首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We compared the osteology of the late Eocene to early Miocene penguin‐like Plotopteridae from the North Pacific Basin with that of Paleocene stem group representatives of the Sphenisciformes and identified previously unrecognized similarities and differences. New data on the osteology of plotopterids, like the shape of the caudal end of the mandible, support a position of plotopterids outside the Suloidea, the clade formed by Sulidae, Phalacrocoracidae, and Anhingidae. However, as assumed by previous authors, the diving adaptations of plotopterids and sphenisciforms are likely to have evolved independently, and the resemblances in different parts of the postcranial skeleton therefore constitute one of the more striking examples of parallelism among tetrapods. We note that close relatives of both plotopterids and penguins forage by plunge diving. Whereas underwater locomotion of diving birds with a swimming ancestor is usually driven by the feet, we hypothesize that plotopterids and other wing‐propelled divers are more likely to have had volant ancestors that initiated diving by shallow plunges into the sea.  相似文献   

2.
Avian wing elements have been shown to experience both dorsoventral bending and torsional loads during flapping flight. However, not all birds use continuous flapping as a primary flight strategy. The pelecaniforms exhibit extraordinary diversity in flight mode, utilizing flapping, flap‐gliding, and soaring. Here we (1) characterize the cross‐sectional geometry of the three main wing bone (humerus, ulna, carpometacarpus), (2) use elements of beam theory to estimate resistance to loading, and (3) examine patterns of variation in hypothesized loading resistance relative to flight and diving mode in 16 species of pelecaniform birds. Patterns emerge that are common to all species, as well as some characteristics that are flight‐ and diving‐mode specific. In all birds examined, the distal most wing segment (carpometacarpus) is the most elliptical (relatively high Imax/Imin) at mid‐shaft, suggesting a shape optimized to resist bending loads in a dorsoventral direction. As primary flight feathers attach at an oblique angle relative to the long axis of the carpometacarpus, they are likely responsible for inducing bending of this element during flight. Moreover, among flight modes examined the flapping group (cormorants) exhibits more elliptical humeri and carpometacarpi than other flight modes, perhaps pertaining to the higher frequency of bending loads in these elements. The soaring birds (pelicans and gannets) exhibit wing elements with near‐circular cross‐sections and higher polar moments of area than in the flap and flap‐gliding birds, suggesting shapes optimized to offer increased resistance to torsional loads. This analysis of cross‐sectional geometry has enhanced our interpretation of how the wing elements are being loaded and ultimately how they are being used during normal activities. J. Morphol., 2011. © 2011 Wiley‐Liss,Inc.  相似文献   

3.
Many different behavioural changes have been observed in wild waterfowl during the flightless stage of wing moult with birds frequently becoming inactive and reducing time spent foraging. Increased predation risk, elevated energetic demands of feather re-growth and restriction of foraging opportunities are thought to underlie these changes. By studying captive populations of both a dabbling and a diving duck species at the same site, we determined whether captive birds would reflect the behavioural responses of wild waterfowl to moult. The time-budgets of 42 Common Eiders, Somateria mollissima, (a diving duck) and 18 Garganeys, Anas querquedula, (a dabbling duck) were recorded during wing moult (July–August) and non-moult (January) with behaviour recorded under six categories. Despite captivity providing a low predation risk and constant access to food, birds altered their behaviour during the flightless period of wing moult. Time allocated to foraging and locomotion decreased significantly during moult compared to non-moult periods, while resting time increased significantly. Moulting Eiders underwent a greater reduction in time spent foraging and in locomotion compared with Garganeys, which is likely to be in response to a higher energetic cost of foraging in Eiders. It is possible that increased resting in both diving and dabbling ducks reduces their likelihood of detection by predators, while allowing them to remain vigilant. We demonstrate that there is much potential for using captive animals in studies that can augment our knowledge of behaviours of free-living conspecifics, the former being a hitherto under-exploited resource.  相似文献   

