首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
糖基转移酶广泛存在于植物中,其中UDP依赖型糖基转移酶(UDP-glycosyltransferases,UGTs)基因家族是糖基转移酶中的一大类。该研究以华南124木薯品种(Manihot esculenta cv.SC124)为材料,利用RT-PCR技术克隆木薯MeUGT41基因,以病毒诱导干扰木薯MeUGT41基因的表达量,并对基因干扰植株进行细菌性枯萎病抗性评价,为研究MeUGT41基因在木薯抵抗细菌性枯萎病的抗病机理奠定基础。结果表明:(1)地毯草黄单胞菌(Xamthomonas axonopodis pv.Manihotis,Xam)可显著诱导木薯MeUGT41基因表达。(2)成功构建MeUGT41的病毒诱导基因沉默(VIGS)载体,将干扰载体转化至木薯叶片进行MeUGT41基因沉默,荧光定量PCR检测结果显示,木薯叶片中MeUGT41基因的表达量显著下降。(3)Xam侵染实验表明,干扰抑制MeUGT41基因表达可显著降低木薯植株叶片对Xam病菌侵染的抵抗能力。研究认为,木薯叶片中MeUGT41基因具有抵抗Xam病菌侵染的能力。  相似文献   

3.
Cassava (Manihot esculenta Crantz) is one of the world’s most important food crops. It is cultivated mainly in developing countries of tropics, since its root is a major source of calories for low-income people due to its high productivity and resistance to many abiotic and biotic factors. A previous study has identified a partial cDNA sequence coding for a putative RING zinc finger in cassava storage root. The RING zinc finger protein is a specialized type of zinc finger protein found in many organisms. Here, we isolated the full-length cDNA sequence coding for M. esculenta RZF (MeRZF) protein by a combination of 5′ and 3′ RACE assays. BLAST analysis showed that its deduced amino acid sequence has a high level of similarity to plant proteins of RZF family. MeRZF protein contains a signature sequence motif for a RING zinc finger at its C-terminal region. In addition, this protein showed a histidine residue at the fifth coordination site, likely belonging to the RING-H2 subgroup, as confirmed by our phylogenetic analysis. There is also a transmembrane domain in its N-terminal region. Finally, semi-quantitative RT-PCR assays showed that MeRZF expression is increased in detached leaves treated with sodium chloride. Here, we report the first evidence of a RING zinc finger gene of cassava showing potential role in response to salt stress.  相似文献   

4.
几种植物原生质体的扫描电镜观察   总被引:3,自引:0,他引:3  
何若天  吴丹红  李景植   《广西植物》1990,10(1):39-44+101
扫描电镜观察表明,分离自马铃薯、萱草。甘蔗、木薯和落花生等不同植物和组织的原生质体表面呈现不同程度的凹凸不平。马铃薯叶肉原生质体表面较粗糙,其余四种植物叶肉、幼茎或子叶原生质体稍光滑。有的原生质体显现不同程度的凹陷现象。有的原生质体表面尚残留有未完全水解的胞壁碎片。在木薯幼茎原生质体制备物中见有呈“裂片”状的球形结构。原生质体表面扫描图象的差异似与不同种植物有关,与组织源不同更有密切关系。 原生质体镀膜前,涂布于已镀膜的盖玻片支持物上的原生质体很少或无凹陷现象,涂布于已镀膜的双面胶支持物上的原生质体凹陷严重。  相似文献   

5.
Higher plant chloroplast division involves some of the same types of proteins that are required in prokaryotic cell division. These include two of the three Min proteins, MinD and MinE, encoded by the min operon in bacteria. Noticeably absent from annotated sequences from higher plants is a MinC homologue. A higher plant functional MinC homologue that would interfere with FtsZ polymerization, has yet to be identified. We sought to determine whether expression of the bacterial MinC in higher plants could affect chloroplast division. The Escherichia coli minC (EcMinC) gene was isolated and inserted behind the Arabidopsis thaliana RbcS transit peptide sequence for chloroplast targeting. This TP-EcMinC gene driven by the CaMV 35S2 constitutive promoter was then transformed into tobacco (Nicotiana tabacum L.). Abnormally large chloroplasts were observed in the transgenic plants suggesting that overexpression of the E. coli MinC perturbed higher plant chloroplast division.  相似文献   

