首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The molecular structure and deformability (with respect to average geometry) of methyl ethers of canonical 2′-deoxyribonucleotides thymidine-5′-phosphate (mTMP), 2-deoxycytidine-5′- phosphate (mCMP), 2-deoxyadenosine-5′-phosphate (mAMP) and 2′-deoxyguanosine-5′- phosphate (mGMP) in different types of DNA have been calculated using B3LYP/cc-pvdz method. Comparison of energy at equilibrium conformations of nucleotides and conformations with torsion angles of backbone fixed to average values for different types of DNA reveals that incorporation of nucleotides to A-DNA macromolecules requires the minimum amount of deformation energy. Therefore, this type of DNA should be the least strained from viewpoint of intramolecular deformations of monomers. Modeling of environmental effects within the PCM approach reveals that the immersion of nucleotides in polar medium results in significant decrease of energy differences between anti conformers of all DNTs and syn conformers of mGMP This also leads to reduction by almost a half nucleotides' deformation energy facilitating formation of DNA macromolecule. Change of DNTs conformation causes switch between different types of intramolecular H bonds. Every type of DNA possesses unique set of intramolar hydrogen bonds in nucleotides.  相似文献   

2.
This work presents an aptasensor for Ochratoxin A (OTA) using unmodified gold nanoparticles (AuNPs) indicator. The assay method is based on the conformation change of OTA's aptamer in phosphate buffered saline (PBS) containing Mg(2+) and OTA, and the phenomenon of salt-induced AuNPs aggregation. A single measurement took only five minutes. Circular dichroism spectroscopic experiments revealed for the first time that upon the addition of OTA, the conformation of OTA's aptamer in PBS buffer changed from random coil structure to compact rigid antiparallel G-quadruplex structure. This compact rigid G-quadruplex structure could not protect AuNPs against salt-induced aggregation, and thus the color change from red to blue could be observed by the naked eye. The linear range of the colorimetric aptasensor covered a large variation of OTA concentration from 20 to 625 nM and the detection limit of 20 nM (3σ) was obtained.  相似文献   

3.
We present a novel fluorescent aptasensor for simple and accurate detection of adenosine deaminase (ADA) activity and inhibition on the basis of graphene oxide (GO) using adenosine (AD) as the substrate. This aptasensor consists of a dye-labeled single-stranded AD specific aptamer, GO and AD. The fluorescence intensity of the dye-labeled AD specific aptamer is quenched very efficiently by GO as a result of strong π-π stacking interaction and excellent electronic transference of GO. In the presence of AD, the fluorescence of the GO-based probe is recovered since the competitive binding of AD and GO with the dye-labeled aptamer prevents the adsorption of dye-labeled aptamer on GO. When ADA was introduced to this GO-based probe solution, the fluorescence of the probe was quenched owing to ADA can convert AD into inosine which has no affinity to the dye-labeled aptamer, thus allowing quantitative investigation of ADA activity. The as-proposed sensor is highly selective and sensitive for the assay of ADA activity with a detection limit of 0.0129U/mL in clean buffer, which is more than one order of magnitude lower than the previous reports. Meanwhile, a good linear relationship with the correlation coefficient of R=0.9922 was obtained by testing 5% human serum containing a series of concentrations of ADA. Additionally, the inhibition effect of erythro-9-(2-hydroxy-3-nonyl) adenine on ADA activity was investigated in this design. The GO-based fluorescence aptasensor not only provides a simple, cost-effective and sensitive platform for the detection of ADA and its inhibitor but also shows great potential in the diagnosis of ADA-relevant diseases and drug development.  相似文献   