4.
A major challenge for diving birds, reptiles, and mammals is regulating body temperature while conserving oxygen through a reduction in metabolic processes. To gain insight into how these needs are met, we measured dive depth and body temperatures at the core or periphery between the skin and abdominal muscles simultaneously in freely diving Brünnich's guillemots (Uria lomvia), an arctic seabird, using an implantable data logger (16-mm diameter, 50-mm length, 14-g mass, Little Leonardo Ltd., Tokyo). Guillemots exhibited increased body core temperatures, but decreased peripheral temperatures, during diving. Heat conservation within the body core appeared to result from the combined effect of peripheral vasoconstriction and a high wing beat frequency that generates heat. Conversely, the observed tissue hypothermia in the periphery should reduce metabolic processes as well as heat loss to the water. These physiological effects are likely one of the key physiological adaptations that makes guillemots to perform as an efficient predator in arctic waters.  相似文献   

5.
Previous work has shown that the relative proportions of wing components (i.e., humerus, ulna, carpometacarpus) in birds are related to function and ecology, but these have rarely been investigated in a phylogenetic context. Waterbirds including “Pelecaniformes,” Ciconiiformes, Procellariiformes, Sphenisciformes, and Gaviiformes form a highly supported clade and developed a great diversity of wing forms and foraging ecologies. In this study, forelimb disparity in the waterbird clade was assessed in a phylogenetic context. Phylogenetic signal was assessed via Pagel's lambda, Blomberg's K, and permutation tests. We find that different waterbird clades are clearly separated based on forelimb component proportions, which are significantly correlated with phylogeny but not with flight style. Most of the traditional contents of “Pelecaniformes” (e.g., pelicans, cormorants, and boobies) cluster with Ciconiiformes (herons and storks) and occupy a reduced morphospace. These taxa are closely related phylogenetically but exhibit a wide range of ecologies and flight styles. Procellariiformes (e.g., petrels, albatross, and shearwaters) occupy a wide range of morphospace, characterized primarily by variation in the relative length of carpometacarpus and ulna. Gaviiformes (loons) surprisingly occupy a wing morphospace closest to diving petrels and penguins. Whether this result may reflect wing proportions plesiomorphic for the waterbird clade or a functional signal is unclear. A Bayesian approach detecting significant rate shifts across phylogeny recovered two such shifts. At the base of the two sister clades Sphenisciformes + Procellariiformes, a shift to an increase evolutionary rate of change is inferred for the ulna and carpometacarpus. Thus, changes in wing shape begin prior to the loss of flight in the wing‐propelled diving clade. Several shifts to slower rate of change are recovered within stem penguins.  相似文献   

6.
The relative length proportions of the three bony elements of the pelvic (femur, tibiotarsus and tarsometatarsus) and pectoral (humerus, ulna and manus) limbs of the early Cretaceous bird Gansus yumenensis, a well‐represented basal ornithuromorph from China, are investigated and compared to those of extant taxa. Ternary plots show that the pectoral limb length proportions of Gansus are most similar to Apodiformes (swifts and hummingbirds), which plot away from all other extant birds. In contrast, the pelvic limb length proportions of Gansus fall within the extant bird cluster and show similarities with the neornithine families Podicipedidae (grebes), Diomedeidae (albatross) and Phalacrocoracidae (cormorants). Although it does have some of the pelvic limb features of grebes and cormorants, the femur of Gansus is more gracile and is thus more consistent with an albatross‐like shallow‐diving mode of life than a strong foot‐propelled diving movement pattern. The position of Gansus in pectoral limb ternary morphospace is largely due to its elongated manus. In contrast to apodiformes, where the humerus and ulna are short and robust, an adaptation, which provides a stiff wing for their demanding fast agile and hovering flight (respectively), the wing‐bones of Gansus are slender, indicating a less vigorous flapping flight style. The suite of characters exhibited by Gansus mean it is difficult to completely interpret its likely ecology. Nevertheless, our analyses suggest that it is probable that this bird was both volant and capable of diving to some degree using either foot‐propelled or, perhaps, both its wings and its feet for underwater locomotion.  相似文献   

