首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cycloalkylpolyones hold promise in drug design as carboxylic acid bio-isosteres. To investigate cyclopentane-1,2-diones as potential surrogates of the carboxylic acid functional group, the acidity, tautomerism, and geometry of hydrogen bonding of representative compounds were evaluated. Prototypic derivatives of the known thromboxane A2 prostanoid (TP) receptor antagonist, 3-(3-(2-((4-chlorophenyl)sulfonamido)-ethyl)phenyl)propanoic acid, in which the carboxylic acid moiety is replaced by the cyclopentane-1,2-dione unit, were synthesized and evaluated as TP receptor antagonists. Cyclopentane-1,2-dione derivative 9 was found to be a potent TP receptor antagonist with an IC50 value comparable to that of the parent carboxylic acid. These results indicate that the cyclopentane-1,2-dione may be a potentially useful carboxylic acid bio-isostere.  相似文献   

2.
The structure of terminic acid, a new dihydroxytriterpene carboxylic acid isolated from the roots of Terminalia arjuna, has been established as 3β, 13β-dihydroxylup-20(29)-en-28-oic acid by a study of its chemical reactions and spectroscopic data. Terminic acid and its derivatives were found to undergo skeletal rearrangement under protonic conditions to yield oleanene lactone.  相似文献   

3.
The full-structure of a norlabdane terpenoid, kujigamberol (1) was determined by total synthesis. Key features of the total synthesis are (1) installation of isopentyl group through an o-lithiation of benzamide, (2) construction of tetralone by the RCM reaction, and (3) optical resolution of (±)-1 using chromatographical separation of the corresponding camphanates. X-ray crystallographical analysis of p-bromobenzoate obtained from the more polar camphanate that was identical with a natural derivative, revealed natural kujigamberol to have an S-configuration. Both the natural enantiomer and its (R)-antipode showed the same inhibitory activity toward the mutant yeast and HL-60 cells, while simple analogs without alkyl groups at the C-8 and 9 positions of (±)-1 had no such activity.  相似文献   

4.
Glucuronide conjugation of xenobiotics containing a carboxylic acid moiety represents an important metabolic pathway for these compounds in humans. Several human UDP-glucuronosyltransferases (UGTs) have been shown to catalyze the formation of acyl-glucuronides, including UGT2B7, UGT1A3, and UGT1A9. In this study, recombinant expressed UGT isoforms were investigated with many structurally related carboxylic acid analogues, and the UGT rank order for catalyzing the glucuronidation of carboxylic acids was UGT2B7?UGT1A3 approximately UGT1A9. Despite being a poor substrate with UGT1A3, coumarin-3-carboxylic acid was not a substrate for any other UGT isoform tested in this study, suggesting that it could be a specific substrate for UGT1A3. Interestingly, UGT1A7 and UGT1A10 also react with several carboxylic acid aglycones. Kinetic analysis showed that UGT2B7 exhibits much higher glucuronidation efficiency (Vmax/Km) with ibuprofen, ketoprofen, and others, compared to UGT1A3. These data indicate that UGT2B7 could be the major isoform involved in the glucuronidation of carboxylic acid compounds in humans.  相似文献   

5.
Malaria pigment, or beta-hematin, the insoluble heme detoxification product resulting from the intraerythrocitic digestion of hemoglobin by young malaria trophozoites has been structurally characterized by X-ray powder diffraction and shown to contain chains of propionic acid linked dimers. Although there is considerable spectroscopic evidence for a monodentate propionate-iron interaction in this crystalline material, the spectroscopic characterization of the propionic acid dimer is limited. Herein we demonstrate the presence of the propionic acid dimer unit by H/D isotope substitution in carboxylic acid dimer. In the Raman spectrum of the deuterium substituted compound there is a circa 12 cm(-1) shift, H: 1629 cm(-1) vs. D: 1617 cm(-1) in the symmetric ring breathing mode for the propionic acid dimer. On the other hand, the IR active asymmetric stretch has a very small shift, <3 cm(-1), upon deuteration. These, and other vibrational data, are consistent with the presence of a planar carboxylic acid dimer in the structure of beta-hematin.  相似文献   

