首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
The dual-target inhibitors tend to improve the response rate in treating tumors, comparing with the single-target inhibitors. Matrix metalloproteinase-2 (MMP-2) and histone deacetylase-6 (HDAC-6) are attractive targets for cancer therapy. In this study, the hierarchical virtual screening of dual MMP-2/HDAC-6 inhibitors from natural products is investigated. The pharmacophore model of MMP-2 inhibitors is built based on ligands, but the pharmacophore model of HDAC-6 inhibitors is built based on the experimental crystal structures of multiple receptor–ligand complexes. The reliability of these two pharmacophore models is validated subsequently. The hierarchical virtual screening, combining these two different pharmacophore models of MMP-2 and HDAC-6 inhibitors with molecular docking, is carried out to identify the dual MMP-2/HDAC-6 inhibitors from a database of natural products. The four potential dual MMP-2/HDAC-6 inhibitors of natural products, STOCK1 N-46177, STOCK1 N-52245, STOCK1 N-55477, and STOCK1 N-69706, are found. The studies of binding modes show that the screened four natural products can simultaneously well bind with the MMP-2 and HDAC-6 active sites by different kinds of interactions, to inhibit the MMP-2 and HDAC-6 activities. In addition, the ADMET properties of screened four natural products are assessed. These found dual MMP-2/HDAC-6 inhibitors of natural products could serve as the lead compounds for designing the new dual MMP-2/HDAC-6 inhibitors having higher biological activities by carrying out structural modifications and optimizations in the future studies.  相似文献   

2.
Organophosphorus compounds (OP) nerve agents are among the most toxic chemical substances known. Their toxicity is due to their ability to bind to acetylcholinesterase. Currently, some enzymes, such as phosphotriesterase, human serum paraoxonase 1 and diisopropyl fluorophosphatase, capable of degrading OP, have been characterized. Regarding the importance of bioremediation methods for detoxication of OP, this work aims to study the interaction modes between the human human deoxyuridine triphosphate nucleotidohydrolase (dUTPase) and Sarin and VX, considering their Rp and Sp enantiomers, to evaluate the asymmetric catalysis of those compounds. In previous work, this enzyme has shown good potential to degrade phosphotriesters, and based on this characteristic, we have applied the human dUTPase to the OP degradation. Molecular docking, chemometrics and mixed quantum and molecular mechanics calculations have been employed, showing a good interaction between dUTPase and OP. Two possible reaction mechanisms were tested, and according to our theoretical results, the catalytic degradation of OP by dUTPase can take place via both mechanisms, beyond being stereoselective, that is, dUTPase cleaves one enantiomer preferentially in relation to other. Chemometric techniques provided excellent assistance for performing this theoretical investigation. The dUTPase study shows importance by the fact of it being a human enzyme.

Communicated by Ramaswamy H. Sarma  相似文献   


3.
Hydrogen bonding and polar interactions play a key role in identification of protein-inhibitor binding specificity. Quantum mechanics/molecular mechanics molecular dynamics (QM/MM MD) simulations combined with DFT and semi-empirical Hamiltonian (AM1d, RM1, PM3, and PM6) methods were performed to study the hydrogen bonding and polar interactions of two inhibitors BEN and BEN1 with trypsin. The results show that the accuracy of treating the hydrogen bonding and polar interactions using QM/MM MD simulation of PM6 can reach the one obtained by the DFT QM/MM MD simulation. Quantum mechanics/molecular mechanics generalized Born surface area (QM/MM-GBSA) method was applied to calculate binding affinities of inhibitors to trypsin and the results suggest that the accuracy of binding affinity prediction can be significantly affected by the accurate treatment of the hydrogen bonding and polar interactions. In addition, the calculated results also reveal the binding specificity of trypsin: (1) the amidinium groups of two inhibitors generate favorable salt bridge interaction with Asp189 and form hydrogen bonding interactions with Ser190 and Gly214, (2) the phenyl of inhibitors can produce favorable van der Waals interactions with the residues His58, Cys191, Gln192, Trp211, Gly212, and Cys215. This systematic and comparative study can provide guidance for the choice of QM/MM MD methods and the designs of new potent inhibitors targeting trypsin.  相似文献   