7.
Wing‐spreading of cormorants (Phalacrocoracidae) is a characteristic and enigmatic aspect of their behavioural repertoire. It has been suggested to have a range of functions including wing‐drying, food‐warming, and social signalling of foraging success. We investigated two of these putative roles by comparing the wing‐spreading behaviour of fed and unfed animals after they had been swimming and diving. The duration of wing‐spreading was correlated only with time spent on the water. The ingestion of food did not influence the duration of wing‐spreading, a finding that supports a wing‐drying, rather than a food‐warming, function.  相似文献   

8.
Recent studies on the function of female plumage characteristics have yielded ambiguous results. Some studies have found an association between different physiological, ecological or behavioural traits and female plumage, while others have found no association and interpret female plumage as neutral in function. We observed a high variance among females in both wing plumage and breeding success in female Common Goldeneyes Bucephala clangula , a sexually plumage-dimorphic diving duck. We studied the association between female wing plumage and hatching date. Principal component analysis of four wing patch area measurements derived a single factor describing wing plumage. Wing plumage was strongly associated with hatching date, which is the most important determinant of goldeneye recruit production; irrespective of age, females with more white in the wing bred earlier than individuals with more black in the wing. We propose that the wing pattern in Common Goldeneye females reflects individual quality.  相似文献   

9.
Temperatures were recorded at several body sites in emperor penguins (Aptenodytes forsteri) diving at an isolated dive hole in order to document temperature profiles during diving and to evaluate the role of hypothermia in this well-studied model of penguin diving physiology. Grand mean temperatures (+/-S.E.) in central body sites during dives were: stomach: 37.1+/-0.2 degrees C (n=101 dives in five birds), pectoral muscle: 37.8+/-0.1 degrees C (n=71 dives in three birds) and axillary/brachial veins: 37.9+/-0.1 degrees C (n=97 dives in three birds). Mean diving temperature and duration correlated negatively at only one site in one bird (femoral vein, r=-0.59, P<0.05; range <1 degrees C). In contrast, grand mean temperatures in the wing vein, foot vein and lumbar subcutaneous tissue during dives were 7.6+/-0.7 degrees C (n=157 dives in three birds), 20.2+/-1.2 degrees C (n=69 in three birds) and 35.2+/-0.2 degrees C (n=261 in six birds), respectively. Mean limb temperature during dives negatively correlated with diving duration in all six birds (r=-0.29 to -0.60, P<0.05). In two of six birds, mean diving subcutaneous temperature negatively correlated with diving duration (r=-0.49 and -0.78, P<0.05). Sub-feather temperatures decreased from 31 to 35 degrees C during rest periods to a grand mean of 15.0+/-0.7 degrees C during 68 dives of three birds; mean diving temperature and duration correlated negatively in one bird (r=-0.42, P<0.05). In general, pectoral, deep venous and even stomach temperatures during diving reflected previously measured vena caval temperatures of 37-39 degrees C more closely than the anterior abdominal temperatures (19-30 degrees C) recently recorded in diving emperors. Although prey ingestion can result in cooling in the stomach, these findings and the lack of negative correlations between internal temperatures and diving duration do not support a role for hypothermia-induced metabolic suppression of the abdominal organs as a mechanism of extension of aerobic dive time in emperor penguins diving at the isolated dive hole. Such high temperatures within the body and the observed decreases in limb, anterior abdomen, subcutaneous and sub-feather temperatures are consistent with preservation of core temperature and cooling of an outer body shell secondary to peripheral vasoconstriction, decreased insulation of the feather layer, and conductive/convective heat loss to the water environment during the diving of these emperor penguins.  相似文献   