6.
Cellulolytic enzymes consist of a catalytic domain, a linking peptide, and a binding domain. The paper describes research on carboxylic acids that have potential as catalytic domains for constructing organic macromolecules for use in cellulose hydrolysis that mimic the action of enzymes. The tested domains consist of the series of mono-, di-, and tricarboxylic acids with a range of pK(a)'s. This paper systematically characterizes the acids with respect to hydrolysis of cellobiose, cellulose in biomass, and degradation of glucose and compares these kinetics data to dilute sulfuric acid. Results show that acid catalyzed hydrolysis is proportional to H+ concentration. The tested carboxylic acids did not catalyze the degradation of glucose while sulfuric acid catalyzed the degradation of glucose above that of water alone. Consequently, overall yields of glucose obtained from cellobiose and cellulose are higher for the best carboxylic acid tested, maleic acid, when compared to sulfuric acid at equivalent solution pH.  相似文献   

7.
A new ferulic acid ester derivative, tetracosane‐1,24‐diyl di[(Z)‐ferulate] ( 1 ), and a new ellagic acid derivative, 3,4 : 3′,4′‐bis(O,O‐methylene)ellagic acid ( 2 ), have been isolated from leaves and twigs of Pachycentria formosana, together with eight known compounds. Their structures were determined by in‐depth spectroscopic and mass‐spectrometric analyses. Among the isolated compounds, oleanolic acid ( 6 ), ursolic acid acetate ( 7 ), and 3‐epibetulinic acid ( 9 ) exhibited potent inhibition (IC50 values ≤21.8 μM ) of O2⋅− generation by human neutrophils in response to N‐formyl‐L ‐methionyl‐L ‐leucyl‐L ‐phenylalanine/cytochalasin B (fMLP/CB). In addition, oleanolic acid ( 6 ), 3‐O‐[(E)‐feruloyl]ursolic acid ( 8 ), 3‐epibetulinic acid ( 9 ), and lawsonic acid ( 10 ) also inhibited fMLP/CB‐induced elastase release with IC50 values ≤18.6 μM .  相似文献   

8.
The acid unfolding of staphylococcal nuclease (SNase) is very cooperative (Whitten and García-Moreno, Biochemistry 2000;39:14292-14304). As many as seven hydrogen ions (H+) are bound preferentially by the acid-unfolded state relative to the native (N) state in the pH range 3.2-3.9. To investigate the mechanism of acid unfolding, structure-based pKa calculations were performed with a variety of continuum electrostatic methods. The calculations reproduced successfully the H+ binding properties of the N state between pH 5 and 9, but they systematically overestimated the number of H+ bound upon acid unfolding. The calculated pKa values of all carboxylic residues in the N state were more depressed than they should be. The discrepancy between the observed and the calculated H+ uptake upon acid unfolding was not improved by using high protein dielectric constants, structures relaxed with molecular dynamics, or other empirical modifications implemented previously by others to maximize agreement between measured and calculated pKa values. This suggests an important role for conformational fluctuations of the backbone as important determinants of pKa values of carboxylic groups. Because no global or subglobal conformational changes have been observed previously for SNase under acidic conditions above the acid-unfolding region, these fluctuations must be local. The acid unfolding of SNase does not seem to involve the disruption of the N state by accruement of intramolecular repulsive interactions, nor the protonation of key ion paired carboxylic residues. It is more consistent with modest contributions from many H+ binding groups, with an important role for local conformational fluctuations in the coupling between H+ binding and the global structural transition.  相似文献   

