首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular understanding of bio-macromolecular binding is a challenging task due to large sizes of the molecules and presence of variety of interactions. Here, we study the molecular mechanism of calmodulin (CaM) binding to Orai1 that regulates Ca2+-dependent inactivation process in eukaryotic cells. Although experimental observations indicate that Orai1 binds to the C-terminal of Ca2+-loaded CaM, it is not decisive if N-domain of CaM interacts with Orai1. We address the issue of interaction of different domains of CaM with Orai1 using conformational thermodynamic changes, computed from histograms of dihedral angles over simulated trajectories of CaM, CaM-binding domain of Orai1 and complexes of CaM with Orai1. The changes for all residues of both C and N terminal domains of CaM upon Orai1 binding are compared. Our analysis shows that Orai1binds to both C-terminal and N-terminal domains of CaM, indicating 1:2 stoichiometry. The Orai1 binding to N-terminal domain of CaM is less stable than that to the C-terminal domain. The binding residues are primarily hydrophobic. These observations are in qualitative agreement to the experiments. The conformational thermodynamic changes thus provide a useful computational tool to provide atomic details of interactions in bio-macromolecular binding.  相似文献   

2.
STIM1 and Orai1 represent the two molecular key components of the Ca2+ release-activated Ca2+ channels. Their activation involves STIM1 C terminus coupling to both the N terminus and the C terminus of Orai. Here we focused on the extended transmembrane Orai1 N-terminal (ETON, aa73–90) region, conserved among the Orai family forming an elongated helix of TM1 as recently shown by x-ray crystallography. To identify “hot spot” residues in the ETON binding interface for STIM1 interaction, numerous Orai1 constructs with N-terminal truncations or point mutations within the ETON region were generated. N-terminal truncations of the first four residues of the ETON region or beyond completely abolished STIM1-dependent Orai1 function. Loss of Orai1 function resulted from neither an impairment of plasma membrane targeting nor pore damage, but from a disruption of STIM1 interaction. In a complementary approach, we monitored STIM1-Orai interaction via Orai1 V102A by determining restored Ca2+ selectivity as a consequence of STIM1 coupling. Orai1 N-terminal truncations that led to a loss of function consistently failed to restore Ca2+ selectivity of Orai1 V102A in the presence of STIM1, demonstrating impairment of STIM1 binding. Hence, the major portion of the ETON region (aa76–90) is essential for STIM1 binding and Orai1 activation. Mutagenesis within the ETON region revealed several hydrophobic and basic hot spot residues that appear to control STIM1 coupling to Orai1 in a concerted manner. Moreover, we identified two basic residues, which protrude into the elongated pore to redound to Orai1 gating. We suggest that several hot spot residues in the ETON region contribute in aggregate to the binding of STIM1, which in turn is coupled to a conformational reorientation of the gate.  相似文献   

3.
Orai1 is a plasma membrane protein that in its tetrameric form is responsible for calcium influx from the extracellular environment into the cytosol in response to interaction with the Ca2+-depletion sensor STIM1. This is followed by a fast Ca2+·calmodulin (CaM)-dependent inhibition, resulting from CaM binding to an Orai1 region called the calmodulin binding domain (CMBD). The interaction between Orai1 and CaM at the atomic level remains unknown. Here, we report the crystal structure of a CaM·Orai1-CMBD complex showing one CMBD bound to the C-terminal lobe of CaM, differing from other CaM-target protein complexes, in which both N- and C-terminal lobes of CaM (CaM-N and CaM-C) are involved in target binding. Orai1-CMBD binds CaM-C mainly through hydrophobic interactions, primarily involving residue Trp76 of Orai1-CMBD, which interacts with the hydrophobic pocket of CaM-C. However, NMR data, isothermal titration calorimetry data, and pulldown assays indicated that CaM-N and CaM-C both can bind Orai1-CMBD, with CaM-N having ∼4 times weaker affinity than CaM-C. Pulldown assays of a Orai1-CMBD(W76E) mutant, gel filtration chromatography data, and NOE signals indicated that CaM-N and CaM-C can each bind one Orai1-CMBD. Thus our studies support an unusual, extended 1:2 binding mode of CaM to Orai1-CMBDs, and quantify the affinity of Orai1 for CaM. We propose a two-step mechanism for CaM-dependent Orai1 inactivation initiated by binding of the C-lobe of CaM to the CMBD of one Orai1 followed by the binding of the N-lobe of CaM to the CMBD of a neighboring Orai1.  相似文献   

