-fold slwer than aFGF, whereas, following removal of cell surface heparan sulfate proteoglycans by heparinase treatment, the dissociation rate of both FGFs is similar and rapid. These results support the concept that cell surface heparan sulfate proteoglycans stabilize the interactio fo FGF with FGFR, possibly by the formatin of a ternary complex. © Wiley-Liss, Inc.  相似文献   

5.
Low and high affinity receptors mediate cellular uptake of heparanase   总被引:1,自引:0,他引:1  
Heparanase is an endoglycosidase which cleaves heparan sulfate and hence participates in degradation and remodeling of the extracellular matrix. Importantly, heparanase activity correlated with the metastatic potential of tumor-derived cells, attributed to enhanced cell dissemination as a consequence of heparan sulfate cleavage and remodeling of the extracellular matrix barrier. Heparanase has been characterized as a glycoprotein, yet glycan biochemical analysis was not performed to date. Here, we applied the Qproteometrade mark GlycoArray kit to perform glycan analysis of heparanase, and compared the kit results with the more commonly used biochemical analyses. We employed fibroblasts isolated from patients with I-cell disease (mucolipidosis II), fibroblasts deficient of low density lipoprotein receptor-related protein and fibroblasts lacking mannose 6-phosphate receptor, to explore the role of mannose 6-phosphate in heparanase uptake. Iodinated heparanase has been utilized to calculate binding affinity. We provide evidence for hierarchy of binding to cellular receptors as a function of heparanase concentration. We report the existence of a high affinity, low abundant (i.e., low density lipoprotein receptor-related protein, mannose 6-phosphate receptor), as well as a low affinity, high abundant (i.e., heparan sulfate proteoglycan) receptors that mediate heparanase binding, and suggest that these receptors co-operate to establish high affinity binding sites for heparanase, thus maintaining extracellular retention of the enzyme tightly regulated.  相似文献   

6.
7.
Treating the liposome-intercalatable heparan sulfate proteoglycans from human lung fibroblasts and mammary epithelial cells with heparitinase and chondroitinase ABC revealed different core protein patterns in the two cell types. Lung fibroblasts expressed heparan sulfate proteoglycans with core proteins of approximately 35, 48/90 (fibroglycan), 64 (glypican), and 125 kDa and traces of a hybrid proteoglycan which carried both heparan sulfate and chondroitin sulfate chains. The mammary epithelial cells, in contrast, expressed large amounts of a hybrid proteoglycan and heparan sulfate proteoglycans with core proteins of approximately 35 and 64 kDa, but the fibroglycan and 125-kDa cores were not detectable in these cells. Phosphatidylinositol-specific phospholipase C and monoclonal antibody (mAb) S1 identified the 64-kDa core proteins as glypican, whereas mAb 2E9, which also reacted with proteoglycan from mouse mammary epithelial cells, tentatively identified the hybrid proteoglycans as syndecan. The expression of syndecan in lung fibroblasts was confirmed by amplifying syndecan cDNA sequences from fibroblastic mRNA extracts and demonstrating the cross-reactivity of the encoded recombinant core protein with mAb 2E9. Northern blots failed to detect a message for fibroglycan in the mammary epithelial cells and in several other epithelial cell lines tested, while confirming the expression of both glypican and syndecan in these cells. Confluent fibroblasts expressed higher levels of syndecan mRNA than exponentially growing fibroblasts, but these levels remained lower than observed in epithelial cells. These data formally identify one of the cell surface proteoglycans of human lung fibroblasts as syndecan and indicate that the expression of the cell surface proteoglycans varies in different cell types and under different culture conditions.  相似文献   