9.
The side-chain double bonds of bacterial poly[3-hydroxyalkanoate-co-3-hydroxyalkenoate] (PHAE, 1) were transformed into thioether bonds (derivative 2) via the radical addition reaction of 11-mercapto-1-undecanol. The terminal hydroxy functionalities of derivative 2 were subsequently esterified with cinnamic acid (derivative 3), sulfatized with ClSO(3)H (derivative 4), or coupled with tert-butyldimethylsilyl-protected coumaric acid, to give, after deprotection with tetrabutylammonium fluoride (derivative 5) followed by sulfatization, p-(sulfooxy) cinnamic acid- (zosteric acid) labeled PHAE (derivative 6). The reactions proceeded with good yields and little side reactions, which was confirmed with (1)H NMR and GPC experiments. These functionalized polyesters are currently investigated as environmentally friendly coatings to protect surfaces from biofouling.  相似文献   

10.
Sitosterol and three new pentacyclic triterpenoids, plectranthoic acid, acetylplectranthoic acid and plectranthadiol, have been isolated from leaves of P. rugosus. From spectroscopic evidence and chemical behaviour the structure of plectranthoic acid was established as (19S)-3α-hydroxy-18α-urs-12-en-29β-oic acid and acetylplectranthoic acid is the 3α-acetyl derivative of this compound. Plectranthadiol is (19S)- 3α-hydroxy-18α-urs-12-en-29β-ol.  相似文献   

11.
A series of new imidazole carboxylic esters (carbamates) and N-acylimidazole derivatives of betulin and betulinic acid (1429) have been synthesized. The new compounds were screened for in vitro cytotoxicity activity against human cancer cell lines HepG2, Jurkat and HeLa. A number of compounds have shown IC50 values lower than 2 μM against the cancer cell lines tested and the vast majority has shown a better cytotoxicity profile than betulinic acid, including the betulin derivatives. N-Acylimidazole derivatives 26 and 27 (IC50 0.8 and 1.7 μM in HepG2 cells) and the C-3 carbamate derivative 16 (IC50 2.0 μM in HepG2 cells) were the most promising compounds. Based on the observed cytotoxicity, structure–activity relationships have been established.  相似文献   

12.
The carboxylic acid functional group of ibuprofen [alpha-methyl-4-(2-methylpropyl) benzene acetic acid] is reduced to the corresponding alcohol and subsequently esterified to the acetate derivative by cultures of Nocardia species strain NRRL 5646. The alcohol and ester microbial transformation products were isolated, and their structures were determined by H and C nuclear magnetic resonance spectroscopy and mass spectrometry. By derivatization of synthetic and microbiologically produced ibuprofen alcohols with S(+)-O-acetylmandelic acid, nuclear magnetic resonance analysis indicated that the carboxylic acid reductase of Nocardia sp. is R enantioselective, giving alcohol products with an enantiomeric excess of 61.2%. The R enantioselectivity of the carboxylic acid reductase enzyme system was confirmed by using cell extracts together with ATP and NADPH in the reduction of isomeric ibuprofens.  相似文献   

13.
14.
Fatty acid 2-hydroxylase (FA2H), encoded by the FA2H gene, is an enzyme responsible for the de novo synthesis of sphingolipids containing 2-hydroxy fatty acids. 2-Hydroxy sphingolipids are highly abundant in the brain, as major myelin galactolipids (galactosylceramide and sulfatide) contain a uniquely high proportion ( approximately 50%) of 2-hydroxy fatty acids. Other tissues, such as epidermis, epithelia of the digestive tract, and certain cancers, also contain 2-hydroxy sphingolipids. The physiological significance of the 2-hydroxylation on N-acyl chains of subsets of sphingolipids is poorly understood. To study the roles of FA2H and 2-hydroxy sphingolipids in various tissues, we developed a highly sensitive in vitro FA2H assay. FA2H-dependent fatty acid 2-hydroxylation requires an electron transfer system, which was reconstituted in vitro with an NADPH regeneration system and purified NADPH:cytochrome P-450 reductase. A substrate [3,3,5,5-D(4)]tetracosanoic acid was solubilized in alpha-cyclodextrin solution, and the 2-hydroxylated product was quantified by gas chromatography-mass spectrometry after conversion to a trimethylsilyl ether derivative. When the microsomes of FA2H-transfected COS7 cells were incubated with the electron transfer system and deuterated tetracosanoic acid, deuterated 2-hydroxy tetracosanoic acid was formed in a time- and protein-dependent manner. With this method, FA2H activities were reproducibly measured in murine brains and tissue culture cell lines.  相似文献   

15.
Propionic acid stimulates superoxide generation in human neutrophils   总被引:2,自引:0,他引:2  
Short-chain carboxylic acids are the metabolic by-products of pathogenic anaerobic bacteria and are found at sites of infection in millimolar quantities. We previously reported that propionic acid, one of the short-chain carboxylic acids, induces an increase in intracellular Ca2+ ([Ca2+]i) in human neutrophils. Here we investigate the effect of propionic acid on superoxide generation in human neutrophils. Propionic acid (10 mm) induced inositol 1,4, 5-trisphosphate (IP3) formation and a rapidly transient increase in [Ca2+]i, but not superoxide generation, whereas 1 microm formylmethionyl-leucyl-phenylalanine (fMLP), a widely used neutrophil-stimulating bacterial peptide, stimulated not only IP3 formation and Ca2+ mobilization but also superoxide generation. The IP3 level induced by propionic acid was slightly lower than that induced by fMLP. The transient increase in [Ca2+]i induced by propionic acid immediately returned to the basal level, whereas a sustained increase in [Ca2+]i, which was higher than the basal level, following a transient increase in [Ca2+]i was induced by fMLP. The peak level induced by propionic acid was lower than that with fMLP. In the absence of extracellular Ca2+, thapsigargin, a potent inhibitor of endoplasmic reticulum Ca2+-ATPase, induced an increase in [Ca2+]i even after propionic acid stimulation, but not after fMLP. The Ca2+ ionophore A23187 and thapsigargin induced superoxide generation by themselves. Propionic acid enhanced the superoxide generating effect of A23187 and thapsigargin. These results suggest that Ca2+ mobilization induced by propionic acid is much weaker than that with fMLP, and propionic acid is able to generate superoxide in the presence of a Ca2+ ionophore and a Ca2+ influx activator.  相似文献   

16.
The release of gamma-aminobutyric acid (GABA) was studied in slices of the head of the rabbit caudate nucleus. The slices were preincubated with [3H]GABA and then superfused. Aminooxyacetic acid was present throughout. Both the tritium in the slices and that in the superfusate consisted practically entirely of [3H]GABA. Stimulation for 2 min by electrical field pulses of 3 ms width and 9 V/cm voltage drop (36 mA current strength) at 5 or 20 Hz elicited an overflow of [3H]GABA that amounted to 0.23 or 0.47% of the tritium content of the tissue, respectively, and was diminished by 85% in the presence of tetrodotoxin. At higher current strength, less of the stimulation-evoked overflow was tetrodotoxin-sensitive. cis-1,3-Aminocyclohexane carboxylic acid diminished the uptake of [3H]GABA into the tissue but did not change the percentage released by electrical stimulation. Ca2+ withdrawal greatly accelerated basal [3H]GABA efflux and almost abolished the response to stimulation. Nipecotic acid 10-1,000 microM enhanced both the basal and (up to eightfold) the stimulation-evoked overflow. The method described allows us to elicit electrically a quasiphysiological, i.e., Ca2+-dependent and tetrodotoxin-sensitive, neuronal release of [3H]GABA. Nipecotic acid diverts released [3H]GABA from reuptake to overflow.  相似文献   

17.
Bioassay-guided investigation of the bark of Elaeocarpus parvifolius led to the isolation of three new ellagic acid derivatives, 4-O-methylellagic acid 3'-alpha-rhamnoside (2), 4-O-methylellagic acid 3'-(3'-O-acetyl)-alpha-rhamnoside (3), and 4-O-methylellagic acid 3'-(4'-O-acetyl)-alpha-rhamnoside (4) in addition to the known ellagic acid derivative, 4-O-methylellagic acid 3'-(2',3'-di-O-acetyl)-alpha-rhamnoside (1). Their structures were elucidated on the basis of analysis of 1H NMR, 13C NMR, HMQC, HMBC and MS spectroscopic data. Compounds 1-4 were evaluated for their growth-inhibitory effect on Babesia gibsoni in vitro. Compounds 2 and 4 showed very weak activity, while compounds 1 and 3 showed moderate activity, with IC50 values of 28.5 and 52.1 microg/ml, respectively.  相似文献   

