首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Herein, we evaluated whether Placental Mesenchymal Stromal Cells (PDMSCs) derived from normal and Preeclamptic (PE) placentae presented differences in the expression of G1/S-phase regulators p16INK4A, p18INK4C, CDK4 and CDK6. Finally, we investigated normal and PE-PDMSCs paracrine effects on JunB, Cyclin D1, p16INK4A, p18INK4C, CDK4 and CDK6 expressions in physiological term villous explants.

PDMSCs were isolated from physiological (n = 20) and PE (n = 24) placentae. Passage three normal and PE-PDMSC and conditioned media (CM) were collected after 48h. Physiological villous explants (n = 60) were treated for 72h with normal or PE-PDMSCs CM. Explants viability was assessed by Lactate Dehydrogenase Cytotoxicity assay. Cyclin D1 localization was evaluated by Immuofluorescence (IF) while JunB, Cyclin-D1 p16INK4A, p18INK4C, CDK4 and CDK6 levels were assessed by Real Time PCR and Western Blot assay.

We reported significantly increased p16INK4A and p18INK4C expression in PE- relative to normal PDMSCs while no differences in CDK4 and CDK6 levels were detected. Explants viability was not affected by normal or PE-PDMSCs CM. Normal PDMSCs CM increased JunB, p16INK4 and p18INK4C and decreased Cyclin-D1 in placental tissues. In contrast, PE-PDMSCs CM induced JunB downregulation and Cyclin D1 increase in placental explants. Cyclin D1 IF staining showed that CM treatment targeted mainly the syncytiotrophoblast.

We showed Cyclin D1-p16INK4A/p18INK4C altered pathway in PE-PDMSCs demonstrating an aberrant G1/S phase transition in these pathological cells. The abnormal Cyclin D1-p16INK4A/p18INK4C expression in explants conditioned by PE-PDMSCs media suggest a key contribution of mesenchymal cells to the altered trophoblast cell cycle regulation typical of PE pregnancies with fetal-placental compromise.  相似文献   


2.
The dysregulated microRNAs (miRNAs) are involved in diabetic retinopathy progression. Epithelial mesenchymal transition (EMT) and cell permeability are important events in diabetic retinopathy. However, the function and mechanism of miR-195 in EMT and cell permeability in diabetic retinopathy remain largely unclear. Diabetic retinopathy models were established using streptozotocin (STZ)-induced diabetic mice and high glucose (HG)-stimulated ARPE-19 cells. Retina injury was investigated by hematoxylin–eosin (HE) staining. EMT and cell permeability were analyzed by western blotting, immunofluorescence, wound healing, and FITC-dextran assays. MiR-195 expression was detected via qRT-PCR. YY1, VEGFA, Snail1, and Smurf2 levels were detected via western blotting. The interaction relationship was analyzed via ChIP, Co-IP, or dual-luciferase reporter assay. The retina injury, EMT, and cell permeability were induced in STZ-induced diabetic mice. HG induced EMT and cell permeability in ARPE-19 cells. MiR-195, YY1, VEGFA, and Snail1 levels were enhanced, but Smurf2 abundance was reduced in STZ-induced diabetic mice and HG-stimulated ARPE-19 cells. VEGFA knockdown decreased Snail1 expression and attenuated HG-induced EMT and cell permeability. YY1 silence reduced VEGFA and Snail1 expression, and mitigated HG-induced EMT and cell permeability. YY1 could bind with VEGFA and Snail1, and it was degraded via Smurf2-mediated ubiquitination. MiR-195 knockdown upregulated Smurf2 to decrease YY1 expression and inhibited HG-induced EMT and cell permeability. MiR-195 targeted Smurf2, increased expression of YY1, VEGFA, and Snail1, and promoted HG-induced EMT and cell permeability. MiR-195 promotes EMT and cell permeability of HG-stimulated ARPE-19 cells by increasing VEGFA/Snail1 via inhibiting the Smurf2-mediated ubiquitination of YY1.Subject terms: Mechanisms of disease, Diabetes  相似文献   

