首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Innovation is a key determinant of sustainable growth. Biotechnology (BT) is one such industry that has witnessed a revolution in innovative ideas leading to the founding of many new companies based on providing products, solutions and services, stretching from the food industry to environmental remediation, and new medicines. BT holds much promise for the development of national and local economies, however, this requires a strategic approach involving actors within government, industry, and academia working in concert to maximize this potential. This first article reviews the current “state of play” in the field of BT within the Central Eastern European (CEE) countries. For the purposes of this article, CEE refers to the countries of Czech Republic, Hungary, Poland, and Slovakia (the so-called Visegrad – V4 countries). We examine the components that support the creation and development of a BT sector in CEE and also highlight the barriers to these objectives. Clearly setting priorities for the countries’ policy agenda, as well as the alignment of Smart Specialization Strategy will help to focus efforts. Recent investments in R&D infrastructure within CEE have been substantial, but conditions will need to be optimized to harness these largely European investments for effective use towards SME high-tech development.  相似文献   

2.
In recent years, the concept of Regional Innovation Systems (RIS) has evolved into a widely used analytical framework for sustainable economic development. But in reality, the RIS does not seem to be workable due to the lack of governance. To reduce this operational risk, the emphasis on the structure as well as network management of the system should be merged into a more market-oriented as well as performance-oriented governance. In Korea, there are seven RISs among 14 regions nationwide. Empirically, they are not very sustainable. Thus, the article proposes the role of metamediary for the facilitation, network service provision, and collaboration of the system.  相似文献   

3.
The maximum extractable activities of twenty-one photosynthetic and glycolytic enzymes were measured in mature leaves of Mesembryanthemum crystallinum plants, grown under a 12 h light 12 h dark photoperiod, exhibiting photosynthetic characteristics of either a C3 or a Crassulacean acid metabolism (CAM) plant. Following the change from C3 photosynthesis to CAM in response to an increase in the salinity of in the rooting medium from 100 mM to 400 mM NaCl, the activity of phosphoenolpyruvate (PEP) carboxylase (EC 4.1.1.31) increased about 45-fold and the activities of NADP malic enzyme (EC 1.1.1.40) and NAD malic enzyme (EC 1.1.1.38) increased about 4- to 10-fold. Pyruvate, Pi dikinase (EC 2.7.9.1) was not detected in the non-CAM tissue but was present in the CAM tissue; PEP carboxykinase (EC 4.1.1.32) was detected in neither tissue. The induction of CAM was also accompanied by large increases in the activities of the glycolytic enzymes enolase (EC 4.2.1.11), phosphoglyceromutase (EC 2.7.5.3), phosphoglycerate kinase (EC 2.7.2.3), NAD glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12), and glucosephosphate isomerase (EC 2.6.1.2). There were 1.5- to 2-fold increases in the activities of NAD malate dehydrogenase (EC 1.1.1.37), alanine and aspartate aminotransferases (EC 2.6.1.2 and 2.6.1.1 respectively) and NADP glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13). The activities of ribulose-1,5-bisphosphate (RuBP) carboxylase (EC 4.1.1.39), fructose-1,6-bisphosphatase (EC 3.1.3.11), phosphofructokinase (EC 2.7.1.11), hexokinase (EC 2.7.1.2) and glucose-6-phosphate dehydrogenase (EC 1.1.1.49) remained relatively constant. NADP malate dehydrogenase (EC 1.1.1.82) activity exhibited two pH optima in the non-CAM tissue, one at pH 6.0 and a second at pH 8.0. The activity at pH 8.0 increased as CAM was induced. With the exceptions of hexokinase and glucose-6-phosphate dehydrogenase, the activities of all enzymes examined in extracts from M. crystallinum exhibiting CAM were equal to, or greater than, those required to sustain the maximum rates of carbon flow during acidification and deacidification observed in vivo. There was no day-night variation in the maximum extractable activities of phosphoenolpyruvate carboxylase, NADP malic enzyme, NAD malic enzyme, fructose-1,6-bisphosphatase and NADP malate dehydrogenase in leaves of M. crystallinum undergoing CAM.Abbreviations CAM Crassulacean acid metabolism - PEP phosphoenolpyruvate - RuBP ribulose-1,5-bisphosphate  相似文献   

4.
Abstract: The enzyme complement of two different mitochondrial preparations from adult rat brain has been studied. One population of mitochondria (synaptic) is prepared by the lysis of synaptosomes, the other (nonsynaptic or free) by separation from homogenates. These populations have been prepared from distinct regions of the brain: cortex, striatum, and pons and medulla oblongata. The following enzymes have been measured: pyruvate dehydrogenase (EC 1.2.4.1), citrate synthase (EC 4.1.3.7), NAD-linked isocitrate dehydrogenase (EC 1.1.1.41), NADP-linked isocitrate dehydrogenase (EC 1.1.1.42), fumarase (EC 4.2.1.2), NAD-linked malate dehydrogenase (EC 1.1.1.37), D-3-hydroxybutyrate dehydrogenase (EC 1.1.1.30), and mitochondrially bound hexokinase (EC 2.7.1.1) and creatine kinase (EC 2.7.3.2). The nonsynaptic (free) mitochondria show higher enzyme specific activities in the regions studied than the corresponding values recorded for the synaptic mitochondria. The significance of these observations is discussed in the light of the different metabolic activities of the two populations of mitochondria and the compartmentation of the metabolic activities of the brain.  相似文献   

5.
We constructed strains of Erwinia chrysanthemi EC16 with multiple mutations involving three virulence systems in this bacterium, namely pel (coding for the major pectate lyases pelABCE), hrp (hypersensitive response and pathogenicity), and sap (sensitivity to antimicrobial peptides). The relative effects on virulence of those mutations have been analyzed on potato tubers and chicory leaves. In potato tubers, the sap mutation (BT105) had a greater effect in the reduction of the virulence than the pel (CUCPB5006) and hrp (CUCPB5039) mutations. This reduction was similar to that observed in the pel-hrp double mutant (CUCPB5037). The analysis of the strains affected in Pel-Sap (BT106), Hrp-Sap (BT107), and Pel-Hrp-Sap (BT108) suggested that the effects of these mutations are additive. In chicory leaves, the mutation in the sap locus appeared to have a greater effect than in potato tubers. The competitive indices of strains BT105, UM1005 (Pel-), CUCPB5039, and CUCPB5037 have been estimated in vivo and in vitro. These results indicate that the mutation in the hrp locus can be complemented in vivo by coinfection, whereas the mutations in pel and sap cannot.  相似文献   

6.
The steady-state kinetics of alcohol dehydrogenases (alcohol:NAD+ oxidoreductase, EC 1.1.1.1 and alcohol:NADP+ oxidoreductase, EC 1.1.1.2), lactate dehydrogenases (l-lactate:NAD+ oxidoreductase, EC 1.1.1.27 and d-lactate:NAD+ oxidoreductase, EC 1.1.1.28), malate dehydrogenase (l-malate:NAD+ oxidoreductase, EC 1.1.1.37), and glyceraldehyde-3-phosphate dehydrogenases [d-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12] from different sources (prokaryote and eukaryote, mesophilic and thermophilic organisms) have been studied using NAD(H), N6-(2-carboxyethyl)-NAD(H), and poly(ethylene glycol)-bound NAD(H) as coenzymes. The kinetic constants for NAD(H) were changed by carboxyethylation of the 6-amino group of the adenine ring and by conversion to macromolecular form. Enzymes from thermophilic bacteria showed especially high activities for the derivatives. The relative values of the maximum velocity (NAD = 1) of Thermus thermophilus malate dehydrogