首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Ca2+-selective tetrameric Transient Receptor Potential Vanilloid 6 (TRPV6) channel is an inwardly rectifying ion channel. The constitutive current endures Ca2+-induced inactivation as a result of the activation of phospholipase C followed depletion of phosphatidylinositol 4,5-bisphosphate, and calmodulin binding. Replacing a glycine residue within the cytosolic S4-S5 linker of the human TRPV6 protein, glycine 516, which is conserved in all TRP channel proteins, by a serine residue forces the channels into an open conformation thereby enhancing constitutive Ca2+ entry and preventing inactivation. Introduction of a second mutation (T621A) into TRPV6G516S reduces constitutive activity and partially rescues the TRPV6 function. According to the recently revealed crystal structure of the rat TRPV6 the T621 is adjacent to the distal end of the transmembrane segment 6 (S6) within a short linker between S6 and the helix formed by the TRP domain. These results indicate that the S4-S5 linker and the S6-TRP-domain linker are critical constituents of TRPV6 channel gating and that disturbance of their sequences foster constitutive Ca2+ entry.  相似文献   

2.
Rationale: Transient receptor potential channels of the ankyrin subtype-1 (TRPA1) are non-selective cation channels that show high permeability to calcium. Previous studies from our laboratory have demonstrated that TRPA1 ion channels are expressed in adult mouse ventricular cardiomyocytes (CMs) and are localized at the z-disk, costamere and intercalated disk. The functional significance of TRPA1 ion channels in the modulation of CM contractile function have not been explored.

Objective: To identify the extent to which TRPA1 ion channels are involved in modulating CM contractile function and elucidate the cellular mechanism of action.

Methods and Results: Freshly isolated CMs were obtained from murine heart and loaded with Fura-2 AM. Simultaneous measurement of intracellular free Ca2+ concentration ([Ca2+]i) and contractility was performed in individual CMs paced at 0.3 Hz. Our findings demonstrate that TRPA1 stimulation with AITC results in a dose-dependent increase in peak [Ca2+]i and a concomitant increase in CM fractional shortening. Further analysis revealed a dose-dependent acceleration in time to peak [Ca2+]i and velocity of shortening as well as an acceleration in [Ca2+]i decay and velocity of relengthening. These effects of TRPA1 stimulation were not observed in CMs pre-treated with the TRPA1 antagonist, HC-030031 (10 µmol/L) nor in CMs obtained from TRPA1?/? mice. Moreover, we observed no significant increase in cAMP levels or PKA activity in response to TRPA1 stimulation and the PKA inhibitor peptide (PKI 14–22; 100 nmol/L) failed to have any effect on the TRPA1-mediated increase in CM contractile function. However, TRPA1 stimulation resulted in a rapid phosphorylation of Ca2+/calmodulin-dependent kinase II (CaMKII) (1–5 min) that correlated with increases in CM [Ca2+]i and contractile function. Finally, all aspects of TRPA1-dependent increases in CM [Ca2+]i, contractile function and CaMKII phosphorylation were virtually abolished by the CaMKII inhibitors, KN-93 (10 µmol/L) and autocamtide-2-related peptide (AIP; 20 µmol/L).

Conclusions: These novel findings demonstrate that stimulation of TRPA1 ion channels in CMs results in activation of a CaMKII-dependent signaling pathway resulting in modulation of intracellular Ca2+ availability and handling leading to increases in CM contractile function. Cardiac TRPA1 ion channels may represent a novel therapeutic target for increasing the inotropic and lusitropic state of the heart.  相似文献   