4.
Neurogranin (Ng) is a member of the IQ motif class of calmodulin (CaM)-binding proteins, and interactions with CaM are its only known biological function. In this report we demonstrate that the binding affinity of Ng for CaM is weakened by Ca2+ but to a lesser extent (2–3-fold) than that previously suggested from qualitative observations. We also show that Ng induced a >10-fold decrease in the affinity of Ca2+ binding to the C-terminal domain of CaM with an associated increase in the Ca2+ dissociation rate. We also discovered a modest, but potentially important, increase in the cooperativity in Ca2+ binding to the C-lobe of CaM in the presence of Ng, thus sharpening the threshold for the C-domain to become Ca2+-saturated. Domain mapping using synthetic peptides indicated that the IQ motif of Ng is a poor mimetic of the intact protein and that the acidic sequence just N-terminal to the IQ motif plays an important role in reproducing Ng-mediated decreases in the Ca2+ binding affinity of CaM. Using NMR, full-length Ng was shown to make contacts largely with residues in the C-domain of CaM, although contacts were also detected in residues in the N-terminal domain. Together, our results can be consolidated into a model where Ng contacts residues in the N- and C-lobes of both apo- and Ca2+-bound CaM and that although Ca2+ binding weakens Ng interactions with CaM, the most dramatic biochemical effect is the impact of Ng on Ca2+ binding to the C-terminal lobe of CaM.  相似文献   

5.
Store-operated Ca2+ entry (SOCE) represents a ubiquitous Ca2+ influx pathway activated by the filling state of intracellular Ca2+ stores. SOCE is mediated by coupling of STIM1, the endoplasmic reticulum Ca2+ sensor, to the Orai1 channel. SOCE inactivates during meiosis, partly because of the inability of STIM1 to cluster in response to store depletion. STIM1 has several functional domains, including the Orai1 interaction domain (STIM1 Orai Activating Region (SOAR) or CRAC Activation Domain (CAD)) and STIM1 homomerization domain. When Ca2+ stores are full, these domains are inactive to prevent constitutive Ca2+ entry. Here we show, using the Xenopus oocyte as an expression system, that the C-terminal 200 residues of STIM1 are important to maintain STIM1 in an inactive state when Ca2+ stores are full, through predicted intramolecular shielding of the active STIM1 domains (SOAR/CAD and STIM1 homomerization domain). Interestingly, our data argue that the C-terminal 200 residues accomplish this through a steric hindrance mechanism because they can be substituted by GFP or mCherry while maintaining all aspects of STIM1 function. We further show that STIM1 clustering inhibition during meiosis is independent of the C-terminal 200 residues.  相似文献   

6.
Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca2+-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca2+ signaling since Ca2+- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface.  相似文献   

7.
Calcium flux through store-operated calcium entry is a major regulator of intracellular calcium homeostasis and various calcium signaling pathways. Two key components of the store-operated calcium release-activated calcium channel are the Ca2+-sensing protein stromal interaction molecule 1 (STIM1) and the channel pore-forming protein Orai1. Following calcium depletion from the endoplasmic reticulum, STIM1 undergoes conformational changes that unmask an Orai1-activating domain called CAD. CAD binds to two sites in Orai1, one in the N terminal and one in the C terminal. Most previous studies suggested that gating is initiated by STIM1 binding at the Orai1 N-terminal site, just proximal to the TM1 pore-lining segment, and that binding at the C terminal simply anchors STIM1 within reach of the N terminal. However, a recent study had challenged this view and suggested that the Orai1 C-terminal region is more than a simple STIM1-anchoring site. In this study, we establish that the Orai1 C-terminal domain plays a direct role in gating. We identify a linker region between TM4 and the C-terminal STIM1-binding segment of Orai1 as a key determinant that couples STIM1 binding to gating. We further find that Proline 245 in TM4 of Orai1 is essential for stabilizing the closed state of the channel. Taken together with previous studies, our results suggest a dual-trigger mechanism of Orai1 activation in which binding of STIM1 at the N- and C-terminal domains of Orai1 induces rearrangements in proximal membrane segments to open the channel.  相似文献   

