首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The relative length proportions of the three bony elements of the pelvic (femur, tibiotarsus and tarsometatarsus) and pectoral (humerus, ulna and manus) limbs of the early Cretaceous bird Gansus yumenensis, a well‐represented basal ornithuromorph from China, are investigated and compared to those of extant taxa. Ternary plots show that the pectoral limb length proportions of Gansus are most similar to Apodiformes (swifts and hummingbirds), which plot away from all other extant birds. In contrast, the pelvic limb length proportions of Gansus fall within the extant bird cluster and show similarities with the neornithine families Podicipedidae (grebes), Diomedeidae (albatross) and Phalacrocoracidae (cormorants). Although it does have some of the pelvic limb features of grebes and cormorants, the femur of Gansus is more gracile and is thus more consistent with an albatross‐like shallow‐diving mode of life than a strong foot‐propelled diving movement pattern. The position of Gansus in pectoral limb ternary morphospace is largely due to its elongated manus. In contrast to apodiformes, where the humerus and ulna are short and robust, an adaptation, which provides a stiff wing for their demanding fast agile and hovering flight (respectively), the wing‐bones of Gansus are slender, indicating a less vigorous flapping flight style. The suite of characters exhibited by Gansus mean it is difficult to completely interpret its likely ecology. Nevertheless, our analyses suggest that it is probable that this bird was both volant and capable of diving to some degree using either foot‐propelled or, perhaps, both its wings and its feet for underwater locomotion.  相似文献   

2.
Abstract: We describe a new, exceptionally well‐preserved fossil bird recovered from marine deposits of the Early Eocene Fur Formation of Denmark. Morsoravis sedilis gen. et sp. nov. is known by a single specimen that consists of a three‐dimensional skull, vertebral column, ribs, pelvis, and left hindlimb and associated parts of the right hindlimb. Comparisons based on overall morphology and particularly characters of the skull, vertebrae and pelvis indicate that the new specimen is morphologically similar to charadriiform birds (the shorebirds and relatives). This similarity is also expressed by a phylogenetic analysis of higher neornithine (modern birds) taxa, which supports a close relationship between the new fossil and modern charadriiforms. The morphology of the hindlimbs, in particular, shows that the new fossil corresponds to a new taxon that is distinguishable from modern charadriiform clades. One interesting aspect of its morphology is the presence of hindlimb specializations that are most commonly found among perching birds – these suggest that ecologically the new Danish fossil bird may have differed from the wading habits typical of most charadriiforms.  相似文献   

3.
4.
Consensus is elusive regarding the phylogenetic relationships among neornithine (crown clade) birds. The ongoing debate over their deep divergences is despite recent increases in available molecular sequence data and the publication of several larger morphological data sets. In the present study, the phylogenetic relationships among 43 neornithine higher taxa are addressed using a data set of 148 osteological and soft tissue characters, which is one of the largest to date. The Mesozoic non‐neornithine birds Apsaravis, Hesperornis, and Ichthyornis are used as outgroup taxa for this analysis. Thus, for the first time, a broad array of morphological characters (including both cranial and postcranial characters) are analyzed for an ingroup densely sampling Neornithes, with crown clade outgroups used to polarize these characters. The strict consensus cladogram of two most parsimonious trees resultant from 1000 replicate heuristic searches (random stepwise addition, tree‐bisection‐reconnection) recovered several previously identified clades; the at‐one‐time contentious clades Galloanseres (waterfowl, fowl, and allies) and Palaeognathae were supported. Most notably, our analysis recovered monophyly of Neoaves, i.e., all neognathous birds to the exclusion of the Galloanseres, although this clade was weakly supported. The recently proposed sister taxon relationship between Steatornithidae (oilbird) and Trogonidae (trogons) was recovered. The traditional taxon “Falconiformes” (Cathartidae, Sagittariidae, Accipitridae, and Falconidae) was not found to be monophyletic, as Strigiformes (owls) are placed as the sister taxon of (Falconidae + Accipitridae). Monophyly of the traditional “Gruiformes” (cranes and allies) and ”Ciconiiformes” (storks and allies) was also not recovered. The primary analysis resulted in support for a sister group relationship between Gaviidae (loons) and Podicipedidae (grebes)—foot‐propelled diving birds that share many features of the pelvis and hind limb. Exclusion of Gaviidae and reanalysis of the data set, however, recovered the sister group relationship between Phoenicopteridae (flamingos) and grebes recently proposed from molecular sequence data.  相似文献   

