首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Bile acids are synthesized from cholesterol in the liver and are excreted into bile via the hepatocyte canalicular bile salt export pump. After their passage into the intestine, bile acids are reabsorbed in the ileum by sodium-dependent uptake across the apical membrane of enterocytes. At the basolateral domain of ileal enterocytes, bile acids are extruded into portal blood by the heterodimeric organic solute transporter OSTalpha/OSTbeta. Although the transport function of OSTalpha/OSTbeta has been characterized, little is known about the regulation of its expression. We show here that human OSTalpha/OSTbeta expression is induced by bile acids through ligand-dependent transactivation of both OST genes by the nuclear bile acid receptor/farnesoid X receptor (FXR). FXR agonists induced endogenous mRNA levels of OSTalpha and OSTbeta in cultured cells, an effect that was not discernible upon inhibition of FXR expression by small interfering RNAs. Furthermore, OST mRNAs were induced in human ileal biopsies exposed to the bile acid chenodeoxycholic acid. Reporter constructs containing OSTalpha or OSTbeta promoters were transactivated by FXR in the presence of its ligand. Two functional FXR binding motifs were identified in the OSTalpha gene and one in the OSTbeta gene. Targeted mutation of these elements led to reduced inducibility of both OST promoters by FXR. In conclusion, the genes encoding the human OSTalpha/OSTbeta complex are induced by bile acids and FXR. By coordinated control of OSTalpha/OSTbeta expression, bile acids may adjust the rate of their own efflux from enterocytes in response to changes in intracellular bile acid levels.  相似文献   

3.
4.
TALLYHO/Jng (TH) mice reveal hypercholesterolemia at an early age before their plasma glucose levels have increased. The increased plasma cholesterol should be related to bile acids (BAs) metabolism, because cholesterol is the precursor of BAs and BAs change cholesterol metabolism in a feedback manner. We analyzed the BAs pool size, BAs composition, and expression levels of several proteins that have key roles in BAs synthesis, excretion, and reabsorption and compared them to those of C57BL/6 (B6) mice to study BAs metabolism in TH mice. TH mice exhibited an increased total BAs pool size, increased BAs content in the cecum feces, and an increased ratio of muricholic acid (MCA)/cholic acid (CA). The mRNA and protein levels of cholesterol 7 alpha-hydroxylase (Cyp7a1) and the ATP-binding cassette sub-family G member 5 (Abcg5) were elevated in the liver but not in the apical sodium bile acid transporter (Asbt) and organic solute transporters (Osts) in the ileum. These results indicate that synthesis and the excretion of BAs from the liver to the gallbladder might be elevated, but the reabsorption rate of BAs in the ileum might be reduced. The declined expression of fibroblast growth factor 15 (Fgf15) and fibroblast growth factor receptor 4 (Fgfr4) was respectively identified in the ileum and the liver, indicating the disrupted feedback inhibition of Cyp7a1. Consequently, hypercholesterolemia in TH mice might increase the BAs amounts via the interrupted Fxr/Fgf15/Fgfr4-mediated feedback regulation of Cyp7a1.  相似文献   

5.
6.
The objective of the present study was to investigate the cholesterol-reducing effect of medium-chain fatty acids (MCFAs) completed by elevated excretion of fecal neutral steroids and/or bile acids. Blood and liver lipid profiles, fecal neutral steroids, bile acids, and mRNA and protein expression of the genes relevant to cholesterol homeostasis were measured and analyzed in C57BL/6J mice fed a cholesterol-rich diet with 2% caprylic acid or capric acid for 12 weeks. Blood total cholesterol and low-density lipoprotein cholesterol (LDL-c) levels were reduced significantly as compared to diet with palmitic acid or stearic acid. Caprylic acid promoted the excretion of fecal neutral steroids, especially cholesterol. The excretion of fecal bile acids, mainly in the form of cholic acid was enhanced and accompanied by elevated expression of mRNA and the protein of hepatic cholesterol 7α-hydroxylase (CYP7A1). These results indicate that MCFAs can reduce blood cholesterol by promoting the excretion of fecal cholesterol and cholic acid.  相似文献   