3.
4.
Stromal cell-derived factor-1 (SDF-1) and CXC chemokine receptor 4 (CXCR4) have been found to be tightly correlated with the progression of prostate cancer (PC). In this study, we investigated the effects of an SDF-1α/CXCR4 inhibitor, AMD3100, on cell progression and metastasis potential of human PC cells. Human PC cell lines (LNCaP, PC3, and DU145) were cultured to detect SDF-1α/CXCR4, which showed higher SDF-1α and CXCR4 expression than the normal human prostate epithelial cell line, RWPE-1. AMD3100 was confirmed to be an inhibitor of SDF-1α, and to detect the effect of SDF-1α/CXCR4 inhibition on PC, PC cells were treated with AMD3100 or/and CXCR4 siRNA. The results suggested that inhibition of the SDF-1α/CXCR4 pathway could promote the E-cadherin level but inhibit the levels of invasion and migration of vimentin, N-cadherin and α5β1 integrin. Finally, tumor formation in nude mice was conducted, and the cell experiment results were verfied. These data show that AMD3100 suppresses epithelial–mesenchymal transition and migration of PC cells by inhibiting the SDF-1α/CXCR4 signaling pathway, which provides a clinical target in the treatment of PC.  相似文献   

5.
Numerous studies have reported that CXCR4 and CXCR7 play an essential, but differential role in stromal cell-derived factor-1 (SDF-1)-inducing cell chemotaxis, viability and paracrine actions of BMSCs. Adipose tissue-derived mesenchymal stem cells (ADSCs) have been suggested to be potential seed cells for clinical application instead of bone marrow derived stroma cell (BMSCs). However, the function of SDF-1/CXCR4 and SDF-1/CXCR7 in ADSCs is not well understood. This study was designed to analyze the effect of SDF-1/CXCR4 and SDF-1/CXCR7 axis on ADSCs biological behaviors in vitro. Using Flow cytometry and Western blot methods, we found for the first time that CXCR4/CXCR7 expression was increased after treatment with SDF-1 in ADSCs. SDF-1 promoted ADSCs paracrine, proliferation and migration abilities. CXCR4 or CXCR7 antibody suppressed ADSCs paracrine action induced by SDF-1. The migration of ADSCs can be abolished by CXCR4 antibody, while the proliferation of ADSCs was only downregulated by CXCR7 antibody. Our study indicated that the angiogenesis of ADSCs is, at least partly, mediated by SDF-1/CXCR4 and SDF-1/CXCR7 axis. However, only binding of SDF-1/CXCR7 was required for proliferation of ADSCs, and CXCR7 was required for migration of ADSCs induced by SDF-1. Our studies provide evidence that the activation of either axis may be helpful to improve the effectiveness of ADSCs-based stem cell therapy.  相似文献   

6.
Qingtao Jiang  Yun Sun 《Biomarkers》2019,24(6):510-516
Background: CXCR4 is a member of the C-X-C chemokine receptor family, which is associated with multiple types of cancer. Although it has been widely reported, the prognostic value of CXCR4 expression in gastrointestinal (GI) cancer remains controversial.

Methods: A meta-analysis was conducted to investigate the relationship between CXCR4 and prognosis of patients with GI cancer. Subgroup analysis was also performed according to tumour subtypes and heterogeneity test.

Results: A total of 24 studies including 3637 cases suggested that overexpression of CXCR4 is significantly associated with overall survival (OS) for patients with GI cancer (HR = 1.71, 95% CI = 1.45–2.03, p?=?0.000). Subgroup analysis also indicated that high CXCR4 expression in oesophagus, gastric and colorectal cancer all predicted a worse prognosis (HR = 1.52, 95% CI = 1.26–1.84, p?=?0.001 for oesophagus cancer; HR = 1.59, 95% CI = 1.10–2.30, p?=?0.015 for gastric cancer; HR = 2.21, 95% CI = 1.56–3.14, p?=?0.000 for colorectal cancer).

Conclusions: CXCR4 may serve as a prognostic indicator in GI cancer patients.  相似文献   