4.
Phosphodiesterases 4 enzyme is an attractive target for the design of anti-inflammatory and bronchodilator agents. In the present study, pharmacophore and atom-based 3D-QSAR studies were carried out for pyrazolopyridine and quinoline derivatives using Schrödinger suite 2014-3. A four-point pharmacophore model was developed using 74 molecules having pIC50 ranging from 10.1 to 4.5. The best four feature model consists of one hydrogen bond acceptor, two aromatic rings, and one hydrophobic group. The pharmacophore hypothesis yielded a statistically significant 3D-QSAR model, with a high correlation coefficient (R2?=?.9949), cross validation coefficient (Q2?=?.7291), and Pearson-r (.9107) at six component partial least square factor. The external validation indicated that our QSAR model possessed high predictive power with R2 value of .88. The generated model was further validated by enrichment studies using the decoy test. Molecular docking, free energy calculation, and molecular dynamics (MD) simulation studies have been performed to explore the putative binding modes of these ligands. A 10-ns MD simulation confirmed the docking results of both stability of the 1XMU–ligand complex and the presumed active conformation. Outcomes of the present study provide insight in designing novel molecules with better PDE4 inhibitory activity.  相似文献   

5.
Abstract

The p90 ribosomal s6 kinase 2 (RSK2) is a promising target because of its over expression and activation in human cancer cells and tissues. Over the last few years, significant efforts have been made in order to develop RSK2 inhibitors to treat myeloma, prostatic cancer, skin cancer and etc., but with limited success so far. In this paper, pharmacophore modelling, molecular docking study and molecular dynamics (MD) simulation have been performed to explore the novel inhibitors of RSK2. Pharmacophore models were developed by 95 molecules having pIC50 ranging from 4.577 to 9.000. The pharmacophore model includes one hydrogen bond acceptor (A), one hydrogen bond donor (D), one hydrophobic feature (H) and one aromatic ring (R). It is the best pharmacophore hypothesis that has the highest correlation coefficient (R2 = 0.91) and cross validation coefficient (Q2 = 0.71) at 5 component PLS factor. It was evaluated using enrichment analysis and the best model was used for virtual screening. The constraints used in this study were docking score, ADME properties, binding free energy estimates and IFD Score to screen the database. Ultimately, 12 hits were identified as potent and novel RSK2 inhibitors. A 15 ns molecular dynamics (MD) simulation was further employed to validate the reliability of the docking results.  相似文献   

6.
The mTOR (mammalian or mechanistic Target Of Rapamycin), a complex metabolic pathway that involves multiple steps and regulators, is a major human metabolic pathway responsible for cell growth control in response to multiple factors and that is dysregulated in various types of cancer. The classical inhibition of the mTOR pathway is performed by rapamycin and its analogs (rapalogs). Considering that rapamycin binds to an allosteric site and performs a crucial role in the inhibition of the mTOR complex without causing the deleterious side effects common to ATP-competitive inhibitors, we employ ligand-based drug design strategies, such as virtual screening methodology, computational determination of ADME/Tox properties of selected molecules, and molecular dynamics in order to select molecules with the potential to become non-ATP-competitive inhibitors of the mTOR enzymatic complex. Our findings suggest five novel potential mTOR inhibitors, with similar or better properties than the classic inhibitor complex, rapamycin.  相似文献   

