首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human immunodeficiency virus type 1 protease is essential for virus replication and maturation and has been considered as one of the important drug target for the antiretroviral treatment of HIV infection. The majority of HIV infections are caused due to non-B subtypes in developing countries. Subtype AE is spreading rapidly and infecting huge population worldwide. Understanding the interdependence of active and non-active site mutations in conferring drug resistance is crucial for the development effective inhibitors in subtype AE protease. In this work, we have investigated the mechanism of resistance against indinavir (IDV) due to therapy selected active site mutation V82F, non-active site mutations PF82V and their cooperative effects PV82F in subtype AE-protease using molecular dynamics simulations and binding free energy calculations. The simulations suggested all the three complexes lead to decrease in binding affinity of IDV, whereas the PF82V complex resulted in an enhanced binding affinity compared to V82F and PV82F complexes. Large positional deviation of IDV was observed in V82F complex. The preservation of hydrogen bonds of IDV with active site Asp25/Asp25′ and flap residue Ile50/50′ via a water molecule is crucial for effective binding. Owing to the close contact of 80s loop with Ile50′ and Asp25, the alteration between residues Thr80 and Val82, further induces conformational change thereby resulting in loss of interactions between IDV and the residues in the active site cavity, leading to drug resistance. Our present study shed light on the effect of active, non-active site mutations and their cooperative effects in AE protease.

Communicated by Ramaswamy H. Sarma  相似文献   


2.
3.
Matrix metalloproteinase-9 (MMP-9) has been considered as an attractive target involving cancer therapy. In this study, the 3D QSAR pharmacophore model of MMP-9 inhibitors is built, and its reliability is subsequently validated based on different methods. The built pharmacophore model consists of the four chemical features, including two hydrogen bond acceptors (HBA), one hydrophobic (HY), and one ring aromatic (RA). Among them, both HY and RA are found to be especially important features because they involve the interactions of inhibitors with the S1′ pocket of MMP-9, which determines the selectivity of MMP-9 inhibitors. By combining pharmacophore model with molecular docking, the virtual screening is carried out to identify the selective MMP-9 inhibitors from natural products. The four potential selective MMP-9 inhibitors of natural products are found. One of them was used to carry out the bioassay experiment inhibiting MMP-9, and the estimated IC50 value of only 26.94 µM clearly shows its strongly inhibitory activity; besides, both the hybrid quantum mechanics/molecular mechanics (QM/MM) calculation and the molecular dynamics simulation are performed to examine the reliability regarding the binding mode of this inhibitor with MMP-9 active sites predicted by molecular docking. All the screened four natural products are found to well bind with the MMP-9 active sites by different kinds of interactions. Finally, the ADMET properties of screened four natural products are assessed. These screened MMP-9 inhibitors of natural products could be used as the lead compounds to perform structural modifications and optimizations in the future work.

Communicated by Ramaswamy H. Sarma  相似文献   


4.
Objectives: This study aims to explore the effect of bone marrow mesenchymal stem cells (BMSCs) on multiple myeloma (MM) development and the underlying mechanism.

Materials and Methods: BMSCs from C57BL/6 J mice were isolated and the third passage was used for subsequent experiments. Additionally, a series of in vitro transwell coculture assays were performed to explore the effects of BMSCs on the proliferation of MM cells 5TGM1 and CD4+ T cells. Furthermore, a 5TGM1-induced MM mice model was established. Moreover, PD-L1 shRNA was transfected into BMSCs to investigate whether PD-1/PD-L1 pathway involved in BMSCs-mediated regulation of T cells and MM growth.

Results: Data revealed that BMSCs significantly promoted 5TGM1 proliferation in a dose-dependent manner. Furthermore, BMSCs administration exerted stimulatory effects on MM development in terms of shortening the mouse survival rate, promoting tumor growth, and enhancing inflammatory infiltration in the MM model mice. Moreover, BMSCs decreased the percentage of Th1 and Th17 cells, whereas increased that of Th2 and Treg cells. Their corresponding cytokines of these T cell subsets showed similar alteration in the presence of BMSCs. Additionally, BMSCs significantly suppressed CD4+ T cell proliferation. We also found that PD-L1 shRNA inhibited 5TGM1 proliferation likely through activation of CD4+ T cells. Further in vivo experiments confirmed that PD-L1 inhibition attenuated BMSCs-induced MM growth, inflammation infiltration and imbalance of Th1/Th2 and Th17/Treg.