8.
3-O-Sulfation of glucosamine by heparan sulfate D-glucosaminyl 3-O-sulfotransferase (3-OST-1) is the key modification in anticoagulant heparan sulfate synthesis. However, the heparan sulfates modified by 3-OST-2 and 3-OST-3A, isoforms of 3-OST-1, do not have anticoagulant activity, although these isoforms transfer sulfate to the 3-OH position of glucosamine residues. In this study, we characterize the substrate specificity of purified 3-OST-3A at the tetrasaccharide level. The 3-OST-3A enzyme was purified from Sf9 cells infected with recombinant baculovirus containing 3-OST-3A cDNA. Two 3-OST-3A-modified tetrasaccharides were purified from the 3-O-(35)S-sulfated heparan sulfate that was digested by heparin lyases. These tetrasaccharides were analyzed using nitrous acid and enzymatic degradation combined with matrix-assisted laser desorption/ionization-mass spectrometry. Two novel tetrasaccharides were discovered with proposed structures of DeltaUA2S-GlcNS-IdoUA2S-[(35)S]GlcNH(2)3S and DeltaUA2S-GlcNS-IdoUA2S-[3-(35)S]GlcNH(2)3S6S . The results demonstrate that 3-OST-3A sulfates N-unsubstituted glucosamine residues, and the 3-OST-3A modification sites are probably located in defined oligosaccharide sequences. Our study suggests that oligosaccharides with N-unsubstituted glucosamine are precursors for sulfation by 3-OST-3A. The intriguing linkage between N-unsubstituted glucosamine and the 3-O-sulfation by 3-OST-3A may provide a clue to the potential biological functions of 3-OST-3A-modified heparan sulfate.  相似文献   

9.
The effect of heparin on the rate of binding of basic fibroblast growth factor (bFGF) to high affinity (receptor) and low affinity (heparan sulfate) binding sites on endothelial cells and CHO cells transfected with FGF receptor-1 or FGF receptor-2 was investigated. Radiolabeled bFGF bound rapidly to both high and low affinity sites on all three types of cells. Addition of 10 micrograms/ml heparin eliminated binding to low affinity sites and decreased the rate of binding to high affinity sites to about 30% of the rate observed in the absence of heparin. However, the same amount of 125I-bFGF bound to high affinity sites at equilibrium in the presence and absence of heparin. The effect of heparin on the initial rate of binding to high affinity sites was related to the log of the heparin concentration. Depletion of the cells of heparan sulfates by treatment with heparinase also decreased the initial rate of binding to high affinity receptors. These results suggest that cell-surface heparan sulfates facilitate the interaction of bFGF with its receptor by concentrating bFGF at the cell surface. Dissociation rates for receptor-bound and heparan sulfate-bound bFGF were also measured. Dissociation from low affinity sites was rapid, with a half-time of 6 min for endothelial cell heparan sulfates and 0.5 min for Chinese hamster ovary heparan sulfates. In contrast, dissociation from receptors was slow, with a half-time of 46 min for endothelial cell receptors, 2.5 h for FGF receptor-1, and 1.4 h for FGF receptor-2. These results suggest that degradative enzymes may not be needed to release bFGF from the heparan sulfates in instances where receptors and heparan sulfate-bound bFGF are in close proximity because dissociation from heparan sulfates occurs rapidly enough to allow bFGF to bind to unoccupied receptors by laws of mass action.  相似文献   

10.
Heparan sulfate from the surface of a variety of mouse cells at different cell densities was examined by ion-exchange chromatography. The results of this analysis show that: (1) The heparan sulfate from new isolates of Swiss 3T3 cells transformed by SV40 virus (a DNA tumor virus) elutes from DEAE-cellulose at a lower ionic strength than that from the parent cell type. This finding confirms our earlier observation with an established SV40-transformed cell line (Underhill and Keller, '75) and eliminates the possibility that this change is caused by extended passage in culture. (2) For both parent and transformed 3T3 cells, the heparan sulfates from low and high density cultures were the same as judged by chromatography on DEAE-cellulose. This result demonstrates that the transformation-dependent change which we have observed is independent of cell density. (3) The heparan sulfate from Balb/c 3T3 cells transformed with Kirsten murine sarcoma virus (an RNA tumor virus) elutes from DEAE-cellulose prior to that from parent Balb/c 3T3 cells. This result extends the transformation dependent change in heparan sulfate to the Balb/c 3T3 cell line and to cells transformed with an RNA virus.  相似文献   