10.
The oxygen store/usage hypothesis suggests that larger animals are able to dive for longer and hence deeper because oxygen storage scales isometrically with body mass, whereas oxygen usage scales allometrically with an exponent <1 (typically 0.67-0.75). Previous tests of the allometry of diving tend to reject this hypothesis, but they are based on restricted data sets or invalid statistical analyses (which assume that every species provides independent information). Here we apply information-theoretic statistical methods that are phylogenetically informed to a large data set on diving variables for birds and mammals to describe the allometry of diving. Body mass is strongly related to all dive variables except dive:pause ratio. We demonstrate that many diving variables covary strongly with body mass and that they have allometric exponents close to 0.33. Thus, our results fail to falsify the oxygen store/usage hypothesis. The allometric relationships for most diving variables are statistically indistinguishable for birds and mammals, but birds tend to dive deeper than mammals of equivalent mass. The allometric relationships for all diving variables except mean dive duration are also statistically indistinguishable for all major taxonomic groups of divers within birds and mammals, with the exception of the procellariiforms, which, strictly speaking, are not true divers.  相似文献   

11.
Flightlessness in Tachyeres is caused by wing-loadings in excess of 2.5 g·cm–2, which result from the large body size and small wing areas of the flightless species. Reduced wing areas of flightless species are related to absolutely shorter remiges, and to relatively or absolutely shortened wing bones, although these reductions differ among species. Reduced lengths of the ulna, radius, and carpometacarpus are associated most strongly with flightlessness. Pectoral muscles and the associated sternal keel are well developed in all species of Tachyeres, largely because of the use of wings in “steaming,” an important locomotor behavior. Relative size of these muscles was greatest in largely flighted T. patachonicus; however, sexual dimorphism in wing-loadings results in flightlessness in some males of this species. Proportions in the wing skeleton, intraspecific allometry, and limited data on growth indicate that the relatively short wing bones and remiges of flightless Tachyeres are produced developmentally by a delay in the growth of wing components, and that this heterochrony may underlie, in part, skeletal sexual dimorphism. Increased body size in flightless steamer-ducks is advantageous in territorial defense of food resources and young, and perhaps diving in cold, turbulent water; reductions in wing area probably reflect refinements for wing-assisted locomotion and combat. Flightlessness in steamer-ducks is not related to relaxed predation pressure, but instead was permitted selectively by the year-round habitability of the southern South American coasts. These conditions not only permitted the success of the three flightless species of Tachyeres, but at present may be moving marine populations of T. patachonicus toward flightlessness.  相似文献   

12.
Australasian gannets (Morus serrator), like many other seabird species, locate pelagic prey from the air and perform rapid plunge dives for their capture. Prey are captured underwater either in the momentum (M) phase of the dive while descending through the water column, or the wing flapping (WF) phase while moving, using the wings for propulsion. Detection of prey from the air is clearly visually guided, but it remains unknown whether plunge diving birds also use vision in the underwater phase of the dive. Here we address the question of whether gannets are capable of visually accommodating in the transition from aerial to aquatic vision, and analyse underwater video footage for evidence that gannets use vision in the aquatic phases of hunting. Photokeratometry and infrared video photorefraction revealed that, immediately upon submergence of the head, gannet eyes accommodate and overcome the loss of greater than 45 D (dioptres) of corneal refractive power which occurs in the transition between air and water. Analyses of underwater video showed the highest prey capture rates during WF phase when gannets actively pursue individual fish, a behaviour that very likely involves visual guidance, following the transition after the plunge dive's M phase. This is to our knowledge the first demonstration of the capacity for visual accommodation underwater in a plunge diving bird while capturing submerged prey detected from the air.  相似文献   