Conclusion: In summary, our findings demonstrated that BMSCs promoted cell proliferation of MM through inhibiting T cell immune responses via PD-1/PD-L1 pathway.  相似文献   


5.
Caspases are members of a highly regulated aspartate-cysteine protease family which have important roles in apoptosis. Pharmaceutical studies focused on these molecules since they are involved in diseases such as cancer and neurodegenerative disorders. A small molecule which binds to the dimeric interface away from the binding site induces a conformational change that resembles the pro-caspase form of the molecule by shifting loop positions. The fluctuation mechanisms caused by mutations or binding of a ligand can explain the key mechanism for the function of that molecule. In this study, we performed molecular dynamics simulations on wild-type and mutated structures (C290N, R187M, Y223A, G188L and G188P) as well as allosterically inhibited structure (DICA-bound caspase-7) to observe the effects of the single mutations on intrinsic dynamics. The results show that previously known changes in catalytic activity upon mutations or allosteric ligand binding are reflected in corresponding changes in the global dynamics of caspase-7.

Communicated by Ramaswamy H. Sarma  相似文献   


6.
Etoricoxib, widely used for the treatment of osteoarthritis, rheumatoid arthritis, ankylosing spondylitis, and related conditions has ample affinity to bind with globular proteins. Here, the molecular interaction between purified human hemoglobin (HHb), a major heme protein and etoricoxib, a cyclooxygenase-2 inhibitor was studied by various spectroscopic, calorimetric, and molecular modeling techniques. The binding affected hypochromic changes in the Soret band of hemoglobin (Hb) and induced remarkable quenching of the intrinsic fluorescence property of protein molecules. Synchronous fluorescence studies revealed alterations in tryptophan (Trp) and tyrosine (Tyr) microenvironments of HHb molecule in presence of etoricoxib. Flouremetric and isothermal titration calorimetric studies suggested two binding sites in HHb for etoricoxib at three different temperatures (298.15, 303.15, and 310.15 K). Negative values of Gibbs energy change (ΔG0) and enthalpy change (ΔH0) strongly suggest that it is spontaneous and exothermic reaction, mainly stabilized by hydrogen bonding as evidenced by sucrose binding assay. These findings support our in silico molecular docking study, which specified the binding site and the non-covalent interactions involved in the association. Moreover, the interaction impacts on structural integrity and functional aspects of HHb as confirmed by decreased α helicity, increased free iron release, increased rate of co-oxidation, and decreased rate of esterase activity. Overall, these studies conclude that etoricoxib leads to a remarkable alteration in the conformational aspects of binding to HHb.

Communicated by Ramaswamy H. Sarma.  相似文献   


7.
Triclocarban (TCC), as a broad spectrum antibacterial agent widely used in personal care products, has recently been recognized as environmental pollutant with the potential of adversely affecting wildlife and human health. However, the behavior of TCC in blood circulatory system and the potential toxicity of TCC at the molecular level have been poorly investigated. In this study, the effect of TCC on human serum albumin (HSA) and the binding mechanism of TCC to HSA were examined using spectroscopic techniques and molecular modeling methods. The fluorescence results suggested that the fluorescence of HSA was quenched by TCC through a static quenching mechanism and nonradiation energy transfer, and TCC was bound to HSA with moderately strong binding affinity via hydrophobic interaction based on the analysis of the thermodynamic parameters. The site marker competitive experiments revealed that TCC bound into subdomain IIA (site I) of HSA. In addition, the results obtained from the circular dichroism, Fourier transform infrared (FT-IR), 8-anilino-1-naphthalenesulfonic acid fluorescence, synchronous fluorescence, three-dimensional fluorescence spectra and dynamic light scattering suggested the change in the microenvironment and conformation of HSA during the binding reaction. Finally, the best binding mode of TCC and specific interaction of TCC with amino acid residues were determined using molecular docking and molecular dynamics simulations. In a word, the present studies can provide a way to help us well understand the transport, distribution and toxicity effect of TCC when it diffused in the human body.