7.
Cao Y  Bei W  Hu Y  Cao L  Huang L  Wang L  Luo D  Chen Y  Yao X  He W  Liu X  Guo J 《Phytomedicine》2012,19(8-9):686-692
This study is to investigate the cholesterol-lowering effect and the new mode of action of coptis alkaloids on high lipid diet-induced hyperlipidemic rats. Coptis alkaloids extract (CAE) was prepared by alcohol extraction from Rhizoma Coptidis that have been quality-controlled according to the protocol. The cholesterol-lowering effect of CAE was evaluated on SD rats fed with high-lipid diet. Serum level of lipid, Bile acid and cholesterol in the liver and feces of the rats were measured using colorimetric assay kit. RT-PCR and Western blot were used to analyze the mRNA and protein expression of cholesterol metabolism-related genes including cholesterol 7α-hydroxylase (CYP7A1), peroxisome proliferator-activated receptor-alpha (PPARα) and farnesoid X receptor (FXR) in the livers of the rats. A HPLC analysis was used to assess the activity of CYP7A1. The results showed that CAE reduced the levels of serum total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C). CYP7A1 gene expression and its activity was up-regulated dose-dependently accompanying with the increased level of bile acid and the reduced cholesterol level in the livers of the CAE treated hyperlipidemic rats. Meanwhile, the mRNA expression of PPARα was also up-regulated in dose-dependent way accompanying the down-modulation of the FXR mRNA expression in the livers of the CAE treated hyperlipidemic rats. The results indicate that the cholesterol-lowering effect of coptis alkaloid extract is at least partly attributed to its promoting the cholesterol conversion into bile acids by up-regulating the gene expression of CYP7A1 and thus increasing its activity in the liver of the hyperlipidemic rats, which might related to the positive regulation of PPARα and the negative modulation of FXR.  相似文献   

8.
Metabolism of sodium 3 alpha,7 alpha-dihydroxy-5 beta-cholane-24-sulfonate, the sulfonate derivative of chenodeoxycholic acid, was studied in hamsters. In bile fistula hamsters, the sulfonate analogue was efficiently absorbed from the ileum and secreted rapidly into the bile without any modification such as conjugation. However, absorption from the jejunum was smaller than that observed for the ileum. After oral administration, the sulfonate analogue of chenodeoxycholic acid was recovered quantitatively in the feces as the unchanged form in contrast to simultaneously administered chenodeoxycholic acid, which was entirely converted to lithocholic acid during its passage through the intestinal tract. These results demonstrate that the sulfonate analogue is absorbed mainly from the ileum by active transport, enters the enterohepatic circulation like the endogenous conjugated bile acids, and completely resists bacterial degradation.  相似文献   

9.
Bile acids are cholesterol derivatives that serve as detergents in bile and the small intestine. Approximately 95% of bile acids secreted by hepatocytes into bile are absorbed from the distal ileum into the portal venous system. Extraction from the portal circulation by the hepatocyte followed by reexcretion into the bile canaliculus completes the enterohepatic circulation of these compounds. Over the past few years, candidate bile acid transport proteins of the sinusoidal and canalicular plasma membranes of the hepatocyte have been identified. The physiology of hepatocyte bile acid transport and its relationship to these transport proteins is the subject of this Themes article.  相似文献   