7.
Stromal cell-derived factor-1α (SDF-1α) plays an important role after injury. However, little is known regarding its temporal and spatial expression patterns or how it interacts with glial cells after optic nerve crush injury. We characterized the temporal and spatial expression pattern of SDF-1α in the retina and optic nerve following optic nerve crush and demonstrated that SDF-1α is localized to the glial cells that are distributed in the retina and optic nerve. CXCR4, the receptor for SDF-1α, is expressed along the ganglion cell layer (GCL). The relative expression levels of Sdf-1α mRNA and SDF-1α protein in the retina and optic nerve 1, 2, 3, 5, 7, 10 and 14 days after injury were determined using real-time polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay, respectively, and the Cxcr4 mRNA expression was determined using real-time PCR. Immunofluorescence and immunohistochemical approaches were used to detect the localization of SDF-1α and CXCR4 after injury. The upregulation of Sdf-1α and Cxcr4 mRNA was detected as early as day one after injury in the retina and day two in the optic nerve, the expression peaks 5–7 days after injury. The expression of Sdf-1α and Cxcr4 mRNA was maintained for at least 14 days after the optic nerve crush injury. Furthermore, SDF-1α-positive zones were distributed locally in the reactive glial cells, which suggested potential autocrine stimulation. CXCR4 was mainly expressed in the GCL, which was also adjacent to the the glial cells. These findings suggest that following optic nerve crush, the levels of endogenous SDF-1α and CXCR4 increase in the retina and optic nerve, where activated glial cells may act as a source of increased SDF-1α protein.  相似文献   

8.
Stromal cell-derived factor (SDF-1) is a CXC chemokine that selectively activates the CXCR4 chemokine receptor. Fibronectin is an intracellular matrix component that binds integrin and mediates cell-matrix adhesion. Activation of the integrin receptor can occur in two ways: by ligand binding (outside-in signaling), and in response to intracellular events (inside-out signaling). In the current study we showed that SDF-1a inhibited adhesion of T lymphocyte Jurkat cells resulting from binding high concentrations of fibronectin as well as that of THP-1 monocytes. The effect of SDF-1a on fibronectin-mediated adhesion was partly reversed by the CXCR4 receptor antagonist T140. Our results suggest that an SDF-1/ CXCR4 signal pathway modulates fibronectin-mediated lymphocytes adhesion.  相似文献   

9.
10.
We recently demonstrated that stromal cell-derived factor-1(SDF-1/CXCL12) forms complexes with CXCR4, but also with syndecan-4expressed by human primary lymphocytes and macrophages, andHeLa cells. We also suggested that syndecan-4 behaves as a SDF-1-signalingmolecule. Here, we demonstrate that SDF-1 strongly acceleratesthe shedding of syndecan-4 ectodomains and to a lesser extentthat of syndecan-1 from HeLa cells. The fact that this accelerationwas not inhibited by the CXCR4 antagonist AMD3100, anti-CXCR4mAb 12G5, and CXCR4 gene silencing suggests its CXCR4-independence.Pre-treating the cells with heparitinases I, III, or with theprotein kinase C (PKC) inhibitor, bisindolylmaleimide, significantlyinhibited this accelerated shedding, which suggests the involvementof both cell-surface heparan sulfate and PKC transduction pathway.In contrast, Map Kinase or NF-B pathway inhibitors had no effect.Moreover, SDF-1 increases the matrix metalloproteinase-9 (MMP-9)mRNA level as well as MMP-9 activity in HeLa cells, and MMP-9silencing by RNA interference strongly decreases the syndecan-1and -4 ectodomain shedding accelerated by SDF-1. Finally, SDF-1also accelerates in a CXCR4-independent manner, the sheddingof syndecan-1 and -4 from human primary macrophages, which issignificantly inhibited by anti-MMP-9 antibodies. This stronglyindicates the role of MMP-9 in these events occurring in botha tumoral cell line and in human primary macrophages. BecauseMMP-9 plays a crucial role in extracellular matrix degradationduring cancer cell metastasis and invasion, and shed ectodomainsof syndecans may likely be involved in tumor cell proliferation,these data further indicate the multiplicity of the roles playedby SDF-1 on tumor cell biology.  相似文献   