13.
The purpose of this study was to characterize for the first time seabird diving behavior during bimodal foraging. Little auks Alle alle, small zooplanktivorous Alcids of the High Arctic, have recently been shown to make foraging trips of short and long duration. Because short (ST) and long trips (LT) are thought to occur in different locations and serve different purposes (chick‐ and self‐feeding, respectively) we hypothesized that foraging differences would be apparent, both in terms of water temperature and diving characteristics. Using Time Depth Recorders (TDRs), we tested this hypothesis at three colonies along the Greenland Sea with contrasting oceanographic conditions. We found that diving behavior generally differed between ST and LT. However, the magnitude of the disparity in diving characteristics depended on local foraging conditions. At the study site where conditions were favorable, diving behavior differed only to a small degree between LT and ST. Together with a lack of difference in diving depth and ocean temperature, this indicates that these birds did not increase their foraging effort during ST nor did they travel long distances to seek out more profitable prey. In contrast, where local foraging conditions were poor, birds increased their diving effort substantially to collect a chick meal during ST as indicated by longer, more U‐shaped dives with slower ascent rates and shorter resting times (post‐dive intervals and extended surface pauses). In addition, large differences in diving depth and ocean temperature indicate that birds forage on different prey species and utilize different foraging areas during LT, which may be up to 200 km away from the colony. Continued warming and deteriorating near‐colony foraging conditions may have energetic consequences for little auks breeding in the eastern Greenland Sea.  相似文献   

14.
Predator versus prey: on aerial hunting and escape strategies in birds   总被引:5,自引:0,他引:5  
Predator and prey attack-escape performance is likely to bethe outcome of an evolutionary arms race. Predatory birds aretypically larger than their prey, suggesting different flightperformances. We analyze three idealized attack-escape situationsbetween predatory and prey birds: climbing flight escape, horizontalspeeding, and turning and escape by diving. Generally a smallerbird will outclimb a larger predator and hence outclimbing shouldbe a common escape strategy. However, some predators such asthe Eleonora's falcon (Falco elenorae) has a very high rateof climb for its size. Prey species with an equal or highercapacity to climb fast, such as the swift Apus apus, usuallyadopt climbing escape when attacked by Eleonora's falcons.To analyze the outcome of the turning gambit between predatorand prey we use a Howland diagram, where the relative lineartop speeds and minimum turning radii of prey and predator definethe escape and danger zones. Applied to the Eleonora's falconand some potential prey species, this analysis indicates thatthe falcon usually wins against the example prey species; thatis, the prey will be captured. Level maneuvering hunting isthe most common strategy seen in Eleonora's falcons. To avoidcapture via use of this strategy by a predator, the prey shouldbe able to initiate tight turns at high linear speed, whichis facilitated by a low wing loading (weight per unit of wingarea). High diving speed is favored by large size. If close enough to safe cover, a prey might still opt for a verticaldive to escape in spite of lower terminal diving speed thanthat of the predator. On the basis of aerodynamic considerationswe discuss escape flight strategies in birds in relation tomorphological adaptations.  相似文献   

15.
Cormorants are assumed to have a "partially wettable" plumage as a mechanism to reduce buoyancy while swimming underwater. This assumption is mainly based on 3 observations: 1) the volume of air in the plumage of submerged carcasses is small compared to other water birds, 2) cormorants assume a "wing drying" posture when they exit the water, and 3) the feather structure of the plumage. An alternative mechanism to reduce buoyancy is to release air out of the plumage by ptilomotion without allowing water to penetrate. How wet cormorants actually get is an open issue that has important implications for the energy budget of these warm blooded aquatic predators. Here we report empirical measurements on the amount of water retained in the plumage of live great cormorant Phlacrocorax carbo sinensis during voluntary swimming and diving in an experimental design that simulates a foraging diving bout. The amount of water retained in the plumage increased as a function of time spent in water. However the birds limited their dive bouts to less than 18 minutes so that the added mass of retained water did not exceed 6% of their body mass. This maximal level of water retention is estimated to reduce the buoyancy of the dry bird by 18%. This maximal level is also similar to measurements of water retention of carcasses and suggests that measurements preformed on carcasses yield only the upper level of water absorption while live birds slow down water penetration, allowing longer periods of foraging.  相似文献   