11.
Proteoglycans on the cell surface play critical roles in the adhesion of fibroblasts to a fibronectin-containing extracellular matrix, including the model mouse cell line Balb/c 3T3. In order to evaluate the biochemistry of these processes, long-term [35S]sulphate-labelled proteoglycans were extracted quantitatively from the adhesion sites of 3T3 cells, after their EGTA-mediated detachment from the substratum, by using an extractant containing 1% octyl glucoside, 1 M-NaCl and 0.5 M-guanidinium chloride (GdnHCl) in buffer with many proteinase inhibitors. Greater than 90% of the material was identified as a large chondroitin sulphate proteoglycan (Kav. = 0.4 on a Sepharose CL2B column), and the remainder was identified as a smaller heparan sulphate proteoglycan; only small amounts of free chains of glycosaminoglycan were observed in these sites. These extracts were fractionated on DEAE-Sepharose columns under two different sets of elution conditions: with acetate buffer (termed DEAE-I) or with acetate buffer supplemented with 8 M-urea (termed DEAE-II). Under DEAE-I conditions about one-half of the material was eluted as a single peak and the remainder required 4 M-GdnHCl in order to recover it from the column; in contrast, greater than 90% of the material was eluted as a single peak from DEAE-II columns. Comparison of the elution of [35S]sulphate-labelled proteoglycan with that of 3H-labelled proteins from these two columns, as well as mixing experiments, indicated that the GdnHCl-sensitive proteoglycans were trapped at the top of columns, partially as a consequence of their association with proteins in these adhesion-site extracts. Affinity chromatography of these proteoglycans on columns of either immobilized platelet factor 4 or immobilized plasma fibronectin revealed that most of the chondroitin sulphate proteoglycan and the heparan sulphate proteoglycan bound to platelet factor 4 but that only the heparan sulphate proteoglycan bound to fibronectin, providing a ready means of separating the two proteoglycan classes. Affinity chromatography on octyl-Sepharose columns to test for hydrophobic domains in their core proteins demonstrated that a high proportion of the heparan sulphate proteoglycan but none of the chondroitin sulphate proteoglycan bound to the hydrophobic matrix. These results are discussed in light of the possible functional importance of the chondroitin sulphate proteoglycan in the detachment of cells from extracellular matrix and in light of previous affinity fractionations of proteoglycans from the substratum-adhesion sites of simian-virus-40-transformed 3T3 cells.  相似文献   

12.
NIH3T3 cells transformed by mouse FGF3-cDNA (DMI cells) selected for their ability to grow as anchorage-independent colonies in soft agar and in defined medium lacking growth factors exhibit a highly transformed phenotype. We have used dominant negative (DN) fibroblast growth factor (FGF) receptor 2 (FGFR2) isoforms to block the FGF response in DMI cells. When the DN-FGFR was expressed in DMI cells, their transformed phenotype can be reverted. The truncated FGFR2(IIIb), the high affinity FGFR for FGF3, is significantly more efficient at reverting the transformed phenotype as the IIIc isoform, reaffirming the notion that the affinity of the ligand to the DN-FGFR2 isoform determines the effect. Heparin or heparan sulfate displaces FGF3 from binding sites on the cell surface inhibiting the growth of DMI cells and reverts the transformed phenotype (). However, the presence of heparin is necessary to induce a mitogenic response in NIH3T3 cells when stimulated with soluble purified mouse FGF3. We have investigated the importance of cell surface binding of FGF3 for its ability to transform NIH3T3 cells by creating an FGF3 mutant anchored to the membrane via glycosylphosphatidylinositol (GPI). The GPI anchor renders the cell surface association of FGF3 independent from binding to heparan sulfate-proteoglycan of the cell surface membrane. Attachment of a GPI anchor to FGF3 also confers a much higher transforming potential to the growth factor. Even more, the purified GPI-attached FGF3 is as much transforming as the secreted protein acting in an autocrine mode. Because NIH3T3 cells do not express the high affinity tyrosine kinase FGF receptors for FGF3, these findings suggest that FGF3 attached to GPI-linked heparan sulfate-proteoglycan may have a broader biological activity as when bound to transmembrane or soluble heparan sulfate-proteoglycan.  相似文献   

