首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For three-dimensional understanding of the mechanisms that control potency and selectivity of the ligand binding at the atomic level, we have analysed opioid receptor-ligand interaction based on the receptor's 3D model. As a first step, we have constructed molecular models for the multiple opioid receptor subtypes using bacteriorhodopsin as a template. The S-activated dihydromorphine derivatives should serve as powerful tools in mapping the three-dimensional structure of the μ opioid receptor, including the nature of the agonist-mediated conformational change that permits G protein-coupling to ‘second messenger’ effector molecules, and in identifying specific ligand-binding contacts with the μ opioid receptor. The analyses of the interactions of some opioid ligands with the predicted ligand binding sites are consistent with the results of the affinity labeling experiments.  相似文献   

2.
3.
《Life sciences》1994,54(20):PL339-PL350
Chronic administration of narcotic μ opioid agonists results in tolerance and dependence. We propose that agonist stimulation causes a gradual conversion of μ receptors to a constitutively active state μ1 as a key step in tolerance and physical dependence. We provide evidence in support of the existence of μ1 in human neuroblastoma cells, SH-SY5Y, and μ1 upregulation during morphine treatment. Naloxone blocked μ1 activity, acting as an antagonist with negative intrinsic activity which accounts for its high potency in eliciting withdrawal. In contrast, the μ selective antagonist CTAP did not affect μ1 activity but inhibited naloxone's effect. The protein kinase inhibitor H7 was found to suppress μ1 formation, suggesting that μ1 is phosphorylated. In a model of acute morphine tolerance/dependence in mice, H7 prevented naloxone induced withdrawal jumping and reversed morphine (antinociceptive) tolerance. CTAP cause only mild withdrawal and attenuated naloxone induced withdrawal, as predicted for an antagonist without negative activity. These results support a role for constitutive μ receptor activation in narcotic tolerance and dependence, affording potential separation of acute and chronic narcotic effects.  相似文献   

4.

In the present work, a series of simulation tools were used to determine structure-activity relationships for the endomorphins (EMs) and derive μ-pharmacophore models for these peptides. Potential lowest energy conformations were determined in vacuo by systematically varying the torsional angles of the Tyr1-Pro21) and Pro2-Trp3/Phe32) as tuning parameters in AM1 calculations. These initial models were then exposed to aqueous conditions via molecular dynamics simulations. In aqueous solution, the simulations suggest that endomorphin conformers strongly favor the trans/trans pair of the ω12 amide bonds. From two-dimensional probability distributions of the ring-to-ring distances with respect to the pharmacophoric angles for EMs, a selectivity range of μ1 is ca. 8.3 ~ 10.5 Å for endomorphin-2 and selectivity range of μ2 is ca. 10.5 ~ 13.0 Å for endomorphin-1 were determined. Four-component μ-pharmacophore models are proposed for EMs and are compared to the previously published δ- and κ-pharmacophore models.

Angle NAB/C vs distance

  相似文献   

5.
N-Methyl-D-aspartic acid (NMDA) receptor is a promising target for treatment of neurodegenerative diseases and other brain disorders as well as for designing proneurogenic compounds able to stimulate neurogenesis in adult brain. We analyzed the structure of the binding site of negative allosteric modulators in the amino-terminal domain of the NMDA receptor and identified possible modes of their binding as well as performed molecular design of new modulators that significantly differ from the known ones in structure and binding mode. In addition, we formed a focused library of chemical compounds with potential neuroprotective and proneurogenic properties, desirable set of pharmacokinetic properties, and low toxicity, which can be the basis for development of new-generation drugs.  相似文献   

6.
The paper describes a recombinant Schneider 2 (rS2) cell culture and protein expression in a bioreactor. S2 cells were transfected with a plasmid containing a fusion protein (human μ opioid receptor, hMOR, and green fluorescent protein, EGFP) under the control of inducible metallothionein promoter. A bioprocess in a bioreactor with 5% dissolved oxygen, 27°C and 120 rpm enabled the cell culture to attain 5.3×107 viable cells/mL at 96 h. The induction decreased the cell multiplication (2.5×107 viable cells/mL at 72 h). Glutamine and glucose and low levels of lactate were consumed. A fast recombinant protein synthesis took place and, at 6 h of induction, 2×104 receptors/cell could be detected by a functional binding assay. Fluorescence measurements showed a progressive increase of recombinant protein expression with a maximal value of 1.26×105 fluo counts/s at 24 h of induction. The data shown in this paper indicate a practical and scaleable cell culture bioprocess procedure for the preparation of recombinant proteins expressed in S2 cells.  相似文献   

7.
Alterations in the target enzymes for β-lactam antibiotics, the penicillin-binding proteins (PBPs), have been recognized as a major resistance mechanism in Streptococcus pneumoniae. Mutations in PBPs that confer a reduced affinity to β-lactams have been identified in laboratory mutants and clinical isolates, and document an astounding variability of sites involved in this phenotype. Whereas point mutations are selected in the laboratory, clinical isolates display a mosaic structure of the affected PBP genes, the result of interspecies gene transfer and recombination events. Depending on the selective β-lactam, different combinations of PBP genes and mutations within are involved in conferring resistance, and astoundingly in non-PBP genes as well.  相似文献   