3.
Regulation of Ca2+ entry is a key process for lymphocyte activation, cytokine synthesis and proliferation. Several members of the transient receptor potential (TRP) channel family can contribute to changes in [Ca2+]in; however, the properties and expression levels of these channels in human lymphocytes continue to be elusive. Here, we established and compared the expression of the most Ca2+-selective members of the TRPs, Ca2+ channels transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6), in human blood lymphocytes (HBLs) and leukemia Jurkat T cells. We found that TRPV6 and TRPV5 mRNAs are expressed in both Jurkat cells and quiescent HBLs; however, the levels of mRNAs were significantly higher in malignant cells than in quiescent lymphocytes. Western blot analysis showed TRPV5/V6 proteins in Jurkat T cells and TRPV5 protein in quiescent HBLs. However, the expression of TRPV6 protein was switched off in quiescent HBLs and turned on after mitogen stimulation of the cells with phytohemagglutinin. Inwardly directed monovalent currents that displayed characteristics of TRPV5/V6 currents were recorded in both Jurkat cells and normal HBLs. In outside–out patch-clamp studies, currents were reduced by ruthenium red, a nonspecific inhibitor of TRPV5/V6 channels. In addition, ruthenium red downregulated cell-cycle progression in both activated HBLs and Jurkat cells. Thus, we identified TRPV5 and TRPV6 calcium channels, which can be considered new candidates for Ca2+ entry into human lymphocytes. The correlation between expression of TRPV6 channels and the proliferative status of lymphocytes suggests that TRPV6 may be involved in the physiological and/or pathological proliferation of lymphocytes.  相似文献   

4.
The extracellular Ca2+-sensing receptor (CaR) is a key-player in plasma Ca2+ homeostasis. It is essentially expressed in the parathyroid glands and along the kidney nephron. The distal convoluted tubules (DCT) and connecting tubules (CNT) in the kidney are involved in active Ca2+ reabsorption, but the function of the CaR has remained unclear in these segments. Here, the Ca2+-selective Transient Receptor Potential Vanilloid-subtype 5 channel (TRPV5) determines active Ca2+ reabsorption by forming the apical entry gate. In this study we show that the CaR and TRPV5 co-localize at the luminal membrane of DCT/CNT. Furthermore, by patch-clamp and Fura-2-ratiometric measurements we demonstrate that activation of the CaR leads to elevated TRPV5-mediated currents and increases intracellular Ca2+ concentrations in cells co-expressing TRPV5 and CaR. Activation of CaR initiated a signaling cascade that activated phorbol-12-myristate-13-acetate (PMA)-insensitive protein kinase C (PKC) isoforms. Importantly, mutation of two putative PKC phosphorylation sites, S299 and S654, in TRPV5 prevented the stimulatory effect of CaR activation on channel activity, as did a dominant negative CaR construct, CaRR185Q. Interestingly, the activity of TRPV6, TRPV5′ closest homologue, was not affected by the activated CaR. We conclude that activation of the CaR stimulates TRPV5-mediated Ca2+ influx via a PMA-insensitive PKC isoform pathway.  相似文献   

5.
Objectives: This study aims to explore the effect of bone marrow mesenchymal stem cells (BMSCs) on multiple myeloma (MM) development and the underlying mechanism.

Materials and Methods: BMSCs from C57BL/6 J mice were isolated and the third passage was used for subsequent experiments. Additionally, a series of in vitro transwell coculture assays were performed to explore the effects of BMSCs on the proliferation of MM cells 5TGM1 and CD4+ T cells. Furthermore, a 5TGM1-induced MM mice model was established. Moreover, PD-L1 shRNA was transfected into BMSCs to investigate whether PD-1/PD-L1 pathway involved in BMSCs-mediated regulation of T cells and MM growth.

Results: Data revealed that BMSCs significantly promoted 5TGM1 proliferation in a dose-dependent manner. Furthermore, BMSCs administration exerted stimulatory effects on MM development in terms of shortening the mouse survival rate, promoting tumor growth, and enhancing inflammatory infiltration in the MM model mice. Moreover, BMSCs decreased the percentage of Th1 and Th17 cells, whereas increased that of Th2 and Treg cells. Their corresponding cytokines of these T cell subsets showed similar alteration in the presence of BMSCs. Additionally, BMSCs significantly suppressed CD4+ T cell proliferation. We also found that PD-L1 shRNA inhibited 5TGM1 proliferation likely through activation of CD4+ T cells. Further in vivo experiments confirmed that PD-L1 inhibition attenuated BMSCs-induced MM growth, inflammation infiltration and imbalance of Th1/Th2 and Th17/Treg.

Conclusion: In summary, our findings demonstrated that BMSCs promoted cell proliferation of MM through inhibiting T cell immune responses via PD-1/PD-L1 pathway.  相似文献   


6.
With-no-lysine (K) kinase 4 (WNK4) is a protein serine/threonine kinase associated with a Mendelian form of hypertension. WNK4 is an integrative regulator of renal transport of Na+, K+, and Cl as shown in Xenopus oocyte system. In addition, WNK4 enhances the surface expression of epithelial Ca2+ channel TRPV5, which plays a key role in the fine tuning of renal Ca2+ reabsorption. Variations in the magnitude of WNK4-mediated regulation on TRPV5 in Xenopus oocytes suggest additional cellular components with limited expression are required for the regulation. In this study, we identified the Na+/H+ exchanger regulating factor 2 (NHERF2) as a critical component for the positive regulation of TRPV5 by WNK4. NHERF2 augmented the positive effect of WNK4 on TRPV5, whereas its homolog NHERF1 had no effect when tested in the Xenopus oocyte system. The C-terminal PDZ binding motif of TRPV5 was required for the regulation by NHERF2. While NHERF2 interacted with TRPV5, no association between NHERF2 and WNK4 was detected using a GST pull-down assay. WNK4 increased the forward trafficking of TRPV5; however, it also caused an accelerated decline of the functional TRPV5 channels at later stage of co-expression. NHERF2 stabilized TRPV5 at the plasma membrane without interrupting the forward trafficking of TRPV5, thus prevented the decline of functional TRPV5 channel caused by WNK4 at later stage. The complementary and orderly regulations of WNK4 and NHERF2 allow TRPV5 functions at higher level for a longer period to maximize Ca2+ influx.  相似文献   

7.
We have studied the modulation of gating properties of the Ca2+-permeable, cation channel TRPV4 transiently expressed in HEK293 cells. The phorbol ester 4αPDD transiently activated a current through TRPV4 in the presence of extracellular Ca2+. Increasing the concentration of extracellular Ca2+ ([Ca2+]e) reduced the current amplitude and accelerated its decay. This decay was dramatically delayed in the absence of [Ca2+]e. It was also much slower in the presence of [Ca2+]e in a mutant channel, obtained by a point mutation in the 6th transmembrane domain, F707A. Mutant channels, containing a single mutation in the C-terminus of TRPV4 (E797), were constitutively open. In conclusion, gating of the 4αPDD-activated TRPV4 channel depends on both extra- and intracellular Ca2+, and is modulated by mutations of single amino acid residues in the 6th transmembrane domain and the C-terminus of the TRPV4 protein.  相似文献   

8.
The transient receptor potential vanilloid subtype 1 (TRPV1) is a Ca2+-permeable channel primarily expressed in dorsal root ganglion neurons. Besides its function in thermogenic nociception and neurogenic inflammation, TRPV1 is involved in cell migration, cytoskeleton re-organisation and in neuronal guidance. To explore the TRPV1 level and activity during conditions for neuronal maturation, TRPV1-expressing SHSY5Y neuroblastoma cells were differentiated into a neuronal phenotype using all-trans-retinoic acid (RA). We show that RA highly up-regulated the total and cell surface TRPV1 protein expression but the TRPV1 mRNA level was unaffected. The up-regulated receptors were localised to the cell bodies and the developed neurites. Furthermore, RA increased both the basal intracellular free Ca2+ concentration by 30% as well as the relative capsaicin-induced Ca2+ influx. The results show that TRPV1 protein expression increases during RA-induced differentiation in vitro, which generates an altered intracellular Ca2+ homeostasis.  相似文献   

9.
The recent cloning of the special calcium channels TRPV5 and TRPV6 (transient receptor potential vanilloid channels) has provided a molecular basis for studying previously unidentified calcium influx channels in electrically nonexcitable cells. In the present work using RT-PCR, we obtained the endogenous expression of mRNAs of genes trpv5 and trpv6 in lymphoblast leukemia Jurkat cells and in normal human T lymphocytes. Additionally, by immunoblotting, the presence of the channel-forming TRPV5 proteins has been shown both in the total lysate and in crude membrane fractions from Jurkat cells and normal T lymphocytes. The use of immunoprecipitation revealed TRPV6 proteins in Jurkat cells, whereas in normal T lymphocytes, this protein was not detected. The expression pattern and the selective Ca2+ permeation properties of TRPV5 and TRPV6 channels indicate the important role of these channels in Ca2+ homeostasis, as well as most likely in malignant transformation of blood cells.  相似文献   