7.
MurG (Rv2153c) is a key player in the biosynthesis of the peptidoglycan layer in Mycobacterium tuberculosis (Mtb). This work is an attempt to highlight the structural and functional relationship of Mtb MurG, the three-dimensional (3D) structure of protein was constructed by homology modelling using Discovery Studio 3.5 software. The quality and consistency of generated model was assessed by PROCHECK, ProSA and ERRAT. Later, the model was optimized by molecular dynamics (MD) simulations and the optimized model complex with substrate Uridine-diphosphate-N-acetylglucosamine (UD1) facilitated us to employ structure-based virtual screening approach to obtain new hits from Asinex database using energy-optimized pharmacophore modelling (e-pharmacophore). The pharmacophore model was validated using enrichment calculations, and finally, validated model was employed for high-throughput virtual screening and molecular docking to identify novel Mtb MurG inhibitors. This study led to the identification of 10 potential compounds with good fitness, docking score, which make important interactions with the protein active site. The 25 ns MD simulations of three potential lead compounds with protein confirmed that the structure was stable and make several non-bonding interactions with amino acids, such as Leu290, Met310 and Asn167. Hence, we concluded that the identified compounds may act as new leads for the design of Mtb MurG inhibitors.  相似文献   

8.
Gallic acid and its derivatives exhibit a diverse range of biological applications, including anti-cancer activity. In this work, a data-set of forty-six molecules containing the galloyl moiety, and known to show anticarcinogenic activity against the MCF-7 human cancer cell line, have been chosen for pharmacophore modeling and 3D-Quantitative Structure Activity Relationship (3D-QSAR) studies. A tree-based partitioning algorithm has been used to find common pharmacophore hypotheses. The QSAR model was generated for three, four, and five featured hypotheses with increasing PLS factors and analyzed. Results for five featured hypotheses with three acceptors and two aromatic rings were the best out of all the possible combinations. On analyzing the results, the most robust (R2?=?.8990) hypothesis with a good predictive power (Q2?=?.7049) was found to be AAARR.35. A good external validation (R2 = .6109) was also obtained. In order to design new MCF-7 inhibitors, the QSAR model was further utilized in pharmacophore-based virtual screening of a large database. The predicted IC50 values of the identified potential MCF-7 inhibitors were found to lie in the micromolar range. Molecular docking into the colchicine domain of tubulin was performed in order to examine one of the probable mechanisms. This revealed various interactions between the ligand and the active site protein residues. The present study is expected to provide an effective guide for methodical development of potent MCF-7 inhibitors.  相似文献   

9.
Abstract

The UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (MurG) is located in plasma membrane which plays a crucial role for peptidoglycan biosynthesis in Gram-negative bacteria. Recently, this protein is considered as an important and unique drug target in Acinetobacter baumannii since it plays a key role during the synthesis of peptidoglycan as well as which is not found in Homo sapiens. In this study, initially we performed comparative protein modeling approach to predict the three-dimensional model of MurG based on crystal structure of UDP-N-acetylglucosamine-N-acetylmuramyl-(pentapeptide) pyrophosphoryl-undecaprenol N-acetylglucosamine transferase (PDB ID: 1F0K) from E.coli K12. MurG model has two important functional domains located in N and C- terminus which are separated by a deep cleft. Active site residues are located between two domains and they are Gly20, Arg170, Gly200, Ser201, Gln227, Phe254, Leu275, Thr276, and Glu279 which play essential role for the function of MurG. In order to inhibit the function of MurG, we employed the High Throughput Virtual Screening (HTVS) and docking techniques to identify the promising molecules which will further subjected into screening for computing their drug like and pharmacokinetic properties. From the HTVS, we identified 5279 molecules, among these, 12 were passed the drug-like and pharmacokinetic screening analysis. Based on the interaction analysis in terms of binding affinity, inhibition constant and intermolecular interactions, we selected four molecules for further MD simulation to understand the structural stability of protein-ligand complexes. All the analysis of MD simulation suggested that ZINC09186673 and ZINC09956120 are identified as most promising putative inhibitors for MurG protein in A. baumannii.