6.
Cassava (Manihot esculenta Crantz) protoplast was analyzed by using isoelectric focusing techniques. Two populations, representing 68 and 32% of the total sample, with mean isoelectric points of 4.48 and 4.60, were obtained using mesophyll protoplasts. The use of this technique allows demonstration of a discontinuous distribution of protoplast isoelectric point from one species according to their surface potential.  相似文献   

7.
8.
The soluble proteins of C3 and C4 mesophyll chloroplasts and C4 bundle sheath extracts have been analyzed by gel electrophoresis for fraction I protein. Gel scans of soluble protein from C4 bundle sheath extracts and C3 mesophyll chloroplasts showed typical fraction I protein peaks that could be identified by ribulose diphosphate carboxylase activity. No such peak was observed for C4 mesophyll chloroplasts, which also lacked both large and small subunits of ribulose diphosphate carboxylase on sodium dodecyl sulfate gels. The absence of fraction I protein in these chloroplasts was reflected in the soluble protein to chlorophyll ratios, which were roughly 3-fold lower than the ratio obtained for C3 chloroplasts. The carboxylating enzyme in C4 mesophyll cells, phosphoenolpyruvate carboxylase, was found to be a major protein in the cytoplasm of C4 mesophyll protoplasts, and had higher mobility than fraction I protein.  相似文献   

9.
We report the identification of a nucleus-encoded minE gene, designated AtMinE1, of Arabidopsis. The encoded AtMinE1 protein possesses both N- and C-terminal extensions, relative to the eubacterial and algal chloroplast-encoded MinE proteins. The N-terminal extension functioned as a chloroplast-targeting transit peptide, as revealed by a transient expression assay using an N terminus:green fluorescent protein fusion. Histochemical beta-glucuronidase staining of transgenic Arabidopsis lines harboring an AtMinE1 promoter::uidA reporter fusion unveiled specific activation of the promoter in green tissues, especially at the shoot apex, which suggests a requirement for cell division-associated AtMinE1 expression for proplastid division in green tissues. In addition, we generated transgenic plants overexpressing a full-length AtMinE1 cDNA and examined the subcellular structures of those plants. Giant heteromorphic chloroplasts were observed in transgenic plants, with a reduced number per cell, whereas mitochondrial morphology remained similar to that of wild-type plants. Taken together, these observations suggest that MinE is the third conserved component involved in chloroplast division.  相似文献   

10.
A procedure is described for isolating and purifying mesophyll protoplasts and bundle sheath protoplasts of the C4 plant Panicum miliaceum. Following enzymic digestion of leaf tissue, mesophyll protoplasts and bundle sheath protoplasts are released and purified by density centrifugation. The lower density of mesophyll protoplasts allowed rapid separation of the two protoplast types. Evidence for separation of mesophyll protoplasts and bundle sheath protoplasts (up to 95% purity) is provided from light microscopy (based on size difference in both chloroplasts and protoplasts), levels of marker enzymes in the preparations (i.e. pyruvate, Pi dikinase and phosphoenolpyruvate carboxylase for mesophyll and ribulose-1,5-bisphosphate carboxylase for bundle sheath), and differences in substrate-dependent O2 evolution by chloroplasts isolated from protoplasts.  相似文献   

11.
12.
Jaedicke K  Rösler J  Gans T  Hughes J 《Planta》2011,234(4):759-768
Fluorescent fusion proteins together with transient transformation techniques are commonly used to investigate intracellular protein localisation in vivo. Biolistic transfection is reliable, efficient and avoids experimental problems associated with producing and handling fragile protoplasts. Onion epidermis pavement cells are frequently used with this technique, their excellent properties for microscopy resulting from their easy removal from the underlying tissues and large size. They also have advantages over mesophyll cells for fluorescence microscopy, as they are devoid of chloroplasts whose autofluorescence can pose problems. The arrested plastid development is peculiar to epidermal cells, however, and stands in the way of studies on protein targeting to plastids. We have developed a system enabling studies of in vivo protein targeting to organelles including chloroplasts within a photosynthetically active plant cell with excellent optical properties using a transient transformation procedure. We established biolistic transfection in epidermal pavement cells of the lawn daisy (Bellis perennis L., cultivar “Galaxy red”) which unusually contain a moderate number of functional chloroplasts. These cells are excellent objects for fluorescence microscopy using current reporters, combining the advantages of the ease of biolistic transfection, the excellent optical properties of a single cell layer and access to chloroplast protein targeting. We demonstrate chloroplast targeting of plastid-localised heme oxygenase, and two further proteins whose localisation was equivocal. We also demonstrate unambiguous targeting to mitochondria, peroxisomes and nuclei. We thus propose that the Bellis system represents a valuable tool for protein localisation studies in living plant cells.  相似文献   