4.
In this study, we developed an ultrasensitive label-free aptamer-based electrochemical biosensor, featuring a highly specific anti-human immunoglobulin E (IgE) aptamer as a capture probe, for human IgE detection. Construction of the aptasensor began with the electrodeposition of gold nanoparticles (AuNPs) onto a graphite-based screen-printed electrode (SPE). After immobilizing the thiol-capped anti-human IgE aptamer onto the AuNPs through self-assembly, we treated the electrode with mercaptohexanol (MCH) to ensure that the remaining unoccupied surfaces of the AuNPs would not undergo nonspecific binding. We employed a designed complementary DNA featuring a guanine-rich section in its sequence (cDNA G1) as a detection probe to bind with the unbound anti-human IgE aptamer. We measured the redox current of methylene blue (MB) to determine the concentration of human IgE in the sample. When the aptamer captured human IgE, the binding of cDNA G1 to the aptamer was inhibited. Using cDNA G1 in the assay greatly amplified the redox signal of MB bound to the detection probe. Accordingly, this approach allowed the linear range (coefficient of determination: 0.996) for the analysis of human IgE to extend from 1 to 100,000pM; the limit of detection was 0.16pM. The fabricated aptasensor exhibited good selectivity toward human IgE even when human IgG, thrombin, and human serum albumin were present at 100-fold concentrations. This method should be readily applicable to the detection of other analytes, merely by replacing the anti-human IgE aptamer/cDNA G1 pair with a suitable anti-target molecule aptamer and cDNA.  相似文献   

5.
Electrochemical aptasensor for tetracycline detection   总被引:1,自引:0,他引:1  
An electrochemical aptasensor was developed for the detection of tetracycline using ssDNA aptamer that selectively binds to tetracycline as recognition element. The aptamer was highly selective for tetracycline which distinguishes minor structural changes on other tetracycline derivatives. The biotinylated ssDNA aptamer was immobilized on a streptavidin-modified screen-printed gold electrode, and the binding of tetracycline to aptamer was analyzed by cyclic voltammetry and square wave voltammetry. Our results showed that the minimum detection limit of this sensor was 10 nM to micromolar range. The aptasensor showed high selectivity for tetracycline over the other structurally related tetracycline derivatives (oxytetracycline and doxycycline) in a mixture. The aptasensor developed in this study can potentially be used for detection of tetracycline in pharmaceutical preparations, contaminated food products, and drinking water.  相似文献   

6.
Ochratoxin A (OTA) produced by Aspergillus Ochraceus and Penicillium verrucosum is a very dangerous toxin due to its toxic effects in human beings and its presence in a wide range of food products and cereals. A Langmuir-Blodgett (polyaniline (PANI)-stearic acid (SA)) film based highly sensitive and robust impedimetric aptasensor has been developed for ochratoxin A (OTA) detection. DNA Aptamer (Apt-DNA) specific to OTA has been covalently immobilized onto mixed Langmuir-Blodgett (LB) monolayer comprising of PANI-SA deposited onto indium tin-oxide (ITO) coated glass plates. This Apt-DNA/PANI-SA/ITO aptaelectrode has been characterized using scanning electron microscopy, Fourier transform-infrared spectroscopy, contact angle measurements, cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The Apt-DNA/PANI-SA/ITO aptasensor shows detection of OTA by electrochemical impedance spectroscopy in the linear range of 0.0001 μg/ml (0.1 ng/ml) to 0.01 μg/ml (10 ng/ml) and 1 μg/ml-25 μg/ml with detection limit of 0.1 ng/ml in 15 min. The Apt-DNA/PANI-SA/ITO aptasensor can be reused ~13 times. The binding or affinity constant (K(a)) of aptamer with OTA, calculated using Langmuir adsorption isotherm, is found be 1.21×10(7) M(-1).  相似文献   

7.
Interferon-gamma (IFN-γ) is associated with susceptibility to tuberculosis, which is a major public health problem worldwide. Although significant progress has been made with regard to the design of enzyme immunoassays for IFN-γ, this assay is still labor-intensive and time-consuming. We therefore designed a DNA aptamer hairpin structure for the detection of IFN-γ with high sensitivity and selectivity. A streptavidin DNA aptamer was incorporated into the IFN-γ binding aptamer probe for the amplified detection of the target molecules. Initially, the probe remained in the inactive configuration. The addition of IFN-γ induced the rearrangement of the aptamer structure, allowing the self-assembly of the active streptavidin aptamer conformation for the streptavidin molecular recognition. Under optimized conditions, the detection limit was determined to be 33 pM, with a dynamic range from 0.3 to 333 nM, both of which were superior to those of corresponding optical sensors. Because combined aptamers are composed of nucleic acids, this optical aptasensor provided the advantages of high sensitivity, simplicity, reusability, and no further labeling or sample pre-treatment.  相似文献   