Communicated by Ramaswamy H. Sarma  相似文献   


8.
Rhomboid proteases can catalyze peptide bond cleavage and participate in abundant biological processes encompassing all branches of life; however, the pathway for substrate entry into its active site remains ambiguous. Here, the two possible pathways are preliminarily determined through molecular dynamics: One pathway is between Tm2 and Tm5, and the other is between Loop3 and Loop5. Then, the umbrella sampling simulations are performed to investigate the more feasible pathway for substrate entry. The results show that free energy barriers along the two pathways are similar; in the pathway 1, Trp236 and Trp157 as pivotal residues are responsible for the rotation of substrate in the binding process; in the pathway 2, among some important residues, the residue His150 plays an important role in substrate entry. Further, combining with previous experiment results, it is concluded that the substrate is inclined to enter into the active site along pathway 2. Our results are important for further understanding the function and catalysis mechanism of rhomboid proteases.

Communicated by Ramaswamy H. Sarma  相似文献   


9.
Natural products acquire massive structural and chemical diversity, which cannot be coordinated by any synthetic libraries for small molecules and they are continuing to inspire novel discoveries in health sciences. We have performed the computational calculations for geometry optimization and prediction of electronic and structural properties of some plant phenolic compounds through Gaussian 09 program. Energies of molecular orbitals were computed, to mimic out the stabilities arising from charge delocalization and intramolecular interactions. This process indicated the eventual charge transfer within the molecules. The molecular docking and ADMET properties of these compounds with a novel anticancer (HER2) and anti-inflammatory (COX-2) targets revealed that two molecules were capable of inhibiting both the targets, and could be used as multi target inhibitors. Furthermore, molecular dynamics simulation studies were performed to elucidate the binding mechanism and the comparison of inhibitor’s binding mode with diverse biological activities as anticancer and anti-inflammatory agents. A high-quality association was reported among quantum chemical, ADMET, docking, dynamics and MMGBSA results.

Communicated By Ramaswamy H. Sarma  相似文献   


10.
The stability of gemcitabine anticancer drug on the functionalized (8,0) zigzag carbon nanotube as a drug delivery vehicle is studied within the formalism of the density functional theory calculations to understand the role of the pyrrolidine functional group in binding the adsorbed molecule to the drug delivery system as well as improving water solubility. The binding energies, natural bond orbital calculations, and the quantum theory of atoms in molecules results are obtained to provide more evidences related to the intermolecular interaction between gemcitabine drug and the functionalized nanotube. The negative binding energy corresponds to favorable binding of gemcitabine drug to the functionalized nanotube and presence of the active sites available for hydrogen bond formation facilitates better drug binding to the nanotube sidewall. The results presented in this article indicate that pyrrolidine functionalized carbon nanotube seems to be a novel material for drug delivery applications.

Communicated by Heidar Moradnia  相似文献   


11.
Polo box domain (PBD) from Polo-Like Kinase-1 (PLK-1) a cell cycle regulator is one of the important non-kinase targets implicated in various cancers. The crystal structure of PLK-1 PBD bound to phosphopeptide inhibitor is available and acylthiourea derivatives have been reported as potent PBD inhibitors. In this work, structure and ligand-based pharmacophore methods have been used to identify new PBD inhibitors. The binding of acylthiourea analogs and new inhibitors to PBD were assessed using molecular docking and molecular dynamics simulations to understand their binding interactions, investigate the complex stability and reveal the molecular basis for inhibition. This study provides the binding free energies and residue-wise contributions to decipher the essential interactions in the protein-inhibitor complementarity for complex formation and the design of new PBD inhibitors with better binding.