10.
The transient receptor potential channels TRPV2 and TRPV5 belong to the vanilloid TRP subfamily. TRPV2 is highly similar to TRPV1 and shares many common properties with it. TRPV5 (and also its homolog TRPV6) is a rather distinct member of the TRPV subfamily. It is distant for being strictly Ca2+-selective and features quite different properties from the rest of the TRPV subfamily. It is known that TRP channels are regulated by calmodulin in a calcium-dependent manner. In our study we identified a calmodulin binding site on the C-termini of TRPV2 (654–683) and TRPV5 (587–616) corresponding to the consensus CaM binding motif 1-5-10. The R679 and K681 single mutants of TRPV2 caused a 50% decrease in binding affinity and a double mutation of K661/K664 of the same peptide lowered the binding affinity by up to 75%. A double mutation of R606/K607 and triple mutation of R594/R606/R610 in TRPV5 C-terminal peptide resulted in the total loss of binding affinity to calmodulin. These results demonstrate that the TRPV2 C-tail and TRPV5 C-tail contain calmodulin binding sites and that the basic residues are strongly involved in TRP channel binding to calmodulin.  相似文献   

11.
12.
Introduction: Calmodulin (CaM) is a highly conserved Ca2+-binding protein that is exceptionally abundant in the brain. In the presynaptic compartment of neurons, CaM transduces changes in Ca2+ concentration into the regulation of synaptic transmission dynamics.

Areas covered: We review selected literature including published CaM interactor screens and outline established and candidate presynaptic CaM targets. We present a workflow of biochemical and structural proteomic methods that were used to identify and characterize the interactions between CaM and Munc13 proteins. Finally, we outline the potential of ion mobility-mass spectrometry (IM-MS) for conformational screening and of protein-protein cross-linking for the structural characterization of CaM complexes.

Expert commentary: Cross-linking/MS and native MS can be applied with considerable throughput to protein mixtures under near-physiological conditions, and thus effectively complement high-resolution structural biology techniques. Experimental distance constraints are applicable best when obtained by combining different cross-linking strategies, i.e. by using cross-linkers with different spacer length and reactivity, and by using the incorporation of unnatural photo-reactive amino acids. Insights from structural proteomics can be used to generate CaM-insensitive mutants of CaM targets for functional studies in vitro or ideally in vivo.  相似文献   


13.
Ca2+-activated Cl? currents have been implicated in many cellular processes in different cells, but for many years, their molecular identity remained unknown. Particularly intriguing are Ca2+-activated Cl? currents in olfactory transduction, first described in the early 90s. Well characterized electrophysiologically, they carry most of the odorant-induced receptor current in the cilia of olfactory sensory neurons (OSNs). After many attempts to determine their molecular identity, TMEM16B was found to be abundantly expressed in the cilia of OSNs in 2009 and having biophysical properties like those of the native olfactory channel. A TMEM16B knockout mouse confirmed that TMEM16B was indeed the olfactory Cl? channel but also suggested a limited role in olfactory physiology and behavior.

The question then arises of what the precise role of TMEM16b in olfaction is. Here we review the long story of this channel and its possible roles.  相似文献   


14.
Transient receptor potential vanilloid 1 (TRPV1) functions as a polymodal nociceptor and is activated by several vanilloids, including capsaicin, protons and heat. Although TRPV1 channels are widely distributed in the brain, their roles remain unclear. Here, we investigated the roles of TRPV1 in cytotoxic processes using TRPV1-expressing cultured rat cortical neurons. Capsaicin induced severe neuronal death with apoptotic features, which was completely inhibited by the TRPV1 antagonist capsazepine and was dependent on extracellular Ca2+ influx. Interestingly, nifedipine, a specific L-type Ca2+ channel blocker, attenuated capsaicin cytotoxicity, even when applied 2-4 h after the capsaicin. ERK inhibitor PD98059 and several antioxidants, but not the JNK and p38 inhibitors, attenuated capsaicin cytotoxicity. Together, these data indicate that TRPV1 activation triggers apoptotic cell death of rat cortical cultures via L-type Ca2+ channel opening, Ca2+ influx, ERK phosphorylation, and reactive oxygen species production.  相似文献   

15.
Purpose: The intent of this work was to assess the impact of lyophilization on the encapsulation of salmon calcitonin (sCT) into liposomes.