13.
Heparan sulfate interacts with antithrombin, a protease inhibitor, to regulate blood coagulation. Heparan sulfate 3-O-sulfotransferase isoform 1 performs the crucial last step modification in the biosynthesis of anticoagulant heparan sulfate. This enzyme transfers the sulfuryl group (SO(3)) from 3'-phosphoadenosine 5'-phosphosulfate to the 3-OH position of a glucosamine residue to form the 3-O-sulfo glucosamine, a structural motif critical for binding of heparan sulfate to antithrombin. In this study, we report the crystal structure of 3-O-sulfotransferase isoform 1 at 2.5-A resolution in a binary complex with 3'-phosphoadenosine 5'-phosphate. This structure reveals residues critical for 3'-phosphoadenosine 5'-phosphosulfate binding and suggests residues required for the binding of heparan sulfate. In addition, site-directed mutagenesis analyses suggest that residues Arg-67, Lys-68, Arg-72, Glu-90, His-92, Asp-95, Lys-123, and Arg-276 are essential for enzymatic activity. Among these essential amino acid residues, we find that residues Arg-67, Arg-72, His-92, and Asp-95 are conserved in heparan sulfate 3-O-sulfotransferases but not in heparan N-deacetylase/N-sulfotransferase, suggesting a role for these residues in conferring substrate specificity. Results from this study provide information essential for understanding the biosynthesis of anticoagulant heparan sulfate and the general mechanism of action of heparan sulfate sulfotransferases.  相似文献   

14.
The role of heparan sulfate (HS) in regulating blood coagulation has a wide range of clinical implications. In this study, we investigated the role of 3-O-sulfotransferase isoform 5 (3-OST-5) in generating anticoagulant HS in vivo. A Chinese hamster ovary cell line (3OST5/CHO) stably expressing 3-OST-5 was generated. The expression of 3-OST-5 in 3OST5/CHO cells was confirmed by Northern blot analysis, RT-PCR, and the disaccharide analyses of the HS from the cells. We also determined the effects of the HS from 3OST5/CHO on antithrombin-mediated inhibition of factor Xa. Fluorescently labeled antithrombin bound to the surface of 3OST5/CHO cells, suggesting that the antithrombin-binding HS is indeed present on the cell surface. Our results demonstrate that the 3-OST-5 gene is capable of synthesizing anticoagulant HS in CHO cells and has the potential to contribute to the biosynthesis of anticoagulant HS in humans.  相似文献   

15.
We have characterized two high affinity acidic fibroblast growth factor (aFGF) receptors in a rat parathyroid cell line (PT-r). Affinity labeling with 125I-aFGF showed that these two receptors, apparent molecular masses, 150 and 130 kDa, respectively, display higher affinity for aFGF than for bFGF. The 150-kDa receptor bears a heparan sulfate chain(s), demonstrated by a decrease in size of 15-20 kDa with heparitinase digestion after affinity labeling. Heparitinase digestion before affinity labeling markedly reduced the intensity of the 150 kDa species. Scatchard analysis showed two different high affinity binding sites (Kd of 3.9 pM with 180 sites/cell and Kd of 110 pM with 5800 sites/cell). The higher affinity site was completely eliminated by digestion with heparitinase before adding labeled aFGF; the lower affinity site was unaffected. In ion exchange chromatography after metabolic labeling of the cells with [3H]glucosamine and affinity labeling with 125I-aFGF, the larger receptor-ligand complex, 165 kDa, eluted with approximately 0.5 M NaCl, typical eluting conditions for heparan sulfate proteoglycans. Both of the receptor-ligand complexes were smaller on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than two major heparan sulfate proteoglycans, HSPG I and II, which we characterized in this cell line previously (Yanagishita, M., Brandi, M. L., and Sakaguchi, K. (1989) J. Biol. Chem. 264, 15714-15720). Both receptors have similar N-linked oligosaccharide and sialic acid contents, shown by analysis of affinity-labeled receptors upon digestion with glycopeptidase F and with neuraminidase. All together, these results suggest that PT-r cells bear two distinct high affinity receptors for aFGF, a 150-kDa receptor which is a heparan sulfate proteoglycan and another that is a glycoprotein. The heparan sulfate glycosaminoglycan moiety of the 150- kDa receptor is critical for high affinity binding of aFGF. These findings contrast with current concepts derived from other systems, suggesting that heparan sulfate glycosaminoglycans/proteoglycans function as a reservoir source for FGF or as a group of low affinity binding sites.  相似文献   