11.
Stromal cell-derived factor-1alpha/beta (SDF-1alpha/beta) is phylogenetically a primitive chemokine widely expressed in a variety of tissues and cell types. This expression is detectable in the absence of stimuli provided by bacterial or viral infections and allergic or autoimmune disorders. Based on these and other findings, SDF-1alpha has not been considered an inflammatory chemokine, but, rather, has been believed to be involved in certain homeostatic processes, such as leukocyte recirculation. SDF-1alpha is a potent chemoattractant for lymphocytes and monocytes that mediates its activity via the chemokine receptor CXCR4. Study of the role of SDF-1alpha/CXCR4 in vivo during inflammation has been limited by the fact that transgenic mice that have been made deficient in either molecule die early in life due to developmental defects. The present study was aimed at evaluating the functional relevance of the SDF-1alpha/CXCR4 axis during an inflammatory process. Neutralizing Abs to CXCR4 reduced lung eosinophilia (bronchoalveolar lavage fluid and interstitium) by half, indicating that CXCR4-mediated signals contribute to lung inflammation in a mouse model of allergic airway disease (AAD). This reduction in inflammation was accompanied by a significant decrease in airway hyper-responsiveness. SDF-1alpha neutralization resulted in similar reduction in both lung allergic inflammation and airway hyper-responsiveness. Retroviral delivery of a CXCR4 cDNA to leukocytes resulted in greater inflammation when transduced mice were subjected to a mouse model of AAD. These results highlight that, although considered a noninflammatory axis, the involvement of CXCR4 and SDF-1alpha is critical during AAD, and this receptor and its ligand are potentially relevant in other inflammatory processes.  相似文献   

12.
13.
Context: Yes-associated protein (Yap) has been linked to several cardiovascular disorders, but the role of this protein in septic cardiomyocytes is not fully understood.

Objective: The aim of our study was to explore the influence of Yap in septic cardiomyopathy in vivo and in vitro.

Materials and methods: In the current study, Yap transgenic mice and Yap adenovirus-mediated gain-of-function assays were used in an LPS-established septic cardiomyopathy model. Mitochondrial function and mitochondrial fission were determined through western blotting, immunofluorescence analysis and ELISA.

Results: Our results demonstrated that Yap expression was downregulated by LPS, whereas Yap overexpression sustained cardiac function and attenuated cardiomyocyte death. The functional exploration revealed that LPS treatment induced cardiomyocyte mitochondrial stress, as manifested by mitochondrial superoxide overproduction, cardiomyocyte ATP deprivation, and caspase-9 apoptosis activation. Furthermore, we demonstrated that LPS-mediated mitochondrial damage was controlled by mitochondrial fission. However, Yap overexpression reduced mitochondrial fission and therefore improved mitochondrial function. A molecular investigation revealed that Yap overexpression inhibited mitochondrial fission by reversing ERK activity, and the inhibition of the ERK pathway promoted DRP1 upregulation and thereby mediated mitochondrial fission activation in the presence of Yap overexpression.

Conclusions: Overall, our results suggest that the cause of septic cardiomyopathy appears to be connected with Yap downregulation. The overexpression of Yap can attenuate myocardial inflammation injury through the reduction of DRP1-related mitochondrial fission in an ERK pathway activation-dependent manner.  相似文献   


14.
Context: Circulating MicroRNAs (miRNAs) are emerging as novel biomarkers for tumour.

Objective: Evaluate the diagnostic potential of plasma miR-200b-3p in oral squamous cell carcinoma (OSCC).

Materials and methods: miR-200b-3p was detected by qRT-PCR in paired pre-operative and post-operative plasmas from 80 OSCC patients and 80 healthy controls.

Results: Plasma miR-200b-3p was significantly upregulated in OSCC, and it was higher in WHO II/III grade than WHO I grade. The AUC of miR-200b-3p for OSCC was 0.9173. miR-200b-3p was significantly downregulated after surgery. High miR-200b-3p expression was associated with poor prognosis.

Discussion and conclusion: Plasma miR-200b-3p could be a potential diagnostic biomarker for OSCC.  相似文献   


15.
The chemokine receptor CXCR4 is required, together with CD4, for entry by some isolates of HIV-1, particularly those that emerge late in infection. The use of CXCR4 by these viruses likely has profound effects on viral host range and correlates with the evolution of immunodeficiency. Stromal cell-derived factor-1 (SDF-1), the ligand for CXCR4, can inhibit infection by CXCR4-dependent viruses. To understand the mechanism of this inhibition, we used a monoclonal antibody that is specific for CXCR4 to analyze the effects of phorbol esters and SDF-1 on surface expression of CXCR4. On human T cell lines SupT1 and BC7, CXCR4 undergoes slow constitutive internalization (1.0% of the cell surface pool/min). Addition of phorbol esters increased this endocytosis rate >6-fold and reduced cell surface CXCR4 expression by 60 to 90% over 120 min. CXCR4 was internalized through coated pits and coated vesicles and subsequently localized in endosomal compartments from where it could recycle to the cell surface after removal of the phorbol ester. SDF-1 also induced the rapid down modulation (half time ~5 min) of CXCR4. Using mink lung epithelial cells expressing CXCR4 and a COOH-terminal deletion mutant of CXCR4, we found that an intact cytoplasmic COOH-terminal domain was required for both PMA and ligand-induced CXCR4 endocytosis. However, experiments using inhibitors of protein kinase C indicated that SDF-1 and phorbol esters trigger down modulation through different cellular mechanisms.

