首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 447 毫秒
1.
A novel β-1,3–1,4-glucanase gene was identified in Bacillus sp. SJ-10 (KCCM 90078) isolated from jeotgal, a traditional Korean fermented fish. We analysed the β-1,3–1,4-glucanase gene sequence and examined the recombinant enzyme. The open reading frame of the gene encoded 244 amino acids. The sequence was not identical to any β-glucanases deposited in GenBank. The gene was cloned into pET22b(+) and expressed in Escherichia coli BL21. Purification of recombinant β-1,3–1,4-glucanase was conducted by affinity chromatography using a Ni-NTA column. Enzyme specificity of β-1,3–1,4-glucanase was confirmed based on substrate specificity. The optimal temperature and pH of the purified enzyme towards barley β-glucan were 50 °C and pH 6, respectively. More than 80 % of activity was retained at temperatures of 30–70 °C and pH values of 4–9, which differed from all other bacterial β-1,3–1,4-glucanases. The degradation products of barley β-glucan by β-1,3–1,4-glucanase were analysed using thin-layer chromatography, and ultimately glucose was produced by treatment with cellobiase.  相似文献   

2.
The β-1,3-glucanase (1,3-β-d-glucan glucanohydrolase, EC 3.2.1.6) gene from Flavobacterium dormitator var. glucanolyticae was cloned into Escherichia coli C600 with a vector plasmid, pBR322. The E. coli cells carrying a recombinant plasmid, pKUβG1 (8.2 kb), showed a high β-1,3-glucanase activity and a lytic activity on viable yeast cells. These activities were found in the peripiasmic space of E. coli clone cells. Southern hybridization analysis showed that the cloned gene was derived from F. dormitator chromosomal DNA. The gene products were purified from the periplasmic fraction of E. coli by ammonium sulfate fractionation and ion-exchange chromatography. The purified enzymes were demonstrated to be identical with a lytic endo-β-1,3-glucanase II and a nonlytic endo-β-1,3-glucanase I from F. dormitator from their enzymological and immunological properties. In the E. coli cells, endo-β-1,3-glucanase I was also formed by a proteolytic digestion of endo-β-1,3-glucanase II during the cultivation as in F. dormitator. Thus, the only endo-β-1,3-glucanase II was coded for in the cloned gene.  相似文献   

3.
To understand the suppression mechanisms against disease resistance in rice, we took advantage of the fact that suspension cultured cells exhibit many of the defence responses that are characteristic of intact tissues. In this study we constitutively measured the Rhizoctonia solani and Sarocladium oryzae toxins, induced and suppressed levels of phenylalanine ammonia lyase, peroxidase, superoxide dismutase, phenols, catalase, β-1,3-glucanase and chitinase in rice suspension cultured cells. The addition of Rhizoctonia solani and Sarocladium oryzae toxins separately in suspension cultured cells shows the suppression of defence enzymes and compounds at 24 h and 48 h respectively except SOD. The rice cultivar IR50 delays the disease suppression effect when compared to the other cultivars viz., Pusa Basmati and Co 43. The PR proteins (namely β-1,3-glucanase and chitinase) activities in rice suspension cultured cells were reduced during 48 h and 72 h after the addition of Rhizoctonia solani toxin, whereas the activities were suppressed only after 72 h when inoculated with Sarocladium oryzae toxin. Selective suppression of these defence enzymes and compounds by Rhizoctonia solani and Sarocladium oryzae toxin shows that toxins play a major role during pathogenesis in rice cells.  相似文献   

4.
A novel alkaline β-1,3-1,4-glucanase (McLic1) from a thermophilic fungus, Malbranchea cinnamomea, was purified and biochemically characterized. McLic1 was purified to homogeneity with a purification fold of 3.1 and a recovery yield of 3.7 %. The purified enzyme was most active at pH 10.0 and 55 °C, and exhibited a wide range of pH stability (pH 4.0–10.0). McLic1 displayed strict substrate specificity for barley β-glucan, oat β-glucan and lichenan, but did not show activity towards other tested polysaccharides and synthetic p-nitrophenyl derivates, suggesting that it is a specific β-1,3-1,4-glucanase. The K m values for barley β-glucan, oat β-glucan and lichenan were determined to be 0.69, 1.11 and 0.63 mg mL?1, respectively. Moreover, the enzyme was stable in various non ionic surfactants, oxidizing agents and several commercial detergents. Thus, the alkaline β-1,3-1,4-glucanase may have potential in industrial applications, such as detergent, paper and pulp industries.  相似文献   

5.