8.
A molecular biosensor based on DNA aptamers (aptasensor) for the diagnosis of lung cancer in blood plasma samples was designed. To create the aptasensor, the aptamer 17_80, obtained in the study of postoperative material, was used. The affinity and binding selectivity of the aptamer 17_80 to the lung tumor tissue was confirmed on histological sections of postmortem samples of lung tissue. Using affinity enrichment and mass spectrometry, a possible target molecule of the aptamer 17_80, vimentin, was found.  相似文献   

9.
In living cells protein-DNA interactions are fundamental processes. Here, we compare the 3D structures of several DNA-binding proteins frequently determined with and without attached DNA. We studied the global structure (backbone-traces) as well as the local structure (binding sites) by comparing pair-wise the related atoms. The DNA-interaction sites of uncomplexed proteins show conspicuously high local structural flexibility. Binding to DNA results in specific local conformations, which are clearly distinct from the unbound states. The adaptation of the protein's binding site to DNA can never be described by the lock and key model but in all cases by the induced fit model. Conformational changes in the seven protein backbone traces take place in different ways. Two of them dock onto DNA without a significant change, while the other five proteins are characterized by a backbone conformation change caused by DNA docking. In the case of three proteins of the latter group the DNA-complexed conformation also occurs in a few uncomplexed structures. This behavior can be described by a conformational ensemble, which is narrowed down by DNA docking until only one single DNA-complexed conformation occurs. Different docking models are discussed and each of the seven proteins is assigned to one of them.  相似文献   

10.
Single-molecule fluorescence resonance energy transfer (SMFRET) was used to study the interaction of a 25-nucleotide (nt) DNA aptamer with its binding target, vascular endothelial growth factor (VEGF). Conformational dynamics of the aptamer were studied in the absence of VEGF in order to characterize fluctuations in the unbound nucleic acid. SMFRET efficiency distributions showed that, while the aptamer favors a base-paired conformation, there are frequent conversions to higher energy conformations. Conversions to higher energy structures were also demonstrated to be dependent on the concentration of Mg2+-counterion by an overall broadening of the SMFRET efficiency distribution at lower Mg2+ concentration. Introduction of VEGF caused a distinct increase in the frequency of lower SMFRET efficiencies, indicating that favorable interaction of the DNA aptamer with its VEGF target directs aptamer structure towards a more open conformation.  相似文献   

11.
The structural adjustments of the sugar-phosphate DNA backbone (switching of the γ angle (O5′–C5′–C4′–C3′) from canonical to alternative conformations and/or C2′-endo → C3′-endo transition of deoxyribose) lead to the sequence-specific changes in accessible surface area of both polar and non-polar atoms of the grooves and the polar/hydrophobic profile of the latter ones. The distribution of the minor groove electrostatic potential is likely to be changing as a result of such conformational rearrangements in sugar-phosphate DNA backbone. Our analysis of the crystal structures of the short free DNA fragments and calculation of their electrostatic potentials allowed us to determine: (1) the number of classical and alternative γ angle conformations in the free B-DNA; (2) changes in the minor groove electrostatic potential, depending on the conformation of the sugar-phosphate DNA backbone; (3) the effect of the DNA sequence on the minor groove electrostatic potential. We have demonstrated that the structural adjustments of the DNA double helix (the conformations of the sugar-phosphate backbone and the minor groove dimensions) induce changes in the distribution of the minor groove electrostatic potential and are sequence-specific. Therefore, these features of the minor groove sizes and distribution of minor groove electrostatic potential can be used as a signal for recognition of the target DNA sequence by protein in the implementation of the indirect readout mechanism.  相似文献   