Methods: Four different liposomal formulations were investigated, i.e. DPPC:Chol:DSPE-PEG2000 (75:20:5 and 65:30:5) and DPPC:Chol (80:20 and 66.7:33.3). Lipid films were prepared and hydrated with loading buffer containing sCT and different concentrations of the cryoprotectant, trehalose dihydrate. The liposomes were lyophilized, reconstituted and extruded to obtain small unilamellar vesicles. Non-encapsulated sCT was separated by gel filtration. Non-lyophilized formulations and liposomes lyophilized without the cryoprotectant were used as controls. Liposomes were analyzed for particle size, polydispersity index, zeta-potential and encapsulation efficiency. 31P-NMR (phosphorous nuclear magnetic resonance spectroscopy) was performed on selected formulations.

Results: Post-lyophilization, no significant change in particle sizes and zeta-potentials were noted, regardless of the presence or absence of the cryoprotectant. Encapsulation efficiencies, however, increased following lyophilization, in both PEGylated (lyophilization control batch) and non-PEGylated liposomes (cryoprotectant batches only). 31P-NMR revealed the presence of two distinct vesicle populations – liposomes and micelles – in PEGylated formulation. The presence of micelles might be responsible for the observed encapsulation enhancement of sCT in the PEGylated formulation.

Conclusions: Lyophilization resulted in an increase in encapsulation efficiency of sCT in PEGylated liposomes, even in the absence of a cryoprotectant, due to presence of micellar vesicles.  相似文献   


16.
The epithelial Ca2+ channel TRPV5 constitutes the apical entry gate for Ca2+ transport in renal epithelial cells. Ablation of the trpv5 gene in mice leads to a reduced Ca2+ reabsorption. TRPV5 is tightly regulated by various calciotropic hormones, associated proteins, and other factors, which mainly affect channel activity via the C terminus. To further identify the role of the C terminus in TRPV5 regulation, we expressed channels harboring C-terminal deletions and studied channel activity by measuring intracellular Ca2+ concentration ([Ca2+]i) using fura-2 analysis. Removal of amino acid His712 elevated the [Ca2+]i, indicating enlarged TRPV5 activity. In addition, substitution of the positively charged His712 for a negative (H712D) or neutral (H712N) amino acid also stimulated TRPV5 activity. This critical role of His712 was confirmed by patch clamp analysis, which demonstrates increased Na+ and Ca2+ currents for TRPV5-H712D. Cell surface biotinylation studies revealed enhanced plasma membrane expression of TRPV5-H712D as compared with wild-type (WT) TRPV5. This elevated plasma membrane presence also was observed with the Ca2+-impermeable TRPV5-H712D and TRPV5-WT pore mutants, demonstrating that the elevation is not due to the increased [Ca2+]i. Finally, using an internalization assay, we demonstrated a delayed cell surface retrieval for TRPV5-H712D, likely causing the increase in plasma membrane expression. Together, these results demonstrate that His712 plays an essential role in plasma membrane regulation of TRPV5 via a constitutive endocytotic mechanism.  相似文献   

17.
Objectives: Mitochondrial oxidative stress is involved in the pathogenesis of diabetic kidney disease. The objective of our study is to identify the mechanisms of renal mitochondrial oxidative stress, focusing on Sirt3, which is nicotinamide adenine dinucleotide (NAD+; oxidized NAD)-dependent deacetylase in mitochondria.

Methods: Renal mitochondrial oxidative stress and Sirt3 activity, using Zucker diabetic fatty rats (ZDFRs) and cultured proximal tubular cells under high-glucose condition were evaluated.