8.
Ca2+ entry through CRAC channels causes fast Ca2+-dependent inactivation (CDI). Previous mutagenesis studies have implicated Orai1 residues W76 and Y80 in CDI through their role in binding calmodulin (CaM), in agreement with the crystal structure of Ca2+–CaM bound to an Orai1 N-terminal peptide. However, a subsequent Drosophila melanogaster Orai crystal structure raises concerns about this model, as the side chains of W76 and Y80 are predicted to face the pore lumen and create a steric clash between bound CaM and other Orai1 pore helices. We further tested the functional role of CaM using several dominant-negative CaM mutants, none of which affected CDI. Given this evidence against a role for pretethered CaM, we altered side-chain volume and charge at the Y80 and W76 positions to better understand their roles in CDI. Small side chain volume had different effects at the two positions: it accelerated CDI at position Y80 but reduced the extent of CDI at position W76. Positive charges at Y80 and W76 permitted partial CDI with accelerated kinetics, whereas introducing negative charge at any of five consecutive pore-lining residues (W76, Y80, R83, K87, or R91) completely eliminated CDI. Noise analysis of Orai1 Y80E and Y80K currents indicated that reductions in CDI for these mutations could not be accounted for by changes in unitary current or open probability. The sensitivity of CDI to negative charge introduced into the pore suggested a possible role for anion binding in the pore. However, although Cl modulated the kinetics and extent of CDI, we found no evidence that CDI requires any single diffusible cytosolic anion. Together, our results argue against a CDI mechanism involving CaM binding to W76 and Y80, and instead support a model in which Orai1 residues Y80 and W76 enable conformational changes within the pore, leading to CRAC channel inactivation.  相似文献   

9.
Store-operated Ca2+ entry, essential for the adaptive immunity, is initiated by the endoplasmic reticulum (ER) Ca2+ sensor STIM1. Ca2+ entry occurs through the plasma membrane resident Ca2+ channel Orai1 that directly interacts with the C-terminal STIM1 domain, named SOAR/CAD. Depletion of the ER Ca2+ store controls this STIM1/Orai1 interaction via transition to an extended STIM1 C-terminal conformation, exposure of the SOAR/CAD domain, and STIM1/Orai1 co-clustering. Here we developed a novel approach termed FRET-derived Interaction in a Restricted Environment (FIRE) in an attempt to dissect the interplay of coiled-coil (CC) interactions in controlling STIM1 quiescent as well as active conformation and cluster formation. We present evidence of a sequential activation mechanism in the STIM1 cytosolic domains where the interaction between CC1 and CC3 segment regulates both SOAR/CAD exposure and CC3-mediated higher-order oligomerization as well as cluster formation. These dual levels of STIM1 auto-inhibition provide efficient control over the coupling to and activation of Orai1 channels.  相似文献   

10.
Ca2+ signals through store-operated Ca2+ (SOC) channels, activated by the depletion of Ca2+ from the endoplasmic reticulum, regulate various physiological events. Orai1 is the pore-forming subunit of the Ca2+ release-activated Ca2+ (CRAC) channel, the best characterized SOC channel. Orai1 is activated by stromal interaction molecule (STIM) 1, a Ca2+ sensor located in the endoplasmic reticulum. Orai1 and STIM1 are crucial for SOC channel activation, but the molecular mechanisms regulating Orai1 function are not fully understood. In this study, we demonstrate that protein kinase C (PKC) suppresses store-operated Ca2+ entry (SOCE) by phosphorylation of Orai1. PKC inhibitors and knockdown of PKCβ both resulted in increased Ca2+ influx. Orai1 is strongly phosphorylated by PKC in vitro and in vivo at N-terminal Ser-27 and Ser-30 residues. Consistent with these results, substitution of endogenous Orai1 with an Orai1 S27A/S30A mutant resulted in increased SOCE and CRAC channel currents. We propose that PKC suppresses SOCE and CRAC channel function by phosphorylation of Orai1 at N-terminal serine residues Ser-27 and Ser-30.  相似文献   