13.
Transient expression for functional gene analysis using Populus protoplasts   总被引:1,自引:0,他引:1  
Despite the availability of the Populus genome sequence and the development of genetic, genomic, and transgenic approaches for its improvement, the lengthy life span of Populus and the cumbersome process required for its transformation have impeded rapid characterization of gene functions in Populus. Protoplasts provide a versatile and physiologically relevant cell system for high-throughput analysis and functional characterization of plant genes. Here, a highly efficient transient expression system using Populus mesophyll protoplasts was developed based on the following three steps. The first step involved formulating a new enzyme cocktail containing 2 % Cellulase C2605 and 0.5 % Pectinase P2611, which was shown to enable efficient large-scale isolation of homogenous Populus mesophyll protoplasts. The second step involved optimization of transfection conditions, such as the polyethylene glycol concentration and amount of plasmid DNA to ensure a >80 % transfection efficiency for Populus protoplasts. The third step involved using the Populus protoplast transient expression system to successfully determine the subcellular localizations of proteins, emulate signaling events during pathogen infection, and prepare protein extracts for Western blotting and protein–protein interaction assays. This rapid and highly efficient transient gene expression system in Populus mesophyll protoplasts will facilitate the rapid identification of gene functions and elucidation of signaling pathways in Populus.  相似文献   

14.
Postharvest physiological deterioration (PPD) of cassava (Manihot esculenta) storage roots is a complex physiological and biochemical process which involve many regulatory networks linked with specific proteins modulation and signaling transduction pathways. However, it is poorly understood regarding biological regulation, and the interactions among protein groups and signals to determine PPD syndrome in cassava storage roots. This review sheds some light on the possible molecular mechanisms involved in reactive oxygen species (ROS), calcium signaling transduction, and programmed cell death (PCD) in cassava PPD syndrome. A model for predicting crosstalk among calcium signaling, ROS and PCD is suggested to fine-tune PPD syndrome. This would clues to cassava molecular breeding to alleviate the PPD effects on the shelf-life.  相似文献   

15.
16.
Translocations of chloroplasts induced by blue light were investigated in both leaves and protoplasts isolated from leaf mesophyll of Nicotiana tabacum. In the leaf tissue, the responses of chloroplasts were similar to those observed in other, higher and lower plant species. Weak and strong light induced movements of chloroplasts towards cell walls perpendicular and parallel to the light direction, respectively. Treatment with cytochalasin D, an actin-disturbing agent, blocked the movements. This shows that actin is involved in the motile system of chloroplast translocation in tobacco. By monitoring the response of chloroplasts to light in isolated protoplasts, we addressed the question whether the presence of the cell wall is necessary for the translocations of chloroplasts to occur. In control protoplasts (isolated at room temperature from unstressed leaves), no clear light intensity-dependent changes were observed in chloroplast distribution pattern. In contrast, in protoplasts obtained from plants treated with 4 °C for 8 h the chloroplasts maintained their responsiveness to light. Atomic Force Microscopy was used to measure elastic properties of the protoplasts. Young’s modulus, which reflects rigidity of the material, was 10 times higher for protoplasts of the coldstressed plants as compared to those isolated from the control plants. The rigidity of protoplasts isolated from the plants treated with low temperature was reduced four-fold by exposure to cytochalasin D. It appears that the status of protoplast actin is a factor responsible for elasticity of protoplasts. We speculate that unknown, cold stress-induced factors, maintain the orientational movements due to anchorage of the actin cytoskeleton in the plasma membrane despite the cell wall removal.  相似文献   

17.
Cassava (Manihot esculenta Crantz) is a tropical root crop and sensitive to low temperature. However, it is poorly to know how cassava can modify its metabolism and growth to adapt to cold stress. An investigation aimed at a better understanding of cold-tolerant mechanism of cassava plantlets was carried out with the approaches of physiology and proteomics in the present study. The principal component analysis of seven physiological characteristics showed that electrolyte leakage (EL), chlorophyll content, and malondialdehyde (MDA) may be the most important physiological indexes for determining cold-resistant abilities of cassava. The genome-wide proteomic analysis showed that 20 differential proteins had the same patterns in the apical expanded leaves of cassava SC8 and Col1046. They were mainly related to photosynthesis, carbon metabolism and energy metabolism, defense, protein synthesis, amino acid metabolism, signal transduction, structure, detoxifying and antioxidant, chaperones, and DNA-binding proteins, in which 40 % were related with photosynthesis. The remarkable variation in photosynthetic activity and expression level of peroxiredoxin is closely linked with expression levels of proteomic profiles. Moreover, analysis of differentially expressed proteins under cold stress is an important step toward further elucidation of mechanisms of cold stress resistance.  相似文献   