12.
A fluorescent aptasensor for detection of oxytetracycline (OTC) was presented based on fluorescence quenching of DNA aptamer‐templated silver nanoclusters (AgNCs). The specific DNA scaffolds with two different nucleotides fragments were used: one was enriched with a cytosine sequence fragment (C12) that could produce DNA–AgNCs via a chemical reduction method, and another was the OTC aptamer fragment that could selectively bind to the OTC antibiotic. Thus, the as‐prepared AgNCs could exhibit quenched fluorescence after binding to the target OTC. The fluorescence ratio of the DNA–AgNCs was quenched in a linearly proportional manner to the concentration of the target in the range of 0.5 nM to 100 nM with a detection limit of 0.1 nM. This proposed nanobiosensor was demonstrated to be sensitive, selective, and simple, introducing a viable alternative for rapid determination of toxin OTC in honey and water samples. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A novel label-free electrogenerated chemiluminescence (ECL) aptasensor for the determination of lysozyme is designed employing lysozyme binding aptamer (LBA) as molecular recognition element for lysozyme as a model analyte and Ru(bpy)(3)(2+) as an ECL signal compound. This ECL aptasensor was fabricated by self-assembling the thiolated LBA onto the surface of a gold electrode. Using this aptasensor, sensitive quantitative detection of lysozyme is realized on basis of the competition of lysozyme with Ru(bpy)(3)(2+) cation for the binding sites of LBA. In the presence of lysozyme, the aptamer sequence prefers to form the LBA-lysozyme complex, the less negative environment allows Ru(bpy)(3)(2+) cations to be less bound electrostatically to the LBAs on the electrode surface, in conjunction with the generation of a decreased ECL signal. The integrated ECL intensity versus the concentration of lysozyme was linear in the range from 6.4×10(-10) M to 6.4×10(-7) M. The detection limit was 1.2×10(-10) M. This work demonstrates that using the competition of target protein with an ECL signal compound Ru(bpy)(3)(2+) for binding sites of special aptamer confined on the electrode is promising approach for the design of label-free ECL aptasensors for the determination of proteins.  相似文献   

14.
Human DNase I is an endonuclease that catalyzes the hydrolysis of double-stranded DNA predominantly by a single-stranded nicking mechanism under physiological conditions in the presence of divalent Mg and Ca cations. It binds to the minor groove and the backbone phosphate group and has no contact with the major groove of the right-handed DNA duplex. The aim of this study was to examine the effects of DNase I - DNA complexation on DNA and protein conformations.We monitored the interaction of DNA with DNase I under physiological conditions in the absence of Mg2+, with a constant DNA concentration (12.5 mmol/L; phosphate) and various protein concentrations (10-250 micromol/L). We used Fourier transfrom infrared, UV-visible, and circular dichroism spectroscopic methods to determine the protein binding mode, binding constant, and effects of polynucleotide-enzyme interactions on both DNA and protein conformations. Structural analyses showed major DNase-PO2 binding and minor groove interaction, with an overall binding constant, K, of 5.7 x 10(5) +/- 0.78 x 10(5) (mol/L)-1. We found that the DNase I - DNA interaction altered protein secondary structure, with a major reduction in alpha helix and an increase in beta sheet and random structures, and that a partial B-to-A DNA conformational change occurred. No DNA digestion was observed upon protein-DNA complexation.  相似文献   

15.
We report on an unrestrained molecular dynamics simulation of the flavin mononucleotide (FMN)–RNA aptamer. The simulated average structure maintains both cross‐strand and intermolecular FMN–RNA nuclear Overhauser effects from the nmr experiments and has all qualitative features of the nmr structure including the G10–U12–A25 base triple and the A13–G24, A8–G28, and G9–G27 mismatches. However, the relative orientation of the hairpin loop to the remaining part of the molecule differs from the nmr structure. The simulation predicts that the flexible phosphoglycerol part of FMN moves toward G27 and forms hydrogen bonds. There are structurally long‐lived water molecules in the FMN binding pocket forming hydrogen bonds within FMN and between FMN and RNA. In addition, long‐lived water is found bridging primarily RNA backbone atoms. A general feature of the environment of long‐lived “structural” water is at least two and in most cases three or four potential acceptor atoms. The 2′‐OH group of RNA usually acts as an acceptor in interactions with the solvent. There are almost no intrastrand O2′H(n)⋮O4′(n + 1) hydrogen bonds within the RNA backbone. In the standard case the preferred orientation of the 2′‐OH hydrogen atoms is approximately toward O3′ of the same nucleotide. However, a relatively large number of conformations with the backbone torsional angle γ in the trans orientation is found. A survey of all experimental RNA x‐ray structures shows that this backbone conformation occurs but is less frequent than found in the simulation. Experimental nmr RNA aptamer structures have a higher fraction of this conformation as compared to the x‐ray structures. The backbone conformation of nucleotide n + 1 with the torsional angle γ in the trans orientation leads to a relatively short distance between 2′‐OH(n) and O5′(n + 1), enabling hydrogen‐bond formation. In this case the preferred orientation of the 2′‐OH hydrogen atom is approximately toward O5′(n + 1). We find two relatively short and dynamically stable types of backbone–backbone next‐neighbor contacts, namely C2′(H)(n)⋮O4′(n + 1) and C5′(H)(n + 1)⋮O2′(n). These interactions may affect both backbone rigidity and thermodynamic stability of RNA helical structures. © 1999 John Wiley & Sons, Inc. Biopoly 50: 287–302, 1999  相似文献   