11.
Calcium-binding protein 7 (CaBP7) is a member of the calmodulin (CaM) superfamily that harbors two high affinity EF-hand motifs and a C-terminal transmembrane domain. CaBP7 has been previously shown to interact with and modulate phosphatidylinositol 4-kinase III-β (PI4KIIIβ) activity in in vitro assays and affects vesicle transport in neurons when overexpressed. Here we show that the N-terminal domain (NTD) of CaBP7 is sufficient to mediate the interaction of CaBP7 with PI4KIIIβ. CaBP7 NTD encompasses the two high affinity Ca2+ binding sites, and structural characterization through multiangle light scattering, circular dichroism, and NMR reveals unique properties for this domain. CaBP7 NTD binds specifically to Ca2+ but not Mg2+ and undergoes significant conformational changes in both secondary and tertiary structure upon Ca2+ binding. The Ca2+-bound form of CaBP7 NTD is monomeric and exhibits an open conformation similar to that of CaM. Ca2+-bound CaBP7 NTD has a solvent-exposed hydrophobic surface that is more expansive than observed in CaM or CaBP1. Within this hydrophobic pocket, there is a significant reduction in the number of methionine residues that are conserved in CaM and CaBP1 and shown to be important for target recognition. In CaBP7 NTD, these residues are replaced with isoleucine and leucine residues with branched side chains that are intrinsically more rigid than the flexible methionine side chain. We propose that these differences in surface hydrophobicity, charge, and methionine content may be important in determining highly specific interactions of CaBP7 with target proteins, such as PI4KIIIβ.  相似文献   

12.
The Ca2+ release-activated Ca2+ (CRAC) channel pore is formed by Orai1 and gated by STIM1 after intracellular Ca2+ store depletion. To resolve how many STIM1 molecules are required to open a CRAC channel, we fused different numbers of Orai1 subunits with functional two-tandem cytoplasmic domains of STIM1 (residues 336-485, designated as S domain). Whole-cell patch clamp recordings of these chimeric molecules revealed that CRAC current reached maximum at a stoichiometry of four Orai1 and eight S domains. Further experiments indicate that two-tandem S domains specifically interact with the C-terminus of one Orai1 subunit, and CRAC current can be gradually increased as more Orai1 subunits can interact with S domains or STIM1 proteins. Our data suggest that maximal opening of one CRAC channel requires eight STIM1 molecules, and support a model that the CRAC channel activation is not in an “all-or-none” fashion but undergoes a graded process via binding of different numbers of STIM1.  相似文献   

13.
Ca2+ influx by store-operated Ca2+ channels (SOCs) mediates all Ca2+-dependent cell functions, but excess Ca2+ influx is highly toxic. The molecular components of SOC are the pore-forming Orai1 channel and the endoplasmic reticulum Ca2+ sensor STIM1. Slow Ca2+-dependent inactivation (SCDI) of Orai1 guards against cell damage, but its molecular mechanism is unknown. Here, we used homology modeling to identify a conserved STIM1(448–530) C-terminal inhibitory domain (CTID), whose deletion resulted in spontaneous clustering of STIM1 and full activation of Orai1 in the absence of store depletion. CTID regulated SCDI by determining access to and interaction of the STIM1 inhibitor SARAF with STIM1 Orai1 activation region (SOAR), the STIM1 domain that activates Orai1. CTID had two lobes, STIM1(448–490) and STIM1(490–530), with distinct roles in mediating access of SARAF to SOAR. The STIM1(448–490) lobe restricted, whereas the STIM1(490–530) lobe directed, SARAF to SOAR. The two lobes cooperated to determine the features of SCDI. These findings highlight the central role of STIM1 in SCDI and provide a molecular mechanism for SCDI of Orai1.  相似文献   