Key message

Two β-1,3-glucanase genes from sugarcane were cloned and characterized. They were all located in apoplast and involves in different expression patterns in biotic and abiotic stress.

Abstract

Smut caused by Sporisorium scitamineum is a serious disease in the sugarcane industry. β-1,3-Glucanase, a typical pathogenesis-related protein, has been shown to express during plant–pathogen interaction and involves in sugarcane defense response. In this study, β-1,3-glucanase enzyme activity in the resistant variety increased faster and lasted longer than that of the susceptible one when inoculated with S. scitamineum, along with a positive correlation between the activity of the β-1,3-glucanase and smut resistance. Furthermore, two β-1,3-glucanase genes from S. scitamineum infected sugarcane, ScGluA1 (GenBank Accession No. KC848050) and ScGluD1 (GenBank Accession No. KC848051) were cloned and characterized. Phylogenetic analysis suggested that ScGluA1 and ScGluD1 clustered within subfamily A and subfamily D, respectively. Subcellular localization analysis demonstrated that both gene products were targeted to apoplast. Escherichia coli Rosetta (DE3) cells expressing ScGluA1 and ScGluD1 showed varying degrees of tolerance to NaCl, CdCl2, PEG, CuCl2 and ZnSO4. Q-PCR analysis showed up-regulation of ScGluA1 and slight down-regulation of ScGluD1 in response to S. scitamineum infection. It suggested that ScGluA1 may be involved in the defense reaction of the sugarcane to the smut, while it is likely that ScGluD1 was inhibited. The gene expression patterns of ScGluA1 and ScGluD1, in response to abiotic stresses, were similar to sugarcane response against smut infection. Together, β-1,3-glucanase may function in sugarcane defense mechanism for S. scitamineum. The positive responses of ScGluA1 and the negative responses of ScGluD1 to biotic and abiotic stresses indicate they play different roles in interaction between sugarcane and biotic or abiotic stresses.  相似文献   

6.
In our previous study, it was found that the killer toxin produced by the marine-derived yeast Wickerhamomyces anomalus YF07b has both killing activity and β-1,3-glucanase activity and the molecular mass of it is 47.0 kDa. In this study, the same yeast strain was found to produce another killer toxin which only had killing activity against some yeast strains, but had no β-1,3-glucanase activity and the molecular mass of the purified killer toxin was 67.0 kDa. The optimal pH, temperature and NaCl concentration for action of the purified killer toxin were 3.5, 16 °C and 4.0 % (w/v), respectively. The purified killer toxin could be bound by the whole sensitive yeast cells, but was not bound by manann, chitin and β-1,3-glucan. The purified killer toxin had killing activity against Yarrowia lipolytica, Saccharomyces cerevisiae, Metschnikowia bicuspidata WCY, Candida tropicalis, Candida albicans and Kluyveromyces aestuartii. Lethality of the sensitive cells treated by the newly purified killer toxin from W. anomalus YF07b involved disruption of cellular integrity by permeabilizing cytoplasmic membrane function.  相似文献   

7.
In this work, we identified a gene from Theobroma cacao L. genome and cDNA libraries, named TcGlu2, that encodes a β-1,3-1,4-glucanase. The TcGlu2 ORF was 720 bp in length and encoded a polypeptide of 239 amino acids with a molecular mass of 25.58 kDa. TcGlu2 contains a conserved domain characteristic of β-1,3-1,4-glucanases and presented high protein identity with β-1,3-1,4-glucanases from other plant species. Molecular modeling of TcGlu2 showed an active site of 13 amino acids typical of glucanase with β-1,3 and 1,4 action mode. The recombinant cDNA TcGlu2 obtained by heterologous expression in Escherichia coli and whose sequence was confirmed by mass spectrometry, has a molecular mass of about 22 kDa (with His-Tag) and showed antifungal activity against the fungus Moniliophthora perniciosa, causal agent of the witches’ broom disease in cacao. The integrity of the hyphae membranes of M. perniciosa, incubated with protein TcGlu2, was analyzed with propidium iodide. After 1 h of incubation, a strong fluorescence emitted by the hyphae indicating the hydrolysis of the membrane by TcGlu2, was observed. To our knowledge, this is the first study of a cacao β-1,3-1,4-glucanase expression in heterologous system and the first analysis showing the antifungal activity of a β-1,3-1,4-glucanase, in particular against M. perniciosa.  相似文献   