16.
In continuation of our studies on the effect of the base and the phosphate groups on the glycosyl and the sugar-phosphate backbone conformation, we have carried out semi-empirical potential energy calculations on the common 5′- and 3′5′-ribopyrimidine mono- and diphosphates by considering simultaneous rotations about the glycosyl (χ) and the C(4′)–C(5′) (ψ) bonds. This calculation provides an assessment of the nature and orientation of the base on the sugar–phosphate backbone conformation of nucleotides and polynucleotides. It is found that the attractive inetractions between the 5′-phosphate group and the base mutually stabilize the antiand the gauche-gauche (gg) conformations about χ and ψ, respectively, in 5′-ribopyrimidine nucleotides. The introduction of the 3′-phosphate group as in 3′,5′-ribopyrimidine diphosphates, still leaves the anti-gg as the most favored conformation with the important difference that the probability of occurrence of the anti, gauche-trans (gt) is how substantially increased. This is dependent to a large extent on the sugar conformation and to a lesser extent on the base. Uracil and thymine show a greater probability for the anti-gt than cytosine. The syn conformation is considerably less likely and its occurrence is also dependent on the base type, cytosine showing a lesser tendency than uracil and thymine. For the syn base, the most favourec conformation for ψ is gt, since gg is sterically disallowed and tg is destabilized by electrostatic repulsive interactions between the 3′ and 5′-phosphate groups. Thus, there is a striking correlation between the glycoysl and the backbone C(4′)–C(5′) bond conformations. The rest of the bonds of the backbone are considerable less dependent on the glycosyl conformation. These studies reveal that in poly-ribopyrimidine nucletides the majority of the nucleotide residues are expected to occur in the anti-gg conformation.  相似文献   

17.
Theophylline is a potent bronchodilator with a narrow therapeutic index. A simple fluorescent biosensor that detects clinically relevant theophylline concentrations has been developed using the well-characterized theophylline binding RNA aptamer. Hybridization of the RNA aptamer to a fluorescently labeled DNA strand (FL-DNA) yields a fluorescent RNA:DNA hybrid that is sensitive to theophylline. The biosensor retains the remarkable selectivity of the RNA aptamer for theophylline over caffeine and is sensitive to 0–2 μM theophylline, well below the clinically relevant concentration (5–20 mg/L or ~10–50 μM). Adding a dabcyl quenching dye to the 3′-terminus of the fluorescently labeled DNA strand yielded a dual-labeled DNA strand (FL-DNA-Q) and increased the dynamic range of this simple biosensor from 1.5-fold to 4-fold.  相似文献   