10.
11.
To investigate changes in bile acid biosynthesis in chicken (Gallus gallus) during embryonic stages, we studied the contribution of hepatic and plasma total bile acid levels, mRNA expression of cholesterol 7 alpha-hydroxylase (CYP7A1), and the expression of its regulatory genes in two embryo models (i.e., broilers and layers) differing in lipid metabolism. Total bile acid levels in plasma and liver were low during embryonic stages, as well as expression of CYP7A1. At hatch (P0), hepatic and plasma total bile acid levels and CYP7A1 mRNA expression in liver were markedly increased in both models. The hepatic mRNA expression of liver X receptor (LXR)alpha, a regulator of CYP7A1 gene expression gradually decreased with developmental stages of both broilers and layers. The hepatic mRNA expression of farnesoid X receptor (FXR), a repressor of CYP7A1 gene expression, also decreased with embryonic development. The present results showed that the mRNA expression of CYP7A1 and synthesis of bile acids was low in embryonic stages, suggesting that FXR might be a key regulator of CYP7A1 gene expression in the chicken embryo.  相似文献   

12.
13.
Intestinal handling of bile acids is age dependent; adult, but not newborn, ileum absorbs bile acids, and adult, but not weanling or newborn, distal colon secretes Cl(-) in response to bile acids. Bile acid transport involving the apical Na(+)-dependent bile acid transporter (Asbt) and lipid-binding protein (LBP) is well characterized in the ileum, but little is known about colonic bile acid transport. We investigated colonic bile acid transport and the nature of the underlying transporters and receptors. Colon from adult, weanling, and newborn rabbits was screened by semiquantitative RT-PCR for Asbt, its truncated variant t-Asbt, LBP, multidrug resistance-associated protein 3, organic solute transporter-alpha, and farnesoid X receptor. Asbt and LBP showed maximal expression in weanling and significantly less expression in adult and newborn rabbits. The ileum, but not the colon, expressed t-Asbt. Asbt, LBP, and farnesoid X receptor mRNA expression in weanling colon parallel the profile in adult ileum, a tissue designed for high bile acid absorption. To examine their functional role, transepithelial [(3)H]taurocholate transport was measured in weanling and adult colon and ileum. Under short-circuit conditions, weanling colon and ileum and adult ileum showed net bile acid absorption: 1.23 +/- 0.62, 5.53 +/- 1.20, and 11.41 +/- 3.45 nmol x cm(-2) x h(-1), respectively. However, adult colon secreted bile acids (-1.39 +/- 0.47 nmol x cm(-2) x h(-1)). We demonstrate for the first time that weanling, but not adult, distal colon shows net bile acid absorption. Thus increased expression of Asbt and LBP in weanling colon, which is associated with parallel increases in taurocholate absorption, has relevance in enterohepatic conservation of bile acids when ileal bile acid recycling is not fully developed.  相似文献   

14.
15.
PURPOSE OF REVIEW: The transhepatic traffic of cholesterol from plasma lipoproteins into the bile is critical for overall cholesterol homeostasis and its alterations may lead to cholesterol gallstone formation. This review summarizes recent progress in understanding the key hepatic cholesterol metabolism-related proteins and pathways that influence biliary secretion of cholesterol. RECENT FINDINGS: In cholesterol-fed apolipoprotein E knockout mice, the availability of dietary cholesterol for biliary disposal is decreased and diet-induced gallstone formation is impaired. Scavenger receptor class B type I is relevant for cholesterol transport from plasma HDL into the bile in chow-fed mice, however its expression is not critical for biliary cholesterol secretion and gallstone formation in lithogenic diet-fed mice. Intrahepatic cholesterol transport proteins (e.g. sterol carrier protein-2, Niemann Pick type C-1 protein) also determine liver cholesterol available for biliary secretion in mice. Genetic manipulation of canalicular ATP-binding cassette transporter G5 and G8 expression in mice has established their essential role for biliary cholesterol secretion. SUMMARY: Recent studies have underscored that different proteins involved in hepatic cholesterol transport regulate the availability of cholesterol for biliary secretion. These advances may provide new avenues for prevention and treatment of various disease conditions linked to abnormal cholesterol metabolism.  相似文献   

16.
The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6) is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+)Mig-6(f/f); Mig-6(d/d)). Mig-6(d/d) mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d) mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d) mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d) mice compared to Mig-6(f/f) controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.  相似文献   