5.
Morphometric and stratigraphic analyses that encompass the known fossil record of enantiornithine birds (Enantiornithes) are presented. These predominantly flighted taxa were the dominant birds of the second half of the Mesozoic; the enantiornithine lineage is known to have lasted for at least 60 million years (Ma), up until the end of the Cretaceous. Analyses of fossil record dynamics show that enantiornithine 'collectorship' since the 1980s approaches an exponential distribution, indicating that an asymptote in proportion of specimens has yet to be achieved. Data demonstrate that the fossil record of enantiornithines is complete enough for the extraction of biological patterns. Comparison of the available fossil specimens with a large data set of modern bird (Neornithes) limb proportions also illustrates that the known forelimb proportions of enantiornithines fall within the range of extant taxa; thus these birds likely encompassed the range of flight styles of extant birds. In contrast, most enantiornithines had hindlimb proportions that differ from any extant taxa. To explore this, ternary diagrams are used to graph enantiornithine limb variation and to identify some morphological oddities ( Otogornis , Gobipteryx ); taxa not directly comparable to modern birds. These exceptions are interesting – although anatomically uniform, and similar to extant avians in their wing proportions, some fossil enantiornithines likely had flight styles not seen among their living counterparts.  相似文献   

6.
Investigation of how the avian brain evolved to its present state is informative for studies of the theropod–bird transition, and as a parallel to mammalian brain evolution. Neurological anatomy in fossil bird species can be inferred from endocranial casts, but such endocasts are rare. Here, we use computed tomographic analysis to determine the state of brain anatomy in two marine birds from the Lower Eocene London Clay Formation of England. The brains of Odontopteryx (Odontopterygiformes) and Prophaethon (Pelecaniformes) are remarkably similar to those of extant seabirds, and probably possessed similar somatosensory and motor capabilities. Each virtual endocast exhibits a degree of telencephalic expansion comparable to living avian species. However, the eminentia sagittalis (wulst), a feature characteristic of all living birds, is poorly developed. Our findings support the conclusion that much of the telencephalic expansion of modern birds was complete by the end of the Mesozoic, but that overall telencephalic volume has increased throughout the Cenozoic through dorsal expansion of the eminentia sagittalis. We suggest that improvements in cognition relating to telencephalic expansion may have provided neornithine avian clades with an advantage over archaic lineages at the Cretaceous–Tertiary boundary, explaining their survival and rapid diversification in the Cenozoic. © 2009 The Natural History Museum. Journal compilation © 2009 The Linnean Society of London, Zoological Journal of the Linnean Society, 2009, 155 , 198–219.  相似文献   