8.
We report the molecular characterization of β-1,3-glucanase-producing Bacillus amyloliquefaciens—an endophyte of Hevea brasiliensis antagonistic to Phytophthora meadii. After cloning and sequencing, the β-1,3-glucanase gene was found to be 747 bp in length. A homology model of the β-1,3-glucanase protein was built from the amino acid sequence obtained upon translation of the gene. The target β-1,3-glucanase protein and the template protein, endo β-1,3-1,4-glucanase protein (PDB ID: 3o5s), were found to share 94 % sequence identity and to have similar secondary and tertiary structures. In the modeled structure, three residues in the active site region of the template—Asn52, Ile157 and Val158—were substituted with Asp, Leu and Ala, respectively. Computer-aided docking studies of the substrate disaccharide (β-1, 3-glucan) with the target as well as with the template proteins showed that the two protein-substrate complexes were stabilized by three hydrogen bonds and by many van der Waals interactions. Although the binding energies and the number of hydrogen bonds were the same in both complexes, the orientations of the substrate in the active sites of the two proteins were different. These variations might be due to the change in the three amino acids in the active site region of the two proteins. The difference in substrate orientation in the active site could also affect the catalytic potential of the β-1,3 glucanase enzyme.  相似文献   

9.
Inoculation of different bean cultivars with Colletotrichum lindemuthianum race β results in a marked increase of β-1,3-glucanase and chitinase activities. The increase is much faster in incompatible than in compatible interactions. Induced β-1,3-glucanase (pI 9,5) differs from the constitutive β-1,3-glucanase (pI 4,5) of healthy plants. The induced enzyme can partly degrade, in vitro, the cell walls of C. lindemutianum. The possible role of these hydrolytic enzymes inplants defence is discussed.  相似文献   

10.
In this study astaxanthin production by Phaffia rhodozyma was enhanced by chemical mutation using ethyl methane sulfonate. The mutant produces a higher amount of astaxanthin than the wild yeast strain. In comparison to supercritical fluid technique, high-pressure homogenization is better for extracting astaxanthin from yeast cells. Ultrasonication of dimethyl sulfoxide, hexane, and acetone-treated cells yielded less astaxanthin than β-glucanase enzyme-treated cells. The combination of ultrasonication with β-glucanase enzyme is found to be the most efficient method of extraction among all the tested physical and chemical extraction methods. It gives a maximum yield of 435.71 ± 6.55 µg free astaxanthin per gram of yeast cell mass.  相似文献   

11.
12.
A β-1,3-endoglucanase produced by Streptomyces rutgersensis was purified to a homogeneity by the fractional precipitation with ammonium sulfate, ion exchange chromatography on Q-Sepharose and hydrophobic chromatography on Butyl Sepharose. A typical procedure provided 11.74-fold purification with 12.53 % yield. SDS-PAGE of the purified protein showed one protein band. The exact molecular mass of the enzyme obtained by mass spectrometry was 41.25 kDa; the isoelectric point was between pH 4.2–4.4. The optimal β-glucanase catalytic activity was at pH 7 and 50 °C. An enzyme was only active toward glucose polymers containing β-1,3 linkages and hydrolyzed Saccharomyces cerevisiae cell wall β-glucan in an endo-like way: reaction products were different molecular size β-glucans, which were larger than glucose.  相似文献   

13.
The gluA gene, encoding an endo-β-1,3-glucanase from Arthrobacter sp. (strain NHB-10), was cloned and analyzed. The deduced endo-β-1,3-glucanase amino acid sequence was 750 amino acids long and contained a 42 amino acid signal peptide with a mature protein of 708 amino acids. There was no similarity to known endo-β-1,3-glucanases, but GluA was partially similar to two fungal exo-β-1,3-glucanases in glycoside hydrolase (GH) family 55. Of five possible residues for catalysis and two motifs in two β-helix heads of GH family 55, three residues and one motif were conserved in GluA, suggesting that GluA is the first bacterial endo-β-1,3-glucanase in GH family 55. Significant similarity was also found to two proteins of unknown function from Streptomyces coelicolor A3(2) and S. avermitilis.  相似文献   