14.
15.
The interaction of caldesmon with different Ca2+-binding proteins has been analyzed, and it is supposed that one of the conformers of calmodulin might be an endogenous regulator of caldesmon. The arrangement of caldesmon and Ca2+-binding proteins within their complexes has been analyzed by different methods. The central helix of calmodulin is supposed to be located near the single Cys residue in the C-terminal domain of caldesmon. The N-terminal globular domain of calmodulin interacts with sites A and B" of caldesmon, whereas the C-terminal globular domain of calmodulin binds to site B of caldesmon. The complex of calmodulin and caldesmon is very flexible; therefore, both parallel and antiparallel orientation of polypeptide chains of the two proteins is possible in experiments with short fragments of caldesmon and calmodulin. The length, flexibility, and charge of the central helix of calmodulin play an important role in its interaction with caldesmon. Phosphorylation of caldesmon by different protein kinases in vitro has been analyzed. It was shown that phosphorylation catalyzed by casein kinase II of sites located in the N-terminal domain decreases the interaction of caldesmon with myosin and tropomyosin. Caldesmon and calponin may interact with phospholipids. The sites involved in the interaction of these actinbinding proteins with phospholipids have been mapped. It is supposed that the interaction of calponin and caldesmon with phospholipids may play a role in the formation of cytoskeleton. Calponin interacts with 90-kD heat shock protein (hsp90) that may be involved in transportation of calponin and its proper interaction with different elements of cytoskeleton. Calponin, filamin, and a-actinin can simultaneously interact with actin filaments. Simultaneous binding of two actin-binding proteins affects the structure of actin bundles and their mechanical properties and may be of great importance in formation of different elements of cytoskeleton.  相似文献   

16.
The rubella virus (RUBV) nonstructural (NS) protease domain, a Ca2+- and Zn2+-binding papain-like cysteine protease domain within the nonstructural replicase polyprotein precursor, is responsible for the self-cleavage of the precursor into two mature products, P150 and P90, that compose the replication complex that mediates viral RNA replication; the NS protease resides at the C terminus of P150. Here we report the Ca2+-dependent, stoichiometric association of calmodulin (CaM) with the RUBV NS protease. Co-immunoprecipitation and pulldown assays coupled with site-directed mutagenesis demonstrated that both the P150 protein and a 110-residue minidomain within NS protease interacted directly with Ca2+/CaM. The specific interaction was mapped to a putative CaM-binding domain. A 32-mer peptide (residues 1152–1183, denoted as RUBpep) containing the putative CaM-binding domain was used to investigate the association of RUBV NS protease with CaM or its N- and C-terminal subdomains. We found that RUBpep bound to Ca2+/CaM with a dissociation constant of 100–300 nm. The C-terminal subdomain of CaM preferentially bound to RUBpep with an affinity 12.5-fold stronger than the N-terminal subdomain. Fluorescence, circular dichroism and NMR spectroscopic studies revealed a “wrapping around” mode of interaction between RUBpep and Ca2+/CaM with substantially more helical structure in RUBpep and a global structural change in CaM upon complex formation. Using a site-directed mutagenesis approach, we further demonstrated that association of CaM with the CaM-binding domain in the RUBV NS protease was necessary for NS protease activity and infectivity.  相似文献   

17.
Calcium signalling through store-operated calcium (SOC) entry is of crucial importance for T-cell activation and the adaptive immune response. This entry occurs via the prototypic Ca2+ release-activated Ca2+ (CRAC) channel. STIM1, a key molecular component of this process, is located in the membrane of the endoplasmic reticulum (ER) and is initially activated upon Ca2+ store depletion. This activation signal is transmitted to the plasma membrane via a direct physical interaction that takes place between STIM1 and the highly Ca2+-selective ion channel Orai1. The activation of STIM1 induces an extended cytosolic conformation. This, in turn, exposes the CAD/SOAR domain and leads to the formation of STIM1 oligomers. In this study, we focused on a small helical segment (STIM1 α3, aa 400–403), which is located within the CAD/SOAR domain. We determined this segment’s specific functional role in terms of STIM1 activation and Orai1 gating. The STIM1 α3 domain appears not essential for STIM1 to interact with Orai1. Instead, it represents a key domain that conveys STIM1 interaction into Orai1 channel gating. The results of cysteine crosslinking experiments revealed the close proximity of STIM1 α3 to a region within Orai1, which was located at the cytosolic extension of transmembrane helix 3, forming a STIM1-Orai1 gating interface (SOGI). We suggest that the interplay between STIM1 α3 and Orai1 TM3 allows STIM1 coupling to be transmitted into physiological CRAC channel activation.  相似文献   