7.
The origin and early evolution of birds   总被引:9,自引:0,他引:9  
Birds evolved from and are phylogenetically recognized as members of the theropod dinosaurs; their first known member is the Late Jurassic Archaeopteryx, now represented by seven skeletons and a feather, and their closest known non-avian relatives are the dromaeosaurid theropods such as Deinonychus. Bird flight is widely thought to have evolved from the trees down, but Archaeopteryx and its outgroups show no obvious arboreal or tree-climbing characters, and its wing planform and wing loading do not resemble those of gliders. The ancestors of birds were bipedal, terrestrial, agile, cursorial and carnivorous or omnivorous. Apart from a perching foot and some skeletal fusions, a great many characters that are usually considered ‘avian’ (e.g. the furcula, the elongated forearm, the laterally flexing wrist and apparently feathers) evolved in non-avian theropods for reasons unrelated to birds or to flight. Soon after Archaeopteryx, avian features such as the pygostyle, fusion of the carpometacarpus, and elongated curved pedal claws with a reversed, fully descended and opposable hallux, indicate improved flying ability and arboreal habits. In the further evolution of birds, characters related to the flight apparatus phylogenetically preceded those related to the rest of the skeleton and skull. Mesozoic birds are more diverse and numerous than thought previously and the most diverse known group of Cretaceous birds, the Enantiornithes, was not even recognized until 1981. The vast majority of Mesozoic bird groups have no Tertiary records: Enantiornithes, Hesperornithiformes, Ichthyornithiformes and several other lineages disappeared by the end of the Cretaceous. By that time, a few Linnean ‘Orders’ of extant birds had appeared, but none of these taxa belongs to extant ‘families’, and it is not until the Paleocene or (in most cases) the Eocene that the majority of extant bird ‘Orders’ are known in the fossil record. There is no evidence for a major or mass extinction of birds at the end of the Cretaceous, nor for a sudden ‘bottleneck’ in diversity that fostered the early Tertiary origination of living bird ‘Orders’.  相似文献   

8.
ENRIC VICENS 《Palaeontology》2012,55(2):325-339
Abstract: A new type of small, ovoid dinosaur egg, Sankofa pyrenaica oogen. nov. oosp. nov., with a prismatic type eggshell is described from upper Cretaceous (upper Campanian–Maastrichtian) deposits of the Montsec area, South Pyrenean Central Unit, Lleida, Catalonia, Spain. This egg type was sub‐vertically laid in only two rich monospecific sites of a single stratigraphic layer from coastal deposits of the Aren Formation, interpreted as an emerged beach ridge of a barrier island – lagoon depositional system. The size and shape of these eggs with their asymmetric poles are roughly similar to modern hen eggs, which is unusual in the Cretaceous fossil egg record. Its phylogenetic position clusters with bird and Troodontid eggs. A morphospace analysis of egg shapes shows the similarity of the new egg to a Campanian fossil bird egg from Argentina, both being intermediate between modern‐bird eggs and extinct nonavian theropod eggs. However, the eggshell microstructure of Sankofa pyrenaica differs from that of bird eggs in its incipient squamatic texture. It has a peculiar pattern of interlocking small crystals in the middle of the palisade layer, instead of the thick squamatic structure commonly present in modern avian eggshells. This new egg type is attributed to a small theropod, probably with a single oviduct like birds and whose mosaic distribution of features is a combination between that of birds and nonavian theropods. This enhances the arguments supporting the close phylogenetic relationships between both groups.  相似文献   

9.
Birds are the most diverse living tetrapod group and are a model of large-scale adaptive radiation. Neontological studies suggest a radiation within the avian crown group, long after the origin of flight. However, deep time patterns of bird evolution remain obscure because only limited fossil data have been considered. We analyse cladogenesis and limb evolution on the entire tree of Mesozoic theropods, documenting the dinosaur–bird transition and immediate origins of powered flight. Mesozoic birds inherited constraints on forelimb evolution from non-flying ancestors, and species diversification rates did not accelerate in the earliest flying taxa. However, Early Cretaceous short-tailed birds exhibit both phenotypic release of the hindlimb and increased diversification rates, unparalleled in magnitude at any other time in the first 155 Myr of theropod evolution. Thus, a Cretaceous adaptive radiation of stem-group birds was enabled by restructuring of the terrestrial locomotor module, which represents a key innovation. Our results suggest two phases of radiation in Avialae: with the Cretaceous diversification overwritten by extinctions of stem-group birds at the Cretaceous–Palaeogene boundary, and subsequent diversification of the crown group. Our findings illustrate the importance of fossil data for understanding the macroevolutionary processes generating modern biodiversity.  相似文献   