16.
We show here that the interaction between the urokinase-type plasminogen activator and its receptor, which plays a critical role in cell invasion, is regulated by heparan sulfate present on the cell surface and in the extracellular matrix. Heparan sulfate oligomers showing a composition close to the dimeric repeats of heparin (glucosamine-NSO(3)(6-OSO(3))-iduronic acid(2-OSO(3))) n = 5 and n > 5, where iduronic acid may alternate with glucuronic acid, exhibit affinity for urokinase plasminogen activator and confer specificity on urokinase/urokinase receptor interaction. Cell surface clearance of heparan sulfate reduces the affinity of such interaction with a parallel decrease of specific urokinase binding in the presence of an unaltered expression of receptor. Transfection of human urokinase plasminogen activator receptor in normal Chinese hamster ovary fibroblasts and in Chinese hamster ovary cells defective for the synthesis of sulfated glycosaminoglycans results in specific urokinase/receptor interaction only in nondefective cells. Heparan sulfate/urokinase and receptor/urokinase interactions exhibit similar K(d) values. We concluded that heparan sulfate functions as an adaptor molecule that confers specificity on urokinase/receptor binding.  相似文献   

17.
Fibrillin-1 N- and C-terminal heparin binding sites have been characterized. An unprocessed monomeric N-terminal fragment (PF1) induced a very high heparin binding response, indicating heparin-mediated multimerization. Using PF1 deletion and short fragments, a heparin binding site was localized within the domain encoded by exon 7 after the first hybrid domain. Rodent embryonic fibroblasts adhered to PF1 and deletion fragments, and, when cells were plated on fibrillin-1 or fibronectin Arg-Gly-Asp cell-binding fragments, cells showed heparin-dependent spreading and focal contact formation in response to soluble PF1. Within domains encoded by exons 59-62 near the fibrillin-1 C terminus are novel conformation-dependent high affinity heparin and tropoelastin binding sites. Heparin disrupted tropoelastin binding but did not disrupt N- and C-terminal fibrillin-1 interactions. Thus, fibrillin-1 N-terminal interactions with heparin/heparan sulfate directly influence cell behavior, whereas C-terminal interactions with heparin/heparan sulfate regulate elastin deposition. These data highlight how heparin/heparan sulfate controls fibrillin-1 interactions.  相似文献   