18.
To study the metabolic fate of conjugated linoleic acid isomers, we synthesized, in seven steps, from 1-heptyne, (6Z,10E,12Z)-octadeca-6,10,12-trienoic acid, (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid, and their [1-(14)C]-analogs. In the case of (6Z,10E,12Z)-octadecatrienoic acid, a series of palladium-catalyzed cross-coupling reactions between 1-heptyne and (E)-1,2-dichloro-ethene, a coupling reaction with a Grignard reagent and cleavage of the dioxolane gave (E)-dodec-4-en-6-ynal 3. Stereoselective Wittig reaction between aldehyde 3 and triphenyl-[5-(tetrahydro-pyran-2-yloxy)-pentyl]-phosphonium provided a dienyne. Stereocontrolled reduction of the triple bond and replacement of the tetrahydropyranyl group by a bromine gave (5Z,9E,11Z)-1-bromo-heptadeca-5,9,11-triene 10. Formation of the alkenyl lithium derivative and carbonation with CO(2) furnished (6Z,10E,12Z)-octadecatrienoic acid. (8Z,12E,14Z)-eicosa-8,12,14-trienoic acid was obtained by the same route but using triphenyl-[5-(tetrahydro-pyran-2-yloxy)-heptyl]-phosphonium iodide for the Wittig reaction. [1-(14)C]-analogs were obtained from the bromides by carbonation with (14)CO2. In all cases, chemical or radiochemical purities were found to be better than 95% after purification by flash chromatography on silica gel (>99% after additional purification by RP-HPLC). Metabolism studies in animals are in progress.  相似文献   

19.
The interactions of Zn(II), Cd(II) and Hg(II) with hippuric acid (hipH) were studied and several novel compounds were synthesized and studied by NMR. Some new metal-hippuric-cytosine ternary compounds were formed and the structure of the [Cd(hip)(2)(cyt)(H(2)O)](2) ternary complex resolved. Each cadmium (II) atom has a distorted trigonal bipyramid coordination which is linked to a water molecule, a cytosine via N(3), a carboxylic oxygen atom of a hippurate moiety and two bridging dicoordinated hippurates bound through the carboxylic oxygen atoms. To these five main bonds, two longer ancillary interactions can be observed: the second oxygen of the monocoordinated hippurate group and the carboxylic oxygen of the cytosine ligand. The compound is stabilized by an intramolecular stacking between the benzene and cytosine rings and by the hydrogen bonds between the coordinated water molecules and the ligands. This is, to our knowledge, the first structure of a cadmium-amino acid derivative-natural nucleobase compound described so far.  相似文献   

20.
This work describes the first automated solid-phase synthesis of metal derivatives of peptide nucleic acid (PNA) oligomers and their interaction with DNA and PNA. PNA constitutes a relatively young and very promising class of DNA analogues with excellent DNA and RNA binding properties. However, PNA lacks a suitable handle that would permit its sensitive detection on its own as well as when hybridized with complementary oligonucleotides. Metal complexes, on the other hand, offer high potential as markers for biomolecules. In this paper, we describe the synthesis of PNA heptamers (tggatcg-gly, where gly is a C-terminal glycine carboxylic acid amide) with two covalently attached metal complexes at the PNA N-terminus, namely a ferrocene carboxylic acid derivative and a tris(bipyridine)ruthenium(II) derivative. We show how all synthesis steps may be carried out with high yield on a DNA synthesizer, including attachment of the metal complexes. The conjugates were characterized by HPLC (>90% purity) and ESI-MS. Binding studies of the purified Ru-PNA heptamer to complementary DNA and PNA and comparison to the isosequential metal-free acetyl PNA heptamer proves that the attached metal complex has an influence on the stability (UV-T(m)) and structure (CD spectroscopy) of the conjugates, possibly by disruption of the nearby A:T base pair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号