10.
The fossil record has been used to support the origin and radiation of modern birds (Neornithes) in Laurasia after the Cretaceous-Tertiary mass extinction event, whereas molecular clocks have suggested a Cretaceous origin for most avian orders. These alternative views of neornithine evolution are examined using an independent set of evidence, namely phylogenetic relationships and historical biogeography. Pylogenetic relationships of basal lineages of neornithines, including ratite birds and their allies (Palaleocognathae), galliforms and anseriforms (Galloanserae), as well as lineages of the more advanced Neoves (Gruiformes, (Capimulgiformes, Passeriformes and others) demonstrate pervasive trans-Antarctic distribution patterns. The temporal history of the neornithines can be inferred from fossil taxa and the ages of vicariance events, and along with their biogeographical patterns, leads to the conclusion that neornithines arose in Gondwana prior to the Cretaceous Tertiary extinction event.  相似文献   

11.
The pattern, timing and extent of the evolutionary radiation of anatomically modern birds (Neornithes) remains contentious: dramatically different timescales for this major event in vertebrate evolution have been recovered by the 'clock-like' modelling of molecular sequence data and from evidence extracted from the known fossil record. Because current synthesis would lead us to believe that fossil and nonfossil evidence conflict with regard to the neornithine timescale, especially at its base, it is high time that available data are reconciled to determine more exactly the evolutionary radiation of modern birds. In this review we highlight current understanding of the early fossil history of Neornithes in conjunction with available phylogenetic resolution for the major extant clades, as well as recent advancements in genetic methods that have constrained time estimates for major evolutionary divergences. Although the use of molecular approaches for timing the radiation of Neornithes is emphasized, the tenet of this review remains the fossil record of the major neornithine subdivisions and better-preserved taxa. Fossils allowing clear phylogenetic constraint of taxa are central to future work in the production of accurate molecular calibrations of the neornithine evolutionary timescale.  © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society , 2004, 141 , 153–177.  相似文献   

12.
13.
Abstract: We revisit a small but extremely significant collection of bird and pterosaur bones from the Lower Cretaceous (Berriasian) of western Romania. These fossils were collected in the late 1970s and early 1980s from a Lower Cretaceous (Berriasian) conglomerate lens deep in a bauxite mine at Cornet, close to the city of Oradea, Romania, and they caused a sensation when first described. Some fossils were initially ascribed to the early bird genus Archaeopteryx as well as to the modern clade Neornithes, an astonishing avian assemblage if correct. Described pterosaurs include dsungaripterids and a cervical vertebra that is likely the oldest azhdarchid pterosaur known from Europe and perhaps the world. Not only does the Cornet azhdarchid support an Eurasian origin for this clade, it is also significant because of its size: it is one of the smallest representatives of this pterosaur clade yet reported. Aside from their phylogenetic affinities, these unique Romanian fossils are also important because of their age; in particular, very few birds are known globally from the earliest Cretaceous. Re‐examination of collections in Oradea confirms the presence of both birds and pterosaurs in the Cornet bauxite: although the fragmentary bird remains are mostly indeterminate, one record of a hesperornithiform is confirmed. There is no evidence for Archaeopteryx at the Cornet site while the two supposed neornithines (Palaeocursornis biharicus Kessler and Jurcsák and Eurolimnornis corneti Kessler and Jurcsák) are based on undiagnostic remains and are here regarded as nomina dubia.  相似文献   

