首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The effect of protein–calorie deficiency on nuclear proteins was studied in growing and adult rats by using chemical and electrophoretic methods of fractionation. 2. After 7 days on protein-deficient diets, the amount of neutral-soluble proteins increased, and their electrophoretic pattern changed, with the appearance of a new component. 3. The histone fraction of the liver nuclei in rapidly growing rats was lower than that in either deficient or adult animals. 4. The possible role of nuclear proteins in relation to synthesis of the proteins and nucleic acids of the other parts of the cells is discussed.  相似文献   

2.
3.
Photoprotective mechanisms of cyanobacteria are characterized by several features associated with the structure of their water-soluble antenna complexes–the phycobilisomes (PBs). During energy transfer from PBs to chlorophyll of photosystem reaction centers, the “energy funnel” principle is realized, which regulates energy flux due to the specialized interaction of the PBs core with a quenching molecule capable of effectively dissipating electron excitation energy into heat. The role of the quencher is performed by ketocarotenoid within the photoactive orange carotenoid protein (OCP), which is also a sensor for light flux. At a high level of insolation, OCP is reversibly photoactivated, and this is accompanied by a sig- nificant change in its structure and spectral characteristics. Such conformational changes open the possibility for pro- tein–protein interactions between OCP and the PBs core (i.e., activation of photoprotection mechanisms) or the fluores- cence recovery protein. Even though OCP was discovered in 1981, little was known about the conformation of its active form until recently, as well as about the properties of homologs of its N and C domains. Studies carried out during recent years have made a breakthrough in understanding of the structural-functional organization of OCP and have enabled discovery of new aspects of the regulation of photoprotection processes in cyanobacteria. This review focuses on aspects of protein–pro- tein interactions between the main participants of photoprotection reactions and on certain properties of representatives of newly discovered families of OCP homologs.  相似文献   

4.
Although it is universally accepted that protein synthesis occurs in the cytoplasm, the possibility that translation can also take place in the nucleus has been hotly debated. Reports have been published claiming to demonstrate nuclear translation, but alternative explanations for these results have not been excluded, and other experiments argue against it. Much of the appeal of nuclear translation is that functional proofreading of newly made mRNAs in the nucleus would provide an efficient way to monitor mRNAs for the presence of premature termination codons, thereby avoiding the synthesis of deleterious proteins. mRNAs that are still in the nucleus-associated fraction of cells are subject to translational proofreading resulting in nonsense-mediated mRNA decay and perhaps nonsense-associated alternate splicing. However, these mRNAs are likely to be in the perinuclear cytoplasm rather than within the nucleus. Therefore, in the absence of additional evidence, we conclude that nuclear translation is unlikely to occur.  相似文献   

5.
6.
Molecular Biology - Huntingtin (HTT) occurs in the neuronal cytoplasm and can interact with structural elements of synapses. Huntington’s disease (HD) results from pathological expansion of a...  相似文献   

7.
YH Cai  H Huang 《Amino acids》2012,43(3):1141-1146
Protein-DNA interaction plays an important role in many biological processes. The classical methods and the novel technologies advanced have been developed for the interaction of protein-DNA. Recent developments of these methods and research achievements have been reviewed in this paper.  相似文献   

8.
Mapping protein–protein interactions in genome-wide scales revealed thousands of novel binding partners in each of the explored model organisms. Organizing these hits in comprehensive ways is becoming increasingly important for systems biology approaches to understand complex cellular processes and diseases. However, proteome wide interaction techniques and their resulting global networks are not revealing the topologies of networks that are truly operating in the cell. In this short review I will discuss which prerequisites have to be fulfilled and which experimental methods might be practicable to translate primary protein interaction data into network presentations that help in understanding cellular processes.  相似文献   

9.
10.
A number of interesting issues have been addressed on biological networks about their global and local properties. The connection between the topological properties of proteins in Protein–Protein Interaction (PPI) networks and their biological relevance has been investigated focusing on hubs, i.e. proteins with a large number of interacting partners. We will survey the literature trying to answer the following questions: Do hub proteins have special biological properties? Do they tend to be more essential than non-hub proteins? Are they more evolutionarily conserved? Do they play a central role in modular organization of the protein interaction network? Are there structural properties that characterize hub proteins?  相似文献   

11.
12.
Protein interfaces are thought to be distinguishable from the rest of the protein surface by their greater degree of residue conservation. We test the validity of this approach on an expanded set of 64 protein-protein interfaces using conservation scores derived from two multiple sequence alignment types, one of close homologs/orthologs and one of diverse homologs/paralogs. Overall, we find that the interface is slightly more conserved than the rest of the protein surface when using either alignment type, with alignments of diverse homologs showing marginally better discrimination. However, using a novel surface-patch definition, we find that the interface is rarely significantly more conserved than other surface patches when using either alignment type. When an interface is among the most conserved surface patches, it tends to be part of an enzyme active site. The most conserved surface patch overlaps with 39% (+/- 28%) and 36% (+/- 28%) of the actual interface for diverse and close homologs, respectively. Contrary to results obtained from smaller data sets, this work indicates that residue conservation is rarely sufficient for complete and accurate prediction of protein interfaces. Finally, we find that obligate interfaces differ from transient interfaces in that the former have significantly fewer alignment gaps at the interface than the rest of the protein surface, as well as having buried interface residues that are more conserved than partially buried interface residues.  相似文献   