8.
The developmental profiles of the binding of and opiate receptors agonists was investigated using the chick embryo brain. Binding of opioids was performed at embryonic days 5, 6, 15, 18, and 20 in the developing chick embryo brain. [3H]dihyromorphine was used as a ligand and with 5×10–7 M levorphanol for non-specific binding, and [3H](d-Ala2-d-Leu5)-enkephalin was used as a with 5×10–7 M (d-Ser-Gly-Phe-Leu-Thr)-enkephalin for non-specific binding. Crude membranes were prepared from whole brain at days, 5, 6 and cerebral hemispheres at days 15, 18, and 20 of embryonic age. Both and opiate receptors were present during early embryogenesis and as early as day 5. Analysis of binding sites revealed high and low affinity sites during early embryogenesis but only one site. By 18 days of embryonic age, only one site remained. This developmental change is interpreted as a transitory state of the receptor to the adult pattern. The presence of only one site is constant throughout embryonic age; it is high during early embryogenesis reaching a lower level by 18 days. The presence of a dual binding site pattern for the receptor in early embryogenesis is implicated to have a functional significance in the pluripotential role of the endogenous opioids in early development.  相似文献   

9.
α-Synuclein is an abundant highly charged protein that is normally predominantly localized around synaptic vesicles in presynaptic terminals. Although the function of this protein is still ill-defined, genetic studies have demonstrated that point mutations or genetic alteration (duplications or triplications) that increase the number of copies of the α-synuclein (SCNA) gene can cause Parkinson's disease or the related disorder dementia with Lewy bodies. α-Synuclein can aberrantly polymerize into fibrils with typical amyloid properties, and these fibrils are the major component of many types of pathological inclusions, including Lewy bodies, which are associated with neurodegenerative diseases, such as Parkinson's disease. Although there is substantial evidence supporting the toxic nature of α-synuclein inclusions, other modes of toxicity such as oligomers have been proposed. In this review, some of the evidence for the different mechanisms of α-synuclein toxicity is presented and discussed.  相似文献   

10.
Diabetic cardiomyopathy is a distinct pathology independent of co-morbidities such as coronary artery disease and hypertension. Diminished glucose uptake due to impaired insulin signaling and decreased expression of glucose transporters is associated with a shift towards increased reliance on fatty acid oxidation and reduced cardiac efficiency in diabetic hearts. The cardiac metabolic profile in diabetes is influenced by disturbances in circulating glucose, insulin and fatty acids, and alterations in cardiomyocyte signaling. In this review, we focus on recent preclinical advances in understanding the molecular mechanisms of diabetic cardiomyopathy. Genetic manipulation of cardiomyocyte insulin signaling intermediates has demonstrated that partial cardiac functional rescue can be achieved by upregulation of the insulin signaling pathway in diabetic hearts. Inconsistent findings have been reported relating to the role of cardiac AMPK and β-adrenergic signaling in diabetes, and systemic administration of agents targeting these pathways appear to elicit some cardiac benefit, but whether these effects are related to direct cardiac actions is uncertain. Overload of cardiomyocyte fuel storage is evident in the diabetic heart, with accumulation of glycogen and lipid droplets. Cardiac metabolic dysregulation in diabetes has been linked with oxidative stress and autophagy disturbance, which may lead to cell death induction, fibrotic ‘backfill’ and cardiac dysfunction. This review examines the weight of evidence relating to the molecular mechanisms of diabetic cardiomyopathy, with a particular focus on metabolic and signaling pathways. Areas of uncertainty in the field are highlighted and important knowledge gaps for further investigation are identified. This article is part of a Special issue entitled Cardiac adaptations to obesity, diabetes and insulin resistance, edited by Professors Jan F.C. Glatz, Jason R.B. Dyck and Christine Des Rosiers.  相似文献   

11.
12.
In this letter, we describe a series of 4-substituted piperidine and piperazine compounds based on tetrahydroquinoline 1, a compound that shows balanced, low nanomolar binding affinity for the mu opioid receptor (MOR) and the delta opioid receptor (DOR). We have shown that by changing the length and flexibility profile of the side chain in this position, binding affinity is improved at both receptors by a significant degree. Furthermore, several of the compounds described herein display good efficacy at MOR, while simultaneously displaying DOR antagonism. The MOR agonist/DOR antagonist has shown promise in the reduction of negative side effects displayed by selective MOR agonists, namely the development of dependence and tolerance.  相似文献   

13.
The Ca2( +) -dependent ATPase activity of spinach chloroplast coupling factor 1 (CF?) is activated by treatment with dithiothreitol (DDT). If excess of this reagent is eliminated by gel filtration, an Eadie-Hofstee biphasic plot is obtained. These results are consistent with the existence of two active forms of the enzyme governed by the redox state. We have observed that SDS-polyacrylamide gel electrophoresis pattern is affected by the pretreatment of the samples under those two different conditions. Spontaneous activation of the samples, due to a limited proteolytic process, has also been detected. In this case the electrophoretic pattern was also affected. The protease implied in this process could be a cystein protease co-isolated with CF?. These observations suggest that limited proteolysis, as well as redox-induced changes, are involved in the physiological regulation of the enzyme.  相似文献   