14.
Little is known about the olfactory capabilities of extinct basal (non-neornithine) birds or the evolutionary changes in olfaction that occurred from non-avian theropods through modern birds. Although modern birds are known to have diverse olfactory capabilities, olfaction is generally considered to have declined during avian evolution as visual and vestibular sensory enhancements occurred in association with flight. To test the hypothesis that olfaction diminished through avian evolution, we assessed relative olfactory bulb size, here used as a neuroanatomical proxy for olfactory capabilities, in 157 species of non-avian theropods, fossil birds and living birds. We show that relative olfactory bulb size increased during non-avian maniraptoriform evolution, remained stable across the non-avian theropod/bird transition, and increased during basal bird and early neornithine evolution. From early neornithines through a major part of neornithine evolution, the relative size of the olfactory bulbs remained stable before decreasing in derived neoavian clades. Our results show that, rather than decreasing, the importance of olfaction actually increased during early bird evolution, representing a previously unrecognized sensory enhancement. The relatively larger olfactory bulbs of earliest neornithines, compared with those of basal birds, may have endowed neornithines with improved olfaction for more effective foraging or navigation skills, which in turn may have been a factor allowing them to survive the end-Cretaceous mass extinction.  相似文献   

15.
Abstract:  A phylogenetic analysis of reproductive and oological (egg) traits of theropod taxa allows determination of the sequence in which these traits evolved in Theropoda. Our results indicate that several avian reproductive traits, such as adults sitting on eggs, asymmetrical eggs, unornamented eggshell surface, and complex eggshell ultrastructure, were already present in non-avian maniraptorans, and could have evolved in more basal theropods. In addition, non-avian maniraptorans laid two eggs at a time and orientated their eggs subvertically or subhorizontally in their nests, features not retained by neornithine birds. Based on our cladistic analysis it is also possible to infer the phylogenetic affinity of ootaxa of unknown parentage: Protoceratopsidovum was laid by a maniraptoran more derived than oviraptorids, and Parvoolithus probably belonged to a Cretaceous bird. Finally, our analysis reveals that many of the high-level categories of egg parataxonomy (morphotypes and basic types) are unnatural groupings (i.e. non-monophyletic). We recommend that these high-level categories be abandoned because oofamilies are sufficient to categorize egg taxa.  相似文献   

16.
We report on the discovery of an Early Cretaceous bird from northwestern Gansu Province, in northwestern China. Represented by a nearly complete left wing and shoulder girdle the size of a rock dove, the new bird was quarried from laminated yellowish mudstones of the Xiagou Formation (Xinminpu Group) near Changma, in the Jiuquan area. These deposits have previously yielded the only known specimen of Gansus yumenensis, a basal ornithuromorph represented by the distal half of a hind limb with long and slender digits. Several derived characters of the new occurrence supports its allocation within Enantiornithes: (1) a convex lateral margin of the coracoid, (2) a minor metacarpal that projects distally more than the major metacarpal and (3) a proximal phalanx of the major digit longer than the intermediate (second) phalanx. The general proportions of the wing suggest it was a flier comparable to most other known enantiornithine birds. Although, direct comparisons between the new fossil and Gansus are not possible, phylogenetic based inferences supports their placement into two different clades. While the new fossil falls definitively within the enantiornithines, G. Yumenensis falls within the ornithuromorphs. The new occurrence thus adds to the taxonomic diversity of Early Cretaceous birds from Gansu Province in particular and central Asia in general.  相似文献   

17.
Ornithuromorpha is the most derived avian group in the Early Cretaceous, advanced members of which encompass all living birds (Neornithes). Here we report on a new basal ornithuromorph bird, Bellulia rectusunguis gen. et sp. nov., represented by a nearly complete skeleton from the Early Cretaceous Jehol Biota in northeastern China. A comprehensive phylogenetic analysis resolved the new taxon in a basal position that is only more derived than Archaeorhynchus and Jianchangornis among ornithuromorphs, increasing the morphological diversity of basal ornithuromorphs. The new specimen has a V‐shaped furcula with a short hypocleidium, a feature otherwise known only in Schizooura among Cretaceous ornithuromorphs. We discuss the implications of the new taxon on the evolution of morphology of primitive ornithuromorphs, particularly of pectoral girdle, sternum and limb proportion pertaining to powered flight. The preserved gastroliths and pedal morphology indicate herbivory and lakeshore adaption for this new species. © 2015 The Linnean Society of London  相似文献   