13.
Protein–protein interactions (PPIs) are essential in the regulation of biological functions and cell events, therefore understanding PPIs have become a key issue to understanding the molecular mechanism and investigating the design of drugs. Here we highlight the major developments in computational methods developed for predicting PPIs by using types of artificial intelligence algorithms. The first part introduces the source of experimental PPI data. The second part is devoted to the PPI prediction methods based on sequential information. The third part covers representative methods using structural information as the input feature. The last part is methods designed by combining different types of features. For each part, the state-of-the-art computational PPI prediction methods are reviewed in an inclusive view. Finally, we discuss the flaws existing in this area and future directions of next-generation algorithms.  相似文献   

14.
15.
16.
Schoffman  Hanan  Keren  Nir 《Photosynthesis research》2019,141(3):343-353
Photosynthesis Research - The acclimation of cyanobacterial photosynthetic apparatus to iron deficiency is crucial for their performance under limiting conditions. In many cyanobacterial species,...  相似文献   

17.
The molecular basis for formation of lymphoid follicle and its homeostasis in the secondary lymphoid organs remains unclear. Signal regulatory protein α (SIRPα), an Ig superfamily protein that is predominantly expressed in dendritic cells or macrophages, mediates cell-cell signaling by interacting with CD47, another Ig superfamily protein. In this study, we show that the size of the T cell zone as well as the number of CD4(+) T cells were markedly reduced in the spleen of mice bearing a mutant (MT) SIRPα that lacks the cytoplasmic region compared with those of wild-type mice. In addition, the expression of CCL19 and CCL21, as well as of IL-7, which are thought to be important for development or homeostasis of the T cell zone, was markedly decreased in the spleen of SIRPα MT mice. By the use of bone marrow chimera, we found that hematopoietic SIRPα is important for development of the T cell zone as well as the expression of CCL19 and CCL21 in the spleen. The expression of lymphotoxin and its receptor, lymphotoxin β receptor, as well as the in vivo response to lymphotoxin β receptor stimulation were also decreased in the spleen of SIRPα MT mice. CD47-deficient mice also manifested phenotypes similar to SIRPα MT mice. These data suggest that SIRPα as well as its ligand CD47 are thus essential for steady-state homeostasis of T cells in the spleen.  相似文献   

18.
Synucleinopathies are a group of neurodegenerative diseases characterized by the accumulation of α-synuclein amyloids in several regions of the brain. α-Synuclein fibrils are able to spread via cell-to-cell transfer, and once inside the cells, they can template the misfolding and aggregation of the endogenous α-synuclein. Multiple mechanisms have been shown to participate in the process of propagation: endocytosis, tunneling nanotubes and macropinocytosis. Recently, we published a research showing that the cellular form of the prion protein (PrPC) acts as a receptor for α-synuclein amyloid fibrils, facilitating their internalization through and endocytic pathway. This interaction occurs by a direct interaction between the fibrils and the N-terminal domain of PrPC. In cell lines expressing the pathological form of PrP (PrPSc), the binding between PrPC and α-synuclein fibrils prevents the formation and accumulation of PrPSc, since PrPC is no longer available as a substrate for the pathological conversion templated by PrPSc. On the contrary, PrPSc deposits are cleared over passages, probably due to the increased processing of PrPC into the neuroprotective fragments N1 and C1. Starting from these data, in this work we present new insights into the role of PrPC in the internalization of protein amyloids and the possible therapeutic applications of these findings.  相似文献   

19.
  • 1.1. Studies have been performed on untreated and heavy metal treated Hydra attenuata in order to reveal the presence of low mol. wt metal-binding proteins.
  • 2.2. A prepared rat metallothionein (Mt) standard, gel permeation, polyacrylamide gel electrophoresis and autoradiographic techniques were used in the experiments.
  • 3.3. Our results indicate that H. attenuata, and three species of marine coelenterates, lack metallothionein (Mt) or other metal binding proteins.
  相似文献   

20.
Previous studies on the activity of the rice Gα promoter using a β-Glucuronidase (GUS) reporter construct indicated that Gα expression was highest in developing organs and changed in a developmental stage-dependent manner. In this paper, GUS activity derived from the rice Gα promoter was analyzed in seeds and developing leaves. In seeds, GUS activity was detected in the aleurone layer, embryo, endosperm and scutellar epithelium. In developing leaves, the activity was detected in the mesophyll tissues, phloem and xylem of the leaf sheath and in the mesophyll tissue of the leaf blade. The activity in the aleurone layer and scutellar epithelium suggests that the Gα subunit may be involved in gibberellin signaling. The activity in the mesophyll tissues of the leaf blade suggests that the Gα subunit may be related to the intensity of disease resistance. The pattern of the activity in the developing leaf also indicates that the expression of Gα follows a developmental profile at the tissue level.Key words: expression pattern, Gα subunit, GUS staining pattern, heterotrimeric G protein, riceThe rice mutant d1 is deficient in the heterotrimeric G protein α subunit (Gα). Recently it was found that the dwarfism phenotype of d1 is due to a reduction in cell numbers.1 This discovery has led to new questions regarding how rice Gα regulates cell number, and which other signaling molecules are involved in this process in various tissues and at different development stages. Studies of d1 suggest that rice Gα participates in both gibberellin signaling24 and brassinosteroid signaling.58 Promoter studies using the β-Glucuronidase (GUS) reporter indicate that Gα expression is highest in developing organs.1 In this paper, we report on the expression pattern of a Gα promoter::GUS construct in seeds and developing leaves of rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号