18.
The hemicellulosic polysaccharide xyloglucan binds with a strong affinity to cellulosic cell wall microfibrils, the resulting heterogeneous network constituting up to 50% of the dry weight of the cell wall in dicotyledonous plants. To elucidate the molecular details of this interaction, we have performed theoretical potential energy calculations of the static and dynamic equilibrium conformations of xyloglucan using the GEGOP software. In particular, we have evaluated the preferred sidechain conformations of hexa-, octa-, deca- and heptadecasaccharide model fragments of xyloglucan for molecules with a cellulose-like, flat, glucan backbone, and a cellobiose-like, twisted, glucan backbone conformation. For the flat backbone conformation the determination of static equilibrium molecular conformations revealed a tendency for sidechains to fold onto one surface of the backbone, defined here as the H1S face, in the fucosylated region of the polymer. This folding produces a molecule that is sterically accessible on the opposite face of the backbone, the H4S face. Typically, this folding onto the H1S surface is significantly stabilized by favorable interactions between the fucosylated, trisaccharide sidechain and the backbone, with some stabilization from adjacent terminal xylosyl sidechains. In contrast, the trisaccharide sidechain folds onto the H4S face of xyloglucan fragments with a twisted backbone conformation. Preliminary NMR data on nonasaccharide fragments isolated from sycamore suspension-cultured cell walls are consistent with the hypothesis that the twisted conformation of xyloglucan represents the solution form of this molecule. Metropolis Monte Carlo (MMC) simulations were employed to assess sidechain flexibility of the heptadecasaccharide fragments. Simulations performed on the flat, rigid, backbone xyloglucan indicate that the trisaccharide sidechain is less mobile than the terminal xylosyl sidechains. MMC calculations on a fully relaxed molecule revealed a positive correlation between a specific trisaccharide sidechain orientation and the 'flatness' of the backbone glucosyl residues adjacent to this sidechain. These results suggest that the trisaccharide sidechain may play a role in the formation of nucleation sites that initiate the binding of these regions to cellulose. Based on these conformational preferences we suggest the following model for the binding of xyloglucan to cellulose. Nucleation of a binding site is initiated by the fucosylated, trisaccharide sidechain that flattens out an adjacent region of the xyloglucan backbone. Upon contacting a cellulose microfibril this region spreads by step-wise flattening of successive segments of the backbone. Self-association of xyloglucan molecules in solution may be prevented by the low frequency of formation of these nucleation sites and the geometry of the molecules in solution.  相似文献   

19.
The binding of cis-Pt(II) diammine (cis-DP) to double-stranded DNA was studied with several kinked conformations that can accommodate the formation of a square planar complex. Molecular mechanics (MM) calculations were performed to optimize the molecular fit. These results were combined with quantum mechanical (QM) calculations to ascertain the relative energetics of ligand binding through water vs direct binding of the phosphate to the ammine and platinum, and to guide the selection of DNA conformations to model complex formation. Based on QM and MM calculations, models are proposed that may be characterized by several general features. A structure involving hydrogen bonding between each ammine and distinct adjacent phosphate groups, referred to as closed conformation (CC), has already been reported. This is also found in the crystal structure of small dimers. We report alternative conformations that may be important in platination of duplex DNA. They are characterized by an intermediate conformation (IC), involving hydrogen bonding between one ammine and phosphate group, and an open conformation (OC), without ammine phosphate hydrogen bonding. The IC and OC can be stabilized by water bridges in the space between the ammine and the phosphate groups. Sugar puckers alternate from the type C(2')-endo or C(1')-exo (S), to the type C(3')-endo or C(2')-exo (N), with intermediate types near O(1')-endo (O). In general, the sugar puckers alternate from S to N to S through the platinated region (3'-TpG*pG*p-5'), with the complexed strand exhibiting, (3')-S*-N*-S-(5') alternation, while the complementary strand shows either (3')-S*-N*-S-(5') or (3')-S*-N*-O-(5') alternation. In both the OC and IC, a hydrogen bond is found between the ammine and O4(T) on thymine (T) at the (3') end, adjacent to the complex site. There is a continuous range of backbone conformations through the platinated region which relate the OC to the IC. The models presented suggest that the dynamics of the binding of the cis-Pt(II)-diammines to adjacent N7(G) in double-stranded DNA may encompass several conformational possibilities, and that water bridges may play a roll in supporting open and intermediate conformations. Proton-proton distances are reported to assist in the experimental determination of conformations.  相似文献   

20.
A polymer-based aptasensor, which consisted of fluorescein amidite (FAM)-modified aptamers and coordination polymer nanobelts (CPNBs), was developed utilizing the fluorescence quenching effect to detect sulfadimethoxine residue in food products. A single-stranded DNA (ssDNA) aptamer, which was a specific bio-probe for sulfadimethoxine (Su13; 5'-GAGGGCAACGAGTGTTTATAGA-3'), was discovered by a magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX) technique, and the fluorescent quenchers CPNBs were produced by mixing AgNO(3) and 4,4'-bipyridine. This aptasensor easily and sensitively detected sulfadimethoxine in solution with a limit of detection (LOD) of 10ng/mL. Furthermore, the antibiotic dissolved in milk was also effectively detected with the same LOD value. In addition, this aptamer probe offered high specificity for sulfadimethoxine compared to other antibiotics. These valuable results provide ample evidence that the CPNB-based aptasensor can be used to quantify sulfadimethoxine residue in food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号