18.
We have isolated a cytokinin up-regulated cDNA clone, H13, froman early stage of cultured tobacco mesophyll protoplasts bya differential display method. The expression of this gene wasspecifically induced by natural and synthetic cytokinins includingN-(2-chloro-4-pyridyl)-N'-phenylurea (4PU30), a diphenylurea-typecytokinin, although the simultaneous presence of auxin was alsorequired. It seems that the preceding treatment of the tobaccomesophyll protoplasts by auxin is necessary for the gene torespond to cytokinin. The addition of a cytokinin antagonist,compound 182, which suppressed the induction of cell divisionin tobacco mesophyll protoplasts, completely abolished the expressionof this gene. Though the predicted gene product of H13 did notsuggest us any sequences of defined functions, two domains ofthe predicted sequence had significant homology to several reportedsequences in the data base. The gene product of H13 is proposedto have a role in regenerating cell wall in cultured protoplasts,since a cDNA clone E6, from cotton fiber cells, which has themost closely related structure to H13, has been isolated fromcells which showed active cellulose synthesis. This suppositionis supported by the evidence that in the absence of cytokinin,cell wall regeneration was significantly suppressed, resultingin failure of the induction of cell division. Thus, the geneproduct of H13 is supposed to have a role in regenerating cellwalls and facilitating the progression of the cell cycle, resultingin the sustained cell division of tobacco mesophyll protoplasts. 1These authors are equally contributed to this work.  相似文献   

19.
Stomatal movement is an energetic oxygen-requiring process. In the present study, the effect of oxygen concentration on mitochondrial respiratory activity and red-light-dependent photosynthetic oxygen evolution by Vicia faba and Brassica napus guard cell protoplasts was examined. Comparative measurements were made with mesophyll cell protoplasts isolated from the same species. At air saturated levels of dissolved oxygen in the protoplast suspension media, respiration rates by mesophyll protoplasts ranged from 6 to 10μmoles O2 mg?1 chl h?1, while guard cell protoplasts respired at rates of 200–300 μmoles O2 mg chl?1 h?1, depending on the species. Lowering the oxygen concentration below 50–60 mmol m?3 resulted in a decrease in guard cell respiration rates, while rates by mesophyll cell protoplasts were reduced only at much lower concentrations of dissolved oxygen. Rates of photosynthesis in mesophyll cell protoplasts isolated from both species showed only a minor reduction in activity at low oxygen concentrations. In contrast, photosynthesis by guard cell protoplasts isolated from V. faba and B. napus decreased concomitantly with respiration. Oligomycin, an inhibitor of oxidative phos-phorylation, reduced photosynthesis in mesophyll cell protoplasts by 27–46% and in guard cell protoplasts by 51–58%. The reduction in both guard cell photosynthesis and respiration following exposure to low oxygen concentrations suggest close metabolic coupling between the two activities, possibly mediated by the availability of substrate for respiration associated with photosynthetic electron transport activity and subsequent export of redox equivalents.  相似文献   

20.
This paper reports on the structural rearrangement of satellite DNA type I repeats and heterochromatin during the dedifferentiation and cell cycling of mesophyll protoplasts of cucumber (Cucumis sativus). These repeats were localized in the telomeric heterochromatin of cucumber chromosomes and in the chromocenters of interphase nuclei. The dramatic reduction of heterochromatin involves decondensation of subtelomeric repeats in freshly isolated protoplasts; however, there are not a great many remarkable changes in the expression profile. In spite of that, reformation of the chromocenters, occurring 48 h after protoplast isolation, is accompanied by recondensation of satellite DNA type I; however, only partial reassembly of these repeats was revealed. In this study, FISH and a flow cytometry assay show a correlation between the partial chromocenter and the repeats reassembly, and with the reentry of cultivated protoplasts into the cell cycle and first cell division. After that, divided cells displayed a higher variability in the expression profile than did leaves’ mesophyll cells and protoplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号