Communicated by Ramaswamy H. Sarma  相似文献   


12.
Seven new quinoline-based bioorganic compounds were prepared by solvent-free synthesis and characterized using spectral techniques. The binding of these compounds with human serum albumin (HSA) was investigated by multi-spectroscopic methods. The quenching of Trp fluorescence upon addition of these compounds to HSA confirmed their significant binding. The quenching analysis at three different temperatures revealed that the complex formation is static and the reaction is entropy driven, spontaneous, and exothermic. Hydrogen bonds and van der Waals forces mainly contributed in the interactions as confirmed by the negative ΔH and ΔS values as well as molecular docking. The results from the circular dichroism (CD) spectroscopy indicated the minimal conformational changes of the protein upon binding with these quinoline compounds. The specific binding site and mode of interactions with HSA were also modeled using induced fit molecular docking procedure and their binding site was found to be in the interface of domains II and III, which is similar to the binding of the drug iodipamide with serum albumin.

Communicated by Ramaswamy H. Sarma  相似文献   


13.
In this work, we combined molecular modeling, computational docking and in vitro analysis to explore the antileishmanial effect of some resveratrol analogs (ResAn), focusing on their pro-oxidant effect. The molecular target was the trypanothione reductase of Leishmania braziliensis (LbTryR), an essential component of the antioxidant defenses in trypanosomatid parasites. Three-dimensional structures of LbTryR were modeled and molecular docking studies of ResAn1-5 compounds showed the following affinity: ResAn1?>?ResAn2?>?ResAn4?>?ResAn5?>?ResAn3. Positive correlation was observed between these compounds’ affinity to the LbTryR and the IC50 values against Leishmania sp (ResAn1?<?ResAn2?<?ResAn4), which allows for TryR being considered an important target for them. As the compound ResAn1 showed the best antileishmanial activity, and docking studies showed its high affinity for NADP binding site (NS) of TryR, plus having been able to induce ROS production in L. braziliensis promastigotes treated, ResAn1 probably occupies NS interfering in the electron transfer processes responsible for the catalytic reaction. The in silico prediction of ADMET properties suggests that ResAn1 may be a promising drug candidate with properties to cross biological membranes and high gastrointestinal absorption, not violating Lipinski’s rules. Ultimately, the antileishmanial effect of ResAn can be associated with a pro-oxidant effect which, in turn, can be exploited as an antimicrobial agent.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
Immune checkpoints are emerging as novel targets for cancer therapy, and antibodies against them have shown remarkable clinical efficacy with potential for combination treatments to achieve high therapeutic index. This work aims at providing a novel approach for the generation of several novel human immunomodulatory antibodies capable of binding their targets in their native conformation and useful for therapeutic applications.

We performed a massive parallel screening of phage libraries by using for the first time activated human lymphocytes to generate large collections of single-chain variable fragments (scFvs) against 10 different immune checkpoints: LAG-3, PD-L1, PD-1, TIM3, BTLA, TIGIT, OX40, 4-1BB, CD27 and ICOS. By next-generation sequencing and bioinformatics analysis we ranked individual scFvs in each collection and identified those with the highest level of enrichment.

As a proof of concept of the quality/potency of the binders identified by this approach, human IgGs from three of these collections (i.e., PD-1, PD-L1 and LAG-3) were generated and shown to have comparable or better binding affinity and biological activity than the clinically validated anti-PD-1 mAb nivolumab.

The repertoires generated in this work represent a convenient source of agonistic or antagonistic antibodies against the ‘Checkpoint Immunome’ for preclinical screening and clinical implementation of optimized treatments.  相似文献   