Results: At 28 weeks of age, ZDFRs exhibited the increased urinary albumin/liver-type fatty acid-binding protein (L-FABP)/8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion, histological tubular cell damage, compared to non-diabetic Zucker Lean rats. In renal mitochondria, acetylated isocitrate dehydrogenase2 (IDH2) and superoxide dismutase2 (SOD2), accompanied with mitochondrial oxidative stress and mitochondrial morphologic alterations, were increased in ZDFRs, indicating inactivation of Sirt3. Additionally, expression of the NAD-degrading enzyme, CD38, was increased, and the NAD+/NADH (reduced NAD) ratio was reduced in the renal cortex of ZDFRs. High-glucose stimulation in cultured proximal tubular cells also resulted in an increase in acetylated IDH2/SOD2, CD38 overexpression and a reduction in the NAD+/NADH ratio.

Conclusions: Enhancement of mitochondrial oxidative stress in the diabetic kidney was mediated by the reduction of Sirt3 activity. CD38 overexpression may be related to a reduction in the NAD+/NADH ratio in the diabetic kidney.  相似文献   


18.
Transient receptor potential (TRP) ion channels of peripheral sensory pathways are important mediators of pain, itch, and neurogenic inflammation. They are expressed by primary sensory neurons and by glial cells in the central nervous system, but their expression and function in satellite glial cells (SGCs) of sensory ganglia have not been explored. SGCs tightly ensheath neurons of sensory ganglia and can regulate neuronal excitability in pain and inflammatory states. Using a modified dissociation protocol, we isolated neurons with attached SGCs from dorsal root ganglia of mice. SGCs, which were identified by expression of immunoreactive Kir4.1 and glutamine synthetase, were closely associated with neurons, identified using the pan-neuronal marker NeuN. A subpopulation of SGCs expressed immunoreactive TRP vanilloid 4 (TRPV4) and responded to the TRPV4-selective agonist GSK1016790A by an influx of Ca2+ ions. SGCs did not express functional TRPV1, TRPV3, or TRP ankyrin 1 channels. Responses to GSK1016790A were abolished by the TRPV4 antagonist HC067047 and were absent in SGCs from Trpv4−/− mice. The P2Y1-selective agonist 2-methylthio-ADP increased [Ca2+]i in SGCs, and responses were prevented by the P2Y1-selective antagonist MRS2500. P2Y1 receptor-mediated responses were enhanced in TRPV4-expressing SGCs and HEK293 cells, suggesting that P2Y1 couples to and activates TRPV4. PKC inhibitors prevented P2Y1 receptor activation of TRPV4. Our results provide the first evidence for expression of TRPV4 in SGCs and demonstrate that TRPV4 is a purinergic receptor-operated channel in SGCs of sensory ganglia.  相似文献   

19.
Six-week-old male KK-Ay mice received drinking water with S-adenosylmethionine (SAM), α-glycerophosphocholine (GPC), or SAM+GPC for 10 weeks. The serum glucose of SAM+GPC at 15 weeks old, total cholesterol of GPC at 12 weeks old, and triglyceride of GPC at 15 weeks old and of SAM at 16 weeks old were reduced. SAM+GPC reduced serum leptin and food intake.

Abbreviations: SAM: S-adenosylmethionine; GPC: α-glycerophosphocholine  相似文献   


20.
Calcium signaling and Ca2+-conducting channels participate in development of immune response, cell proliferation, growth, and differentiation of lymphocytes. In this paper, the calcium channels TRPV5 and TRPV6 (transient receptor potential vanilloid channels) were studied in the plasma membrane of the T cell line Jurkat and normal human blood lymphocytes (HBLs). The channels were spontaneously activated after removal of Ca2+ and Mg2+ from the surrounding solution, and were inactivated in the presence of the effective blocker of TRPV5 and TRPV6, ruthenium red. The current-voltage characteristics of the channels demonstrated an inward rectification. The channel activity in Jurkat cells was significantly higher than in normal HBLs. The real-time RT-PCR analysis revealed a higher level of mRNA of the genes encoding channels TRPV5 and TRPV6 in the proliferating Jurkat T-cells as compared with normal lymphocytes. In general, the data have shown that TRPV5 and TRPV6 channels are expressed in blood lymphocytes are functionally active, and their activity is associated with proliferative status of blood cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号