16.
玛姆象属是长鼻类玛姆象科这一重要类群的最终成员.虽然这一属在上新世的欧亚大陆和更新世的北美大陆广泛分布,它早期的进化历史却鲜为人知.报道了中国北方上中新统发现的斜脊玛姆象(相似种)(Mammut cf.M.obliquelophus)的新材料,包括一个几乎完整的幼年头骨,这些材料显示了玛姆象科的许多原始特征,因此很好地解释了玛姆象属形态特征的形成过程.斜脊玛姆象(相似种)具有强烈向两侧扩展的枕部,在门齿窝的基部具有收缩,这些特征与莫罗托始轭齿象(Eozygodon morotoensis)和广河豕脊齿象(Choerolophodon guangheensis)均具有相似性,后两者分别为玛姆象科与豕脊齿象科的早期代表.因此,玛姆象科与豕脊齿象科(Choerolophodontidae)具有近的亲缘关系,二者同位于象形类(Elephantimorpha)系统发育中的基部.支序分析支持了这一结论.  相似文献   

17.
1. Anopheline larvae are surface feeders and allocate most of their time to search for food at the water surface. However, species of the Anopheles gambiae Giles complex may also show bottom feeding. The consequences of this foraging tactic for life history are unknown, yet may be relevant to understand inter‐specific competition patterns. 2. The diving ability and activity of larvae of the main African malaria vectors, An. coluzzii and An. gambiae, at two different water depths (14 and 30 cm) were assessed. We further explored the biological relevance of diving for food harvesting by monitoring key life history traits in two species treatments (single or mixed species) and two food treatments (surface or bottom feeding). 3. Overall, An. coluzzii larvae showed more diving activity than An. gambiae. When feeding at the bottom both species, and especially An. gambiae, showed a delayed emergence and a reduced emergence rate. Moreover, An. gambiae also suffered a reduced wing length. 4. Mixed‐species rearing had a detrimental effect on the life history traits of An. gambiae but not on An. coluzzii, suggesting a competitive advantage for the latter in our experimental conditions. 5. The present results confirm that anopheline larvae are able to forage for food at the bottom of their breeding site and that An. coluzzii shows a superior diving activity than An. gambiae and this at a lower cost. These behavioural differences probably reflect specific adaptations to different aquatic habitats, and may be important in shaping species distributions and the population biology of these important vector mosquitoes.  相似文献   

18.
Dangerous dive cycles and the proverbial ostrich   总被引:2,自引:0,他引:2  
Data rarely are available to address the level of predation risk faced by diving animals in different parts of the water column. Consequently, most published research on diving behaviour implicitly assumes – like the proverbial ostrich – that 'unseen' predators are functionally unimportant. We argue that failure to consider diving in a predation risk framework may have precluded many insights into the ecology of aquatic foragers that breathe air. Using existing literature and a simple model, we suggest that fear from submerged predators in several systems might be influencing patch residence time, and therefore the duration of other dive cycle components. These analyses, along with an earlier model of predation risk faced by diving animals at the surface, suggest that dive cycle organisation can be modified to increase safety from predators, but only at the cost of reduced energy gain. Theoretical arguments presented here can seed hypotheses on factors contributing to population declines of diving species. For instance, adjustments to the dive cycle that reduce predation risk might be unaffordable if resources are scarce. Thus, if animals are to avoid imminent starvation or substantial loss of reproductive potential, resource declines might indirectly increase predation rates by limiting the extent to which dive cycles can deviate from those that would maximize energy gain. We hope that ideas presented in this paper stimulate other researchers to further develop theory and test predictions on how predation risk might influence diving behaviour and its ecological consequences.  相似文献   