14.
Bacillus circulans WL-12, a yeast and fungal cell wall lytic bacterium, secretes a variety of polysaccharide degrading enzymes into the culture medium. When β-1,3-glucanase was induced with pachyman, a β-1,3-glucose polymer obtained from the tree fungus Poria cocus Wolf, six distinct active molecules of the enzyme with different molecular weights were detected in the culture supernatant of this bacterium. Molecular cloning of one of the β,3-gIucanase genes into E. coli was achieved by transforming E. coli HB101 cells with recombinant plasmids composed of chromosomal DNA fragments prepared from B. circulans WL-12 and the plasmid vector pUC 19. A recombinant plasmid containing 4.4 kb of inserted DNA in the Pst I site of pUC 19, designated as pNT003, conferred the ability to degrade pachyman on E. coli cells. The presence of pNT003 was harmful for E. coli cells and caused cell lysis, especially at higher temperatures of cultivation. β,3-Glucanase activity detected in E. coli was mainly recovered in the periplasmic fraction when cell lysis did not occur. SDS-PAGE analysis revealed that the periplasmic fraction contained four active molecules of β-1,3-glucanase which corresponded to four of the six active molecules produced by B. circulans WL-12.  相似文献   

15.
Niu  Chengtuo  Zhu  Linjiang  Xu  Xin  Li  Qi 《Applied microbiology and biotechnology》2017,101(3):1085-1097

Higher thermostability is required for 1,3-1,4-β-glucanase to maintain high activity under harsh conditions in the brewing and animal feed industries. In this study, a comprehensive and comparative analysis of thermostability in bacterial β-glucanases was conducted through a method named spatial compartmentalization of mutational hotspots (SCMH), which combined alignment of homologous protein sequences, spatial compartmentalization, and molecular dynamic (MD) simulation. The overall/local flexibility of six homologous β-glucanases was calculated by MD simulation and linearly fitted with enzyme optimal enzymatic temperatures. The calcium region was predicted to be the crucial region for thermostability of bacterial 1,3-1,4-β-glucanases, and optimization of four residue sites in this region by iterative saturation mutagenesis greatly increased the thermostability of a mesophilic β-glucanase (BglT) from Bacillus terquilensis. The E46P/S43E/H205P/S40E mutant showed a 20 °C increase in optimal enzymatic temperature and a 13.8 °C rise in protein melting temperature (T m) compared to wild-type BglT. Its half-life values at 60 and 70 °C were 3.86-fold and 7.13-fold higher than those of wild-type BglT. The specific activity of E46P/S43E/H205P/S40E mutant was increased by 64.4 %, while its stability under acidic environment was improved. The rational design strategy used in this study might be applied to improve the thermostability of other industrial enzymes.

  相似文献   

16.
The current study aims to assess the kinetics of population growth of Rhodotorula oryzicola and the production of β-1,3-glucanase (EC 3.2.1.39) enzyme by this yeast. It also aims to obtain the optimum conditions of β-1,3-glucanase enzymatic activity by varying the pH as well as to study the enzyme thermostability. R. oryzicola population doubled within 12?hr. During this period, 9.26 generations were obtained, with 1?hr and 29?min of interval from one generation to the other, with specific growth rate (µ) of 0.15 (hr?1). The entire microorganism growth process was monitored during β-1,3-glucanases production, and the maximum value was obtained in the stationary phase in the 48-hr fermentation period. pH and temperature optimum values were 4.7 and 96°C, respectively. The enzyme maintained 88% of its activity when submitted to the temperature of 90°C for an incubation period of 1?hr. The results show that the enzyme can be used in industrial processes that require high temperatures and acidic pH.  相似文献   