18.
The Ca2+-activated potassium channel of intermediate conductance, KCa3.1, is now emerging as a therapeutic target for a large variety of health disorders. The Ca2+ sensitivity of KCa3.1 is conferred by the Ca2+-binding protein calmodulin (CaM), with the CaM C-lobe constitutively bound to an intracellular domain of the channel C terminus. It was proposed on the basis of the crystal structure obtained for the C-terminal region of the rat KCa2.2 channel (rSK2) with CaM that the binding of Ca2+ to the CaM N-lobe results in CaM interlocking the C-terminal regions of two adjacent KCa3.1 subunits, leading to the formation of a dimeric structure. A study was thus undertaken to identify residues of the CaM N-lobe–KCa3.1 complex that either contribute to the channel activation process or control the channel open probability at saturating Ca2+ (Pomax). A structural homology model of the KCa3.1–CaM complex was first generated using as template the crystal structure of the C-terminal region of the rat KCa2.2 channel with CaM. This model was confirmed by cross-bridging residues R362 of KCa3.1 and K75 of CaM. Patch-clamp experiments were next performed, demonstrating that the solvation energy of the residue at position 367 in KCa3.1 is a key determinant to the channel Pomax and deactivation time toff. Mutations of residues M368 and Q364 predicted to form anchoring points for CaM binding to KCa3.1 had little impact on either toff or Pomax. Finally, our results show that channel activation depends on electrostatic interactions involving the charged residues R362 and E363, added to a nonpolar energy contribution coming from M368. We conclude that electrostatic interactions involving residues R362 and E363 and hydrophobic effects at M368 play a prominent role in KCa3.1 activation, whereas hydrophobic interactions at S367 are determinant to the stability of the CaM–KCa3.1 complex throughout gating.  相似文献   

19.
Store-operated CRAC channels regulate a wide range of cellular functions including gene expression, chemotaxis, and proliferation. CRAC channels consist of two components: the Orai proteins (Orai1-3), which form the ion-selective pore, and STIM proteins (STIM1-2), which form the endoplasmic reticulum (ER) Ca2+ sensors. Activation of CRAC channels is initiated by the migration of STIM1 to the ER-plasma membrane (PM) junctions, where it directly interacts with Orai1 to open the Ca2+-selective pores of the CRAC channels. The recent elucidation of the Drosophila Orai structure revealed a hexameric channel wherein the C-terminal helices of adjacent Orai subunits associate in an anti-parallel orientation. This association is maintained by hydrophobic interactions between the Drosophila equivalents of human Orai1 residues L273 and L276. Here, we used mutagenesis and chemical cross-linking to assess the nature and extent of conformational changes in the self-associated Orai1 C-termini during STIM1 binding. We find that linking the anti-parallel coiled-coils of the adjacent Orai1 C-termini through disulfide cross-links diminishes STIM1-Orai1 interaction, as assessed by FRET. Conversely, prior binding of STIM1 to the Orai1 C-terminus impairs cross-linking of the Orai1 C-termini. Mutational analysis indicated that a bend of the Orai1 helix located upstream of the self-associated coils (formed by the amino acid sequence SHK) establishes an appropriate orientation of the Orai1 C-termini that is required for STIM1 binding. Together, our results support a model wherein the self-associated Orai1 C-termini rearrange modestly to accommodate STIM1 binding.  相似文献   

20.
The ubiquitous mammalian Na+/H+ exchanger NHE1 has critical functions in regulating intracellular pH, salt concentration, and cellular volume. The regulatory C-terminal domain of NHE1 is linked to the ion-translocating N-terminal membrane domain and acts as a scaffold for signaling complexes. A major interaction partner is calmodulin (CaM), which binds to two neighboring regions of NHE1 in a strongly Ca2+-dependent manner. Upon CaM binding, NHE1 is activated by a shift in sensitivity toward alkaline intracellular pH. Here we report the 2.23 Å crystal structure of the NHE1 CaM binding region (NHE1CaMBR) in complex with CaM and Ca2+. The C- and N-lobes of CaM bind the first and second helix of NHE1CaMBR, respectively. Both the NHE1 helices and the Ca2+-bound CaM are elongated, as confirmed by small angle x-ray scattering analysis. Our x-ray structure sheds new light on the molecular mechanisms of the phosphorylation-dependent regulation of NHE1 and enables us to propose a model of how Ca2+ regulates NHE1 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号