18.
Despite the wide range of locomotor adaptations in birds, little detailed attention has been given to the relationships between the quantitative structural characteristics of avian limb bones and bird behaviour. Possible differences in forelimb relative to hindlimb strength across species have been especially neglected. We generated cross‐sectional, geometric data from peripheral quantitative computed tomography scans of the humerus and femur of 127 avian skeletons, representing 15 species of extant birds in 13 families. The sample includes terrestrial runners, arboreal perchers, hindlimb‐propelled divers, forelimb‐propelled divers and dynamic soarers. The hindlimb‐propelled diving class includes a recently flightless island form. Our results demonstrate that locomotor dynamics can be differentiated in most cases based on cross‐sectional properties, and that structural proportions are often more informative than bone length proportions for determining behaviour and locomotion. Recently flightless forms, for example, are more easily distinguished using structural ratios than using length ratios. A proper phylogenetic context is important for correctly interpreting structural characteristics, especially for recently flightless forms. Some of the most extreme adaptations to mechanical loading are seen in aquatic forms. Penguins have forelimbs adapted to very high loads. Aquatic species differ from non‐aquatic species on the basis of relative cortical thickness. The combination of bone structural strength and relative cortical area of the humerus successfully differentiates all of our locomotor groups. The methods used in this study are highly applicable to fossil taxa, for which morphology is known but behaviour is not. The use of bone structural characteristics is particularly useful in palaeontology not only because it generates strong signals for many locomotor guilds, but also because analysing such traits does not require knowledge of body mass, which can be difficult to estimate reliably for fossil taxa. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 153 , 601–624.  相似文献   

19.
《Geobios》1986,19(6):755-772
To date very little is known of the history of birds in China, Japan and all of Southeast Asia (Brodkorb 1963, 1964, 1967, 1971, 1978; Kurotchkin 1976; Young 1932, 1975). Early Cretaceous birds have been recovered from Gansu Province in western China. A single bird bone has also been recovered marine Cretaceous sediments in Japan. Most of the early Cenozoic records are of gruiform birds, while late Cenozoic records constitute a variety of taxa, including some forms closely related to, or congeneric with, Struthio, as well as ducks (Anatidae), game birds (Galliformes), a few birds of prey (Falconiformes) and doves (Columbidae), so the length of the record is long, though not particularly rich.Recently work by Hou has vastly increased thediversity of Pleistocene birds from China, particularly from the Peking Man Site (Zhoukoudian) in North China. Yeh's analysis of four nearly complete avian skeletons from Miocene-aged caldera lake deposits of Shandong Province in central China, has given a better idea of whole animal biology of several groups of birds in the Oriental Realm, especially for the game birds. Hasegawa's, Ono's, and Olson's work on Japanese fossil birds is rapidly adding to knowledge from that area as well. Because of the current increased field activity, refined field techniques, and developing interest in fossil birds in both China and Japan, the quality of the record has increased markedly in the last five years.Fossil birds are extremely rare in the remainder ofSoutheast Asia and most are of Pleistocene age. Reanalysis of Protoplotus beauforti from early to mid-Cenozoic lacustrine sediments of Sumatra, by, van Tets, Rich, & Marino, suggests that it belongs in a family of its own within the Pelecaniformes.  相似文献   

20.
A coracoid of an enantiornithine bird from Upper Cretaceous (probably late Campanian) fluvial sediments at Castigno (Villespassans, Hérault, southern France) is described. It differs from all hitherto reported enantiornithine coracoids and is referred a new genus and species, Castignovolucris sebei. This bone is large and robust, indicating a bird that was among the largest known enantiornithines, possibly the size of a Canada Goose (Branta canadensis). The new taxon is an addition to the short list of Late Cretaceous birds from France and confirms that enantiornithines were an important component of European avifaunas until late in the Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号