17.
Trichoderma species have become the important means of biological control for fungal diseases. This research was carried on to access the high β-1,3-glucanase and β-1,4-glucanase enzyme producer of Trichoderma species isolates using two different carbon sources for finding a method to obtain more concentrate culture filtrates. Therefore, 14 Trichoderma isolates belonging to species: Trichoderma ceramicum, T. virens, T. pseudokoningii, T. koningii, T. koningiosis, T. atroviridae, T. viridescens, T. asperellum, T. harzianum1, T. orientalis, T. harzianum2, T. brevicompactum, T. viride and T. spirale were cultured in Wiendling’s liquid medium plus 0.5% glycerol or 0.5% Phytophthora sojae-hyphe as the carbon source in shaking and non-shaking (stagnant) statuses. Enzyme activity rate and total protein were evaluated in raw, acetony and lyophilized concentrated culture filtrates and the specific enzyme activity of β-1,3-glucanase and β-1,4-glucanase were measured by milligramme glucose equivalent released per minute per milligramme total protein in culture filtrates. The results showed that using Phytophthora – hyphe in medium increased the enzyme activities as compared to glycerol at all Trichoderma species which suggested that these substrates can also act as inducer for synthesis of lytic enzymes, in addition the most enzymes activity was observed in the lyophilised concentrated culture filtrate. The most successful species in β-1,3-glucanase and β-1,4-glucanase enzymes activities were T. brevicompactum and T. virens and these species can be used for mass production of these enzymes which are supposed to be used in commercial formulation and also will be able to control P. sojae directly.  相似文献   

18.
The enzyme system (culture filtrate) from Streptomyces sp. W19-1 formed gentiobiose from curdlan (β-1,3-glucan). The mechanism of the formation of gentiobiose was investigated in this study.

Two kinds of enzymes, β-1,3-glucanase and β-glucosidase (transglucosidase), were isolated from the culture filtrate of the strain by hydroxylapatite column chromatography. The β-1,3-glucanase hydrolyzed curdlan to glucose and laminari-oligosaccharides, and the β-glucosidase formed gentiobiose by transglucosylation from the resultant laminari-oligosaccharides, especially laminaribiose. The two enzymes took part in the formation of gentiobiose from curdlan.  相似文献   

19.
Phytopathogenic fungi devastate agricultural crops worldwide. The biological agents, such as Trichoderma spp., antagonize phytopathogenic fungi by secreting various cell wall-degrading enzymes, for example, endochitinase and β-1,3-glucanase that target glycosidic linkages in β-glucan and chitin polymers of fungal cell walls, thus inhibiting pathogen growth. In this study, two antifungal genes endochitinase and β-1,3-glucanase cloned from local Trichoderma spp. were ligated in pET28a+ expression vector individually to generate two recombinant vectors. The vectors were mobilized into Escherichia coli host strain Rosetta-gami 2 for protein expression, and the 6xHis-tagged recombinant proteins were purified through Ni-NTA affinity chromatography. The purified proteins were individually confronted in vitro with pure cultures of Phytophthora parasitica (destructive pathogen affecting several hundred plant species worldwide) for analyzing their effect on pathogen growth. In vitro confrontation assay revealed P. parasitica growth inhibition by purified β-1,3-glucanase. The pathogen growth inhibition was due to hyphal morphological distortions, such as breakages, swelling, and holes evinced through electron micrography confirming direct role of β-1,3-glucanase in pathogen structural degradation.  相似文献   

20.
A specific endo-1,3-β-d-glucanase (GFA) gene was found in genome of marine bacterium Formosa algae KMM 3553. For today this is the only characterized endo-1,3-β-d-glucanase (EC 3.2.1.39) in Formosa genus and the only bacterial EC 3.2.1.39 GH16 endo-1,3-β-d-glucanase with described transglycosylation activity. It was expressed in E. coli and isolated in homogeneous state. Investigating the products of polysaccharides digestion with GFA allowed to establish it’s substrate specificity and classify this enzyme as glucan endo-1,3-β-d-glucosidase (EC 3.2.1.39). The amino-acid sequence of GFA consists of 556 residues and shows sequence similarity of 45–85% to β-1,3-glucanases of bacteria belonging to the CAZy 16th structural family of glycoside hydrolases GH16. Enzyme has molecular weight 61 kDa, exhibits maximum of catalytic activity at 45?°C, pH 5.5. Half-life period at 45 °С is 20 min, complete inactivation happens at 55?°C within 10 min. Km for hydrolysis of laminarin is 0.388 mM. GFA glucanase from marine bacteria F. algae is one of rare enzymes capable to catalyze reactions of transglycosylation. It catalyzed transfer of glyconic part of substrate molecule on methyl-β-d-xylopyranoside, glycerol and methyl-α-d-glucopyranoside. The enzyme can be used in structure determination of β-1,3-glucans (or mixed 1,3;1,4- and 1,3;1,6-β-d-glucans) and enzymatic synthesis of new carbohydrate-containing compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号