18.
S protein, a major inhibitor of the assembly of the membrane attack complex of complement, has recently been shown to be identical to the serum spreading factor vitronectin. It also neutralizes the anticoagulant activities of heparin. We have studied the structural requirements for the heparin neutralizing properties of S protein/vitronectin using heparin, heparan sulfate, and heparin oligosaccharides with well defined anticoagulant specificities. The abilities of heparin fractions, Mr 7,800-18,800, with high affinity for antithrombin, and of the International Heparin Standard, to accelerate the inactivation of thrombin and Factor Xa by antithrombin were readily neutralized by S protein/vitronectin. Binding and neutralization of heparin by S protein/vitronectin was inhibited by heparin with low affinity for antithrombin, indicating that S protein/vitronectin can interact with a region on the heparin chain that might serve as a proteinase binding site. S protein/vitronectin efficiently neutralized oligosaccharides of Mr 2,400-7,200, unlike the two other physiologically occurring heparin neutralizing proteins histidine-rich glycoprotein and platelet factor 4. Furthermore, S protein/vitronectin neutralized the anti-Factor Xa activity of a synthetic pentasaccharide comprising the antithrombin-binding sequence of heparin. High molar excess of a synthetic tridecapeptide corresponding to part (amino acids 374-359) of the proposed glycosaminoglycan binding domain of S protein/vitronectin neutralized high affinity heparin and some oligosaccharides, but failed to neutralize the synthetic antithrombin-binding pentasaccharide. Like platelet factor 4, but unlike histidine-rich glycoprotein, S protein/vitronectin readily neutralized the anticoagulant activities of heparan sulfate of Mr approximately 20,000. These findings suggest that S protein/vitronectin may interact through its glycosaminoglycan binding domain(s) with various functional domains of the heparin (heparan sulfate) molecule, including the antithrombin-binding pentasaccharide sequence. Furthermore, the results suggest that S protein/vitronectin may be a physiologically important modulator of the anticoagulant activity of heparin-like material on or near the vascular endothelium.  相似文献   

19.
Prolyl 3-hydroxylase activity and the extent of collagen proline 3-hydroxylation were studied in six transformed and three control human cell lines. In the transformed cell lines, the enzyme activity was markedly high in two, similar to that in control cells in two and significantly low in two. The extent of proline 3-hydroxylation was markedly high in cell lines with high enzyme activity, but it was also significantly high in some transformed cell lines with enzyme activities similar to those in the controls. The results thus suggest that, in addition to the amount of enzyme activity present, the rate of collagen synthesis also affects the extent of proline 3-hydroxylation in the newly synthesized collagen. The effect of acute cell transformation on prolyl 3-hydroxylase and 4-hydroxylase activities was studied by infecting chick-embryo fibroblasts with Rous sarcoma virus mutant NY68, temperature-sensitive for transformation. At the permissive temperature prolyl 3-hydroxylase activity showed a more rapid increase and decrease than did prolyl 4-hydroxylase activity, the maximal activity for both enzymes being about 2.5 times that in the control chick fibroblasts. When the transformed cells were shifted to the non-permissive temperature the decays in the elevated enzyme activities were similar, suggesting identical half-lives.  相似文献   

20.
This study examined the effect of 3T3 fibroblasts on the expression of anchorage independence and the degree of cornification in early cultures of three carcinoma-derived epithelial cell lines (R59, R63a, R63b) and in one cell line derived from non-malignant dysplastic epithelium where there was no evidence of invasion (R66a). The epithelial cell lines originated from the palatal (R63a, R66a) and the lingual (R59, R63b) mucosa of rats that had been painted with the carcinogen 4-nitroquinoline N-oxide. In the absence of 3T3 fibroblasts, progressive culture resulted in an increase in the colony forming efficiency (CFE) of R63a, R63b and R59 and a decrease in the percentage of cornified cells in all cell lines. 3T3 fibroblasts caused a decrease in the CFE and the degree of cornification in the 3T3-dependent cell line (R63a), particularly at the lower passages, but these parameters remained essentially unchanged by 3T3 fibroblasts in the 3T3-independent cell lines (R59, R63b). 3T3 fibroblasts did not influence the cornification of R66a and this cell line remained anchorage dependent throughout the study. The results suggest that in malignant cell lines characterised by being independent of 3T3 fibroblasts (R63b, R59) the CFE was inversely correlated to the degree of cornification. However, in the malignant cell line showing a greater dependence on support (R63a) the relationship between CFE and cornification was unclear because these parameters may have been modulated by the presence of 3T3 fibroblasts. The cell line from dysplastic non-invasive tissue (R66a) differed from its malignant counterparts in the fact that CFE and cornification were unaffected by 3T3 fibroblasts despite previous studies showing a dependence on mesenchymal support.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号