SDF-1 inhibited HIV-1 infection of mink cells expressing CD4 and CXCR4. The inhibition of infection was less efficient for CXCR4 lacking the COOH-terminal domain, suggesting at least in part that SDF-1 inhibition of virus infection was mediated through ligand-induced internalization of CXCR4. Significantly, ligand induced internalization of CXCR4 but not CD4, suggesting that CXCR4 and CD4 do not normally physically interact on the cell surface. Together these studies indicate that endocytosis can regulate the cell-surface expression of CXCR4 and that SDF-1–mediated down regulation of cell-surface coreceptor expression contributes to chemokine-mediated inhibition of HIV infection.

  相似文献   

16.
Objective: To investigate the dynamic variation in H3K4me3 and HP1 with employment length in nickel smelting workers.

Methods: Blood samples were collected from 140 nickel smelting workers and 140 age-matched office workers to test for H3K4me3, and HP1 levels.

Results: H3K4me3 was statistically significantly different (p?<?0.05) between the two groups and positively correlated with employment length (rs?=?0.267). HP1 was not correlated with employment length (p?=?0.066) but was significantly different between the two groups.

Conclusions: Chronic exposure to nickel can induce oxidative damage, and increase H3K4me3 expression and inhibit HP1 expression.  相似文献   


17.
Inflammatory angiogenesis and vascular remodeling play key roles in the chronic inflammatory skin disease psoriasis, but little is known about the molecular mediators of vascular activation. Based on the reported elevated mRNA levels of the angiogenic chemokine stromal cell-derived factor-1 (SDF-1) and its receptor CXCR4 in psoriasis, we investigated the relevance of the SDF-1/CXCR4 axis in two experimental models of chronic psoriasis-like skin inflammation. The cutaneous expression of both SDF-1 and CXCR4 was upregulated in the inflamed skin of K14-VEGF-A transgenic mice and in imiquimod-induced skin inflammation, with expression of CXCR4 by blood vessels and macrophages. Treatment with the CXCR4 antagonist AMD3100 potently inhibited skin inflammation in both models, associated with reduced inflammatory angiogenesis and inflammatory cell accumulation, including dermal CD4+ cells and intraepidermal CD8+ T cells. Similar anti-inflammatory effects were seen after treatment with a neutralizing anti-SDF-1 antibody. In vitro, inhibition of CXCR4 blocked SDF-1-induced chemotaxis of CD11b+ splenocytes, in agreement with the reduced number of macrophages after in vivo CXCR4 blockade. Our results reveal an important role of the SDF-1/CXCR4 axis in skin inflammation and inflammatory angiogenesis, and they indicate that inhibition of the SDF-1/CXCR4 axis might serve as a novel therapeutic strategy for chronic inflammatory skin diseases.  相似文献   

18.
Objectives: This study aims to explore the effect of bone marrow mesenchymal stem cells (BMSCs) on multiple myeloma (MM) development and the underlying mechanism.

Materials and Methods: BMSCs from C57BL/6 J mice were isolated and the third passage was used for subsequent experiments. Additionally, a series of in vitro transwell coculture assays were performed to explore the effects of BMSCs on the proliferation of MM cells 5TGM1 and CD4+ T cells. Furthermore, a 5TGM1-induced MM mice model was established. Moreover, PD-L1 shRNA was transfected into BMSCs to investigate whether PD-1/PD-L1 pathway involved in BMSCs-mediated regulation of T cells and MM growth.