Communicated by Ramaswamy H. Sarma  相似文献   

10.
Gout is a common inflammatory arthritis caused by the deposition of urate crystals within joints. It is increasingly in prevalence during the past few decades as shown by the epidemiological survey results. Xanthine oxidase (XO) is a key enzyme to transfer hypoxanthine and xanthine to uric acid, whose overproduction leads to gout. Therefore, inhibiting the activity of xanthine oxidase is an important way to reduce the production of urate. In the study, in order to identify the potential natural products targeting XO, pharmacophore modeling was employed to filter databases. Here, two methods, pharmacophore based on ligand and pharmacophore based on receptor-ligand, were constructed by Discovery Studio. Then GOLD was used to refine the potential compounds with higher fitness scores. Finally, molecular docking and dynamics simulations were employed to analyze the interactions between compounds and protein. The best hypothesis was set as a 3D query to screen database, returning 785 and 297 compounds respectively. A merged set of the above 1082 molecules was subjected to molecular docking, which returned 144 hits with high-fitness scores. These molecules were clustered in four main kinds depending on different backbones. What is more, molecular docking showed that the representative compounds established key interactions with the amino acid residues in the protein, and the RMSD and RMSF of molecular dynamics results showed that these compounds can stabilize the protein. The information represented in the study confirmed previous reports. And it may assist to discover and design new backbones as potential XO inhibitors based on natural products.  相似文献   

11.
The essential biological function of phosphodiesterase (PDE) type enzymes is to regulate the cytoplasmic levels of intracellular second messengers, 3′,5′-cyclic guanosine monophosphate (cGMP) and/or 3′,5′-cyclic adenosine monophosphate (cAMP). PDE targets have 11 isoenzymes. Of these enzymes, PDE5 has attracted a special attention over the years after its recognition as being the target enzyme in treating erectile dysfunction. Due to the amino acid sequence and the secondary structural similarity of PDE6 and PDE11 with the catalytic domain of PDE5, first-generation PDE5 inhibitors (i.e. sildenafil and vardenafil) are also competitive inhibitors of PDE6 and PDE11. Since the major challenge of designing novel PDE5 inhibitors is to decrease their cross-reactivity with PDE6 and PDE11, in this study, we attempt to identify potent tadalafil-like PDE5 inhibitors that have PDE5/PDE6 and PDE5/PDE11 selectivity. For this aim, the similarity-based virtual screening protocol is applied for the “clean drug-like subset of ZINC database” that contains more than 20 million small compounds. Moreover, molecular dynamics (MD) simulations of selected hits complexed with PDE5 and off-targets were performed in order to get insights for structural and dynamical behaviors of the selected molecules as selective PDE5 inhibitors. Since tadalafil blocks hERG1 K channels in concentration dependent manner, the cardiotoxicity prediction of the hit molecules was also tested. Results of this study can be useful for designing of novel, safe and selective PDE5 inhibitors.  相似文献   

12.
The structural motifs of chalcones, flavones, and triazoles with varied substitutions have been studied for the antimalarial activity. In this study, 25 novel derivatives of chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage are docked with Plasmodium falciparum dihydroorotate dehydrogenase to establish their inhibitory activity against Plasmodium falciparum. The best binding conformation of the ligands at the catalytic site of dihydroorotate dehydrogenase are selected to characterize the best bound ligand using the best consensus score and the number of hydrogen bond interactions. The ligand namely (2E)-3-(4-{[1-(3-chloro-4-fluorophenyl)-1H-1, 2, 3-triazol-4-yl]methoxy}-3-methoxyphenyl-1-(2-hydroxy-4,6-dimethoxyphenyl)prop-2-en-1-one, is one the among the five best docked ligands, which interacts with the protein through nine hydrogen bonds and with a consensus score of five. To refine and confirm the docking study results, the stability of complexes is verified using Molecular Dynamics Simulations, Molecular Mechanics /Poisson–Boltzmann Surface Area free binding energy analysis, and per residue contribution for the binding energy. The study implies that the best docked Plasmodium falciparum dihydroorotate dehydrogenase–ligand complex is having high negative binding energy, most stable, compact, and rigid with nine hydrogen bonds. The study provides insight for the optimization of chalcone and flavone hybrids with 1, 2, 3-triazole linkage as potent inhibitors.  相似文献   