15.
Myeloid cell leukemia 1 (Mcl1), is an antiapoptotic member of the Bcl-2 family proteins, has gained considerable importance due to its overexpression activity prevents the oncogenic cells to undergo apoptosis. This overexpression activity of Mcl1 eventually develops strong resistance to a wide variety of anticancer agents. Therefore, designing novel inhibitors with potentials to elicit higher binding affinity and specificity to inhibit Mcl1 activity is of greater importance. Thus, Mcl1 acts as an attractive cancer target. Despite recent experimental advancement in the identification and characterization of benzothiophene and benzofuran scaffold-merged compounds, the molecular mechanisms of their binding to Mcl1 are yet to be explored. The current study demonstrates an integrated approach – pharmacophore-based 3D-QSAR, docking, molecular dynamics (MD) simulation and free-energy estimation – to access the precise and comprehensive effects of current inhibitors targeting Mcl1 together with its known activity values. The pharmacophore – ANRRR.240 – based 3D-QSAR model from the current study provided high confidence (R2=0.9154, Q2=0.8736 and RMSE?=?0.3533) values. Furthermore, the docking correctly predicted the binding mode of highly active compound 42. Additionally, the MD simulation for docked complex under explicit-solvent conditions together with free-energy estimation exhibited stable interaction and binding strength over the time period. Also, the decomposition analysis revealed potential energy contributing residues – M231, M250, V253, R265, L267 and F270 – to the complex stability. Overall, the current investigation might serve as a valuable insight, either to (i) improve the binding affinity of the current compounds or (ii) discover new generation anticancer agents that can effectively downregulate Mcl1 activity.

Communicated by Ramaswamy H. Sarma  相似文献   


16.
It’s favorable to alter KRas mutation’s location to endomembrane by interfering the binding of PDEδ (the prenyl-binding protein phosphodiesterase delta) to KRas. In the present work, the binding of four inhibitors (Deltarasin, allyl analogue, pyrazolopyridazinone derivative, and Deltazinone 1) to PDEδ is investigated with all-atom Molecular Dynamic (MD) simulations. The binding free energy calculation results reveal that van der Waals (VDW) energy provides the major force for affinity binding. Moreover, the binding energy decomposition indicates that residues R61 and I129 provide important contributions to binding energies in all systems. The conserved hydrogen bonds play crucial roles in anchoring the inhibitors to the exact site for binding. The results for conformational analysis of PDEδ/free and PDEδ/inhibitors systems show that the structures are more stable after the inhibitors’ binding to the PDEδ. It is also found that the most unstable system among four complexes is PDEδ/pyrazolopyridazinone derivative system whose α3-helix formed by the residues P113-Q116 disappears. This study may provide valuable information for the design of high potency PDEδ inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   


17.
OASS is a specific enzyme that helps Leishmania parasite to survive the oxidative stress condition in human macrophages. SAT C-terminal peptides in several organisms, including Leishmania, were reported to inhibit or reduce the activity of OASS. Small peptide and small molecules mimicking the SAT C-terminal residues are designed and tested for the inhibition of OASS in different organisms. Hence, in this study, all the possible tetra-peptide combinations were designed and screened based on the docking ability with Leishmania donovani OASS (Ld-OASS). The top ranked peptides were further validated for the stability using 50 ns molecular dynamic simulation. In order to identify the better binding capability of the peptides, the top peptides complexed with Ld-OASS were also subjected to molecular dynamic simulation. The docking and simulation results favored the peptide EWSI to possess greater advantage than previously reported peptide (DWSI) in binding with Ld-OASS active site. Also, screening of non-peptide inhibitor of Asinex Biodesign library based on the shape similarity of EWSI and DWSI was performed. The top similar molecules of each peptides were docked on to Ld-OASS active site and subsequently simulated for 20 ns. The results suggested that the ligand that shares high shape similarity with EWSI possess better binding capability than the ligand that shares high shape similarity with DWSI. This study revealed that the tetra-peptide EWSI had marginal advantage over DWSI in binding with Ld-OASS, thereby providing basis for defining a pharmacophoric scaffold for the design of peptidomimetic inhibitors as well as non-peptide inhibitors of Ld-OASS.