17.
We investigated the role of the orphan nuclear receptor farnesoid X receptor (FXR) in the regulation of cholesterol 7alpha-hydroxylase (CYP7A1), using an in vivo rabbit model, in which the bile acid pool, which includes high affinity ligands for FXR, was eliminated. After 7 days of bile drainage, the enterohepatic bile acid pool, in both New Zealand White and Watanabe heritable hyperlipidemic rabbits, was depleted. CYP7A1 activity and mRNA levels increased while FXR was deactivated as indicated by reduced FXR protein and changes in the expression of target genes that served as surrogate markers of FXR activation in the liver and ileum, respectively. Hepatic bile salt export pump mRNA levels and ileal bile acid-binding protein decreased while sterol 12alpha-hydroxylase and sodium/taurocholate cotransporting polypeptide mRNA levels increased in the liver. In addition, hepatic FXR mRNA levels decreased significantly.The data, taken together, indicate that FXR was deactivated when the bile acid pool was depleted such that CYP7A1 was upregulated. Further, lack of the high affinity ligand supply was associated with downregulation of hepatic FXR mRNA levels.  相似文献   

18.
19.
Qiao X  Ye M  Xiang C  Bo T  Yang WZ  Liu CF  Miao WJ  Guo DA 《Steroids》2012,77(7):745-755
Licorice is one of the most popular herbal medicines worldwide, and is mainly used to moderate the characteristics of other herbs in Traditional Chinese Medicine. It is hypothesized that licorice exerts this role by regulating systemic metabolism. Bile acids play a critical role in lipid digestion and cholesterol metabolism, and are sensitive biomarkers for hepatic function. In this study, the regulatory effects of licorice on bile acid metabonome in rats were investigated using liquid chromatography coupled with tandem mass spectrometry. After oral administration of a clinical dosage of licorice water extract, the levels of 21 fully identified and 41 tentatively characterized bile acid analogs in rat plasma were determined by a fully validated method. Following partial least squares discriminant analysis, the results showed that licorice treatment led to dose-dependent up-regulation of free and glycine-conjugated bile acids excretion. Particularly, the plasma levels of cholic acid (1465.33±915.93-7156.46±3490.49 ng/mL, p=0.0027) and β-muricholic acid (228.19±163.95-1284.40±775.62 ng/mL, p=0.0045) increased significantly 48 h after administration. As licorice is widely used as a detoxifying drug, the regulation of plasma bile acids may be an important evidence to interpret its mechanism.  相似文献   

20.
Proprotein convertase subtilisin-kexin-9 (PCSK9) inhibition markedly augments the LDL lowering action of statins. The combination is being evaluated for long-term effects on atherosclerotic disease outcomes. However, effects of combined treatment on hepatic cholesterol and bile acid metabolism have not yet been reported. To study this, PCSK9-Y119X mutant (knockout) and wild-type mice were treated with or without atorvastatin for 12 weeks. Atorvastatin progressively lowered plasma LDL in each group, but no differences in liver cholesterol, cholesterol ester, or total bile acid concentrations, or in plasma total bile acid levels were seen. In contrast, atorvastatin increased fecal total bile acids (∼2-fold, P < 0.01) and cholesterol concentrations (∼3-fold, P < 0.01) versus controls for both PCSK9-Y119X and wild-type mice. All 14 individual bile acids resolved by LC-MS, including primary, secondary, and conjugated species, reflected similar increases. Expression of key liver bile acid synthesis genes CYP7A1 and CYP8B1 were ∼2.5-fold higher with atorvastatin in both strains, but mRNA for liver bile acid export and reuptake transporters and conjugating enzymes were not unaffected. The data suggest that hepatocyte cholesterol and bile acid homeostasis is maintained with combined PCSK9 and HMG-CoA reductase inhibition through efficient liver enzymatic conversion of LDL-derived cholesterol into bile acids and excretion of both, with undisturbed enterohepatic recycling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号