Results: Data revealed that BMSCs significantly promoted 5TGM1 proliferation in a dose-dependent manner. Furthermore, BMSCs administration exerted stimulatory effects on MM development in terms of shortening the mouse survival rate, promoting tumor growth, and enhancing inflammatory infiltration in the MM model mice. Moreover, BMSCs decreased the percentage of Th1 and Th17 cells, whereas increased that of Th2 and Treg cells. Their corresponding cytokines of these T cell subsets showed similar alteration in the presence of BMSCs. Additionally, BMSCs significantly suppressed CD4+ T cell proliferation. We also found that PD-L1 shRNA inhibited 5TGM1 proliferation likely through activation of CD4+ T cells. Further in vivo experiments confirmed that PD-L1 inhibition attenuated BMSCs-induced MM growth, inflammation infiltration and imbalance of Th1/Th2 and Th17/Treg.

Conclusion: In summary, our findings demonstrated that BMSCs promoted cell proliferation of MM through inhibiting T cell immune responses via PD-1/PD-L1 pathway.  相似文献   


19.
Stromal cell-derived factor-1α (SDF-1) has been reported to mediate cardioprotection through the mobilization of stem cells into injured tissue and an increase in local angiogenesis after myocardial infarction. However, little is known regarding whether SDF-1 induces acute protection following global myocardial ischemia/reperfusion (I/R) injury and if so, by what molecular mechanism. SDF-1 binding to its cognate receptor CXCR4 has been shown to activate STAT3 in a variety of cells. STAT3 is a cardioprotective factor and may mediate SDF-1/CXCR4-induced acute protection. We hypothesized that SDF-1 would improve myocardial function through CXCR4-increased STAT3 activation following acute I/R. Isolated mouse hearts were subjected to 25-min global ischemia/40-min reperfusion and divided into groups of 1) vehicle; 2) SDF-1; 3) AMD3100, a CXCR4 inhibitor; 4) SDF-1 + AMD3100; 5) Stattic, a STAT3 inhibitor; 6) SDF-1 + Stattic; 7) cardiomyocyte-restricted ablation of STAT3 (STAT3KO); 8) STAT3KO + SDF-1; 9) Ly294002, an inhibitor of the Akt pathway; and 10) SDF-1 + Ly294002. Reagents were infused into hearts within 5 min before ischemia. SDF-1 administration significantly improved postischemic myocardial functional recovery in a dose-dependent manner. Additionally, pretreatment with SDF-1 reduced cardiac apoptotic signaling and increased myocardial STAT3 activation following acute I/R. Inhibition of the SDF-1 receptor CXCR4 neutralized these protective effects by SDF-1 in hearts subjected to I/R. Notably, inhibition of the STAT3 pathway or use of STAT3KO hearts abolished SDF-1-induced acute protection following myocardial I/R. Our results represent the first evidence that the SDF-1/CXCR4 axis upregualtes myocardial STAT3 activation and, thereby, mediates acute cardioprotection in response to global I/R.  相似文献   

20.
Context: The metabolic function of peroxisome proliferator-activated receptor gamma (PPARγ) in lung cancer remains unclear.

Objectives: To determine the relationship of PPARγ on ALDH1A3-induced lipid peroxidation to inhibit lung cancer cell growth.

Materials and methods: In silico analysis using microarray dataset was performed to screen the positive correlation between PPARγ and all ALDH isoforms. NUBIscan software and ChIP assay were used to identify the binding sites (BSs) of PPARγ on ALDH1A3 promoter. The expression of ALDH1A3 under thiazolidinedione (TZD) treatment was evaluated by QPCR and Western Blot in HBEC and H1993 cell lines. Upon treatment of TZD, colony formation assay was used to check cell growth inhibition and 4-hydroxy-2-nonenal (4HNE) production as lipid peroxidation marker was determined by Western Blot in PPARγ positive cell H1993 and PPARγ negative cell H1299.

Results: Compared to other ALDH isoforms, ALDH1A3 showed the highest positive correlation to PPARγ expression. ALDH1A3 upregulated PPARγ expression while PPARγ activation suppressed ALDH1A3. Among 2 potential screened PPARγ response elements, BS 1 and 2 in the promoter of ALDH1A3 gene, PPARγ bound directly to BS2. Ligand activation of PPARγ suppressed mRNA and protein expression of ALDH1A3. Growth inhibition was observed in H1993 (PPARγ positive cell) treated with PPARγ activator and ALDH inhibitor compared to H1299 (PPARγ negative cell). PPARγ activation increased 4HNE which is known to be suppressed by ALDH1A3.

Conclusions: ALDH1A3 suppression could be one of PPARγ tumor suppressive function. This study provides a better understanding of the role of PPARγ in lung cancer.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号