Communicated by Ramaswamy H. Sarma  相似文献   


18.
Beta-amyloid peptides (Abeta) are produced by a sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. The lack of Abeta production in beta-APP cleaving enzyme (BACE1)(-/-) mice suggests that BACE1 is the principal beta-secretase in mammalian neurons. Transfection of human APP and BACE1 into neurons derived from wild-type and BACE1(-/-) mice supports cleavage of APP at the canonical beta-secretase site. However, these studies also revealed an alternative BACE1 cleavage site in APP, designated as beta', resulting in Abeta peptides starting at Glu11. The apparent inability of human BACE1 to make this beta'-cleavage in murine APP, and vice versa, led to the hypothesis that this alternative cleavage was species-specific. In contrast, the results from human BACE1 transgenic mice demonstrated that the human BACE1 is able to cleave the endogenous murine APP at the beta'-cleavage site. To address this discrepancy, we designed fluorescent resonance energy transfer peptide substrates containing the beta- and beta'-cleavage sites within human and murine APP to compare: (i) the enzymatic efficiency; (ii) binding kinetics of a BACE1 active site inhibitor LY2039911; and (iii) the pharmacological profiles for human and murine recombinant BACE1. Both BACE1 orthologs were able to cleave APP at the beta- and beta'-sites, although with different efficiencies. Moreover, the inhibitory potency of LY2039911 toward recombinant human and native BACE1 from mouse or guinea pig was indistinguishable. In summary, we have demonstrated, for the first time, that recombinant BACE1 can recognize and cleave APP peptide substrates at the postulated beta'-cleavage site. It does not appear to be a significant species specificity to this cleavage.  相似文献   

19.
Bromodomain-containing protein 9 (BRD9) has been employed as a potential target for anticancer drugs in recent years. In this work, molecular docking, molecular dynamics (MD) simulations, binding free energy calculations, and per residue energy decomposition approaches were performed to elucidate the different binding modes between four pyridinone-like scaffold inhibitors and BRD9 bromodomain. Analysis results indicate that non-polar contribution mainly deriving from van der Waals energy is a critical impact on binding affinity of inhibitors against BRD9. Some key residues Phe44, Phe47, Val49, and Ile53 (at ZA loop) enhance the binding energy of inhibitors in BRD9 by means of providing hydrophobic interactions. Moreover, it is observed that BRD9 is anchored by the formation of a stable hydrogen bond between the carbonyl of the inhibitors and the residue Asn100 (at BC loop), and a strong π–π stacking interaction formed between the residue Tyr106 (at BC loop) and the inhibitors. The existence of dimethoxyphenyl structure and the aromatic ring merged to pyridinone scaffold are useful to enhance the BRD9 binding affinity. These findings should guide the rational design of more prospective inhibitors targeting BRD9.

Communicated by Ramaswamy H. Sarma  相似文献   


20.
Abstract

Mesenchymal-epithelial transition factor (c-Met) is a member of receptor tyrosine kinase. It involves in various cellular signaling pathways which includes proliferation, motility, migration, and invasion. Over-expression of c-Met has been reported in various cancers. Hence, it is an ideal therapeutic target for cancer. The main objective of the study is to identify crucial residues involved in the inhibition of c-Met kinase and to design a series of potent imidazo [4,5-b] pyrazine derivatives as c-Met inhibitors. Docking was used to identify important active site residues involved in the inhibition of c-Met kinase which was further validated by 100 ns of molecular dynamics simulation and free energy calculation using molecular mechanics generalized born surface area. Furthermore, binding energy decomposition identified that residues Tyr1230, Met1211, Asp1222, Tyr1159, Met1160, Val1092, Ala1108, and Leu1157 contributed favorably to the binding stability of compound 32. Receptor-guided Comparative Molecular Field Analysis (CoMFA) (q2 = 0.751, NOC = 6, r2 = 0.933) and Comparative Molecular Similarity Indices Analysis (COMSIA) (q2 = 0.744, NOC = 6, r2 = 0.950) models were generated based on the docked conformation of the most active compound 32. The robustness of these models was tested using various validation techniques and found to be predictive. The results of CoMFA and CoMSIA contour maps exposed the regions favorable to enhance the activity. Based on this information, 27 novel c-Met inhibitors were designed. These designed compounds exhibited potent activity than the most active compound of the existing dataset.

Communicated by Ramaswamy H. Sarma  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号