13.
Calcium/calmodulin-dependent protein kinase IV (CAMKIV) is associated with many diseases including cancer and neurodegenerative disorders and thus being considered as a potential drug target. Here, we have employed the knowledge of three-dimensional structure of CAMKIV to identify new inhibitors for possible therapeutic intervention. We have employed virtual high throughput screening of 12,500 natural compounds of Zinc database to screen the best possible inhibitors of CAMKIV. Subsequently, 40 compounds which showed significant docking scores (?11.6 to ?10.0?kcal/mol) were selected and further filtered through Lipinski rule and drug likeness parameter to get best inhibitors of CAMKIV. Docking results are indicating that ligands are binding to the hydrophobic cavity of the kinase domain of CAMKIV and forming a significant number of non-covalent interactions. Four compounds, ZINC02098378, ZINC12866674, ZINC04293413, and ZINC13403020, showing excellent binding affinity and drug likeness were subjected to molecular dynamics simulation to evaluate their mechanism of interaction and stability of protein-ligand complex. Our observations clearly suggesting that these selected ligands may be further employed for therapeutic intervention to address CAMKIV associated diseases.

Communicated by Ramaswamy H. Sarma  相似文献   


14.
Rho-associated protein kinases (ROCKs) are a member of the serine/threonine protein kinase family and potential therapeutic target for various diseases. This enzyme has two isoforms, Rho-associated protein kinase I (ROCKI) and Rho-associated protein kinase II (ROCKII). They share an overall 65% homology in all amino acid sequence and 92% homology in kinase domains. Since, the kinase domains of ROCKI and ROCKII are highly conserved and similar, the discovery and design of isoform-selective inhibitors are more challenging. Thus, most currently available agents that is against ROCKs exhibit low selectivity and severe side effects. Therefore, this study aimed to elucidate the interaction of compounds that indicated high potential in experimental studies against ROCKI and ROCKII enzymes in the molecular level with molecular modeling techniques. Firstly, we determined the interaction property of catalytic sites of the ROCKs by analyzing with molecular docking. Based on these results, the best ligands (50 compounds) corresponding to experimental studies were selected, and then absorption, distribution, metabolism and excretion – toxicity (ADMET) analysis of these compounds were implemented. According to these study results, the compound 40 for ROCKI and the compound 50 for ROCKII were identified as selective and highly potent inhibitors. And finally, molecular dynamics (MD) simulations were performed for the stability of ROCKs with identified compounds. In the light of this study, it will be possible to treat diseases that ROCKs have a role by developing more effective and specific ROCK inhibitors.

Communicated by Ramaswamy H. Sarma  相似文献   


15.
In cancer, de novo pathway plays an important role in cell proliferation by supplying huge demand of purine nucleotides. Aminoimidazole ribonucleotide synthetase (AIRS) catalyzes the fifth step of de novo purine biosynthesis facilitating in the conversion of formylglycinamidine ribonucleotide to aminoimidazole ribonucleotide. Hence, inhibiting AIRS is crucial due to its involvement in the regulation of uncontrollable cancer cell proliferation. In this study, the three-dimensional structure of AIRS from P. horikoshii OT3 was constructed based on the crystal structure from E. coli and the modeled protein is verified for stability using molecular dynamics for a time frame of 100 ns. Virtual screening and induced fit docking were performed to identify the best antagonists based on their binding mode and affinity. Through mutational studies, the residues necessary for catalytic activity of AIRS were identified and among which the following residues Lys35, Asp103, Glu137, and Thr138 are important in determination of AIRS function. The mutational studies help to understand the structural and energetic characteristics of the specified residues. In addition to Molecular Dynamics, ADME properties, binding free-energy, and density functional theory calculations of the compounds were carried out to find the best lead molecule. Based on these analyses, the compound from the NCI database, NCI_121957 was adjudged as the best molecule and could be suggested as the suitable inhibitor of AIRS. In future studies, experimental validation of these ligands as AIRS inhibitors will be carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号