19.
The theoretical aerobic diving limit (tADL) specifies the duration of a dive after which oxygen reserves available for diving are depleted. The tADL has been calculated by dividing the available oxygen stores by the diving metabolic rate (DMR). Contrary to diving mammals, most diving birds examined to date exceed the tADL by a large margin. This discrepancy between observation and theory has engendered two alternative explanations suggesting that dive duration is extended either anaerobically or by depressing aerobic metabolism. Current formulations of tADL uncritically assume that DMR is independent of depth. However, diving birds differ from other vertebrate divers by having a larger respiratory system volume and by retaining air in their plumage while diving, thereby elevating buoyancy. Because air compresses with depth, diving power requirement decreases with depth. Following this principle, we modeled DMR to depth for Adelie and little penguins and reformulated the tADL accordingly. The model's results suggest that < approximately 5% of natural dives by Adelie penguins exceed the reformulated tADL(d), or maximal aerobic depth, and none in the more buoyant little penguin. These data suggest that, for both small and large species, deep diving birds rarely if ever exceed tADL(d).  相似文献   

20.
Starting even before the end of World War II, the discipline of comparative physiology and biochemistry experienced a period of unprecedented growth and development that pioneers in this field thought would never end. However, by the mid-1970s many of the major mechanistic problems in the field were pretty well understood in principle, and by the mid-1980s workers in the field widely recognized that the discipline was at the point of diminishing returns. One response to this was disillusionment, which turned out to be premature because the field was already absorbing molecular biology tools which has now caused a kind of renaissance in mechanistic physiology studies. The second major response to the sense of disillusionment led to a search for new approaches, and out of this endeavor the newly rejuvenated field of evolutionary physiology arose, and this research area too is now in a growth phase. These general patterns of growth and development in our discipline as a whole are particularly clearly evident in the field of aquatic mammals and birds. Between the 1930s and the 1970s, studies of diving physiology and biochemistry made great progress in mechanistically explaining the basic diving response of aquatic mammals and birds. Key components of the diving response (apnea, bradycardia, peripheral vasoconstriction, redistribution of cardiac output) were found in essentially all species analyzed and were generally taken to be biological adaptations. By the mid-1970s, this approach to unraveling the diving response had run 'out of steam' and was in conceptual stasis. The breakthrough which gave renewal to the field at this time was the development of microprocessor based monitoring of diving animals in their natural environments, which led to a flurry of studies mostly confirming the essential outlines of the diving response based upon laboratory studies and firmly placing it into a proper biological context, underlining its plasticity and species specificities. Now as we begin a new millenium, despite ever more detailed field monitoring of physiology, behavior and ecology, studies aimed at improving understanding of physiological mechanisms in diving are again approaching a point of diminishing returns. To avoid another conceptual stasis, what seems required are new initiatives which may arise from two differing approaches. The first is purely experimental, relying on magnetic resonance imaging (MRI) and spectroscopy (MRS) to expand the framework of the original 'diving response' concept. The second, evolutionary study of the diving response, is synthetic, linked to both field and laboratory studies. To date the evolution of the diving response has only been analyzed in pinnipeds and from these studies two kinds of patterns have emerged. (1) Some physiological and biochemical characters, required and used in diving animals, are highly conserved not only in pinnipeds but in all vertebrates; these traits are necessarily similar in all pinnipeds and include diving apnea, bradycardia, tissue specific hypoperfusion, and hypometabolism of hypoperfused tissues. (2) Another group of functionally linked characters are more malleable and include (i) spleen mass, (ii) blood volume, and (iii) hemoglobin (Hb) pool size. Increases in any of these traits (or in a morphological character, body size) improve diving capacity. Assuming that conserved physiological function means conserved sequences in specific genes and their products (and that evolving function requires changes in such sequences), it is possible to rationalize both the above trait categories in pinniped phylogeny. However, it is more difficult for molecular evolution theory to explain how complex regulatory systems like those involved in bradycardia and peripheral vasoconstriction remain the same through phylogenetic time than it is to explain physiological change driven by directional natural selection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号