14.
BackgroundDynorphin 1–17 is an endogenous peptide that is released at sites of inflammation by leukocytes, binding preferentially to κ-opioid receptors (KOP) to mediate nociception. We have previously shown that dynorphin 1–17 is rapidly biotransformed to smaller peptide fragments in inflamed tissue homogenate. This study aimed to determine the efficacy and potency of selected dynorphin fragments produced in an inflamed environment at the KOP, μ and δ-opioid receptors (MOP and DOP respectively) and in a model of inflammatory pain. Functional activity of Dynorphin 1–17 and fragments (1–6, 1–7 and 1–9) were screened over a range of concentrations against forskolin stimulated human embryonic kidney 293 (HEK) cells stably transfected with one of KOP, MOP or DOP. The analgesic activity of dynorphin 1–7 in a unilateral model of inflammatory pain was subsequently tested. Rats received unilateral intraplantar injections of Freund’s Complete Adjuvant to induce inflammation. After six days rats received either dynorphin 1–7, 1–17 or the selective KOP agonist U50488H and mechanical allodynia determined. Dynorphin 1–7 and 1–9 displayed the greatest activity across all receptor subtypes, while dynorphin 1–7, 1–9 and 1–17 displaying a potent activation of both KOP and DOP evidenced by cAMP inihibition. Administration of dynorphin 1–7 and U50488H, but not dynorphin 1–17 resulted in a significant increase in paw pressure threshold at an equimolar dose suggesting the small peptide dynorphin 1–7 mediates analgesia. These results show that dynorphin fragments produced in an inflamed tissue homogenate have changed activity at the opioid receptors and that dynorphin 1–7 mediates analgesia.  相似文献   

15.
1. A marked dependence on temperature of agonist binding δ, μ and κ1−3, opioid sites in the bovine adrenal medulla was observed, at the range of 0 to 37°C. These changes concern kinetic (k1) and equilibrium constants (Kd), but not binding capacities (Bmax).2. These dependences are different for each ligand and each opioid receptor, suggesting their molecular heterogeneity.3. The comparative thermodynamics indicates that the interaction of opioid agonists with their receptor is exergonic (ΔG° < 0) and entropy driven (ΔS° > 0).4. The comparison of Van't Hoff and Arrhenius plots indicates a discrete mechanism in the binding of each opioid receptor.  相似文献   

16.
17.
18.
《Life sciences》1997,61(11):PL165-PL170
The effect of intracerebroventricular (i.c.v.) treatment with antisense oligodeoxynucleotide (A-oligo) to δ opioid receptor mRNA on the morphine-induced place preference and naloxone-precipitated jumping was examined in morphine-dependent mice. Morphine (5 mg/kg, s.c.) produced a significant place preference. I.c.v. pretreatment with A-oligo (0.01–1 μg/mouse) dose-dependently attenuated this morphine (5 mg/kg, s.c.)-induced place preference, while mismatched oligodeoxynucleotide (M-oligo; 1 μg/mouse, i.c.v.) was ineffective. Naloxone (3 mg/kg, s.c.) precipitated jumping in morphine-dependent mice. I.c.v. pretreatment with A-oligo (1 μg/mouse) attenuated this naloxone (3 mg/kg, s.c.)-precipitated jumping in morphine-dependent mice, while M-oligo (1 μg/mouse, i.c.v.) was ineffective. These data demonstrate that the selective reduction in supraspinal δ opioid receptor function caused by pretreatment with A-oligo attenuated the morphine-induced place preference and naloxone-precipitated jumping in morphine-dependent mice, suggesting that the rewarding effect of and physical dependence on morphine may be modulated by central δ opioid receptors.  相似文献   

19.
20.
Protein kinase C ε (PKCε) is a transforming oncogene and plays a pivotal role in numerous cellular processes including proliferation, invasion and differentiation. Recently, we described a function of PKCε as a scaffold protein linking PLCγ1 to the EGFR module. Here, in the head and neck squamous carcinoma cell line (HNSCC) FaDu we demonstrate that over-expressed PKCε may be associated with the EGFR. This is linked with the consecutive inhibition of the recruitment of PLCγ1 to the EGFR, of the catalytical activation of PLCγ1 by EGF, and of the PLCγ1-mediated effect of EGF on cell proliferation. These effects are independent of the catalytical as well as the scaffold activity of PKCε but are a function of the cellular expression level of PKCε. In contrast to FaDu cells where the PLCγ1 pathway was selectively affected, in three other HNSCC cell lines investigated over-expression of PKCε resulted in association with EGFR and, subsequently, in either partial (ERK and Akt or PLCγ1 and Akt) or complete (ERK, PLCγ1 and Akt) inhibition of the main EGFR signalling pathways. Together, our data suggest that in particular carcinoma cells highly expressed PKCε may act as negative allosteric modulator of EGFR signalling. This novel function of PKCε provides also the first indication that the EGFR may be a target for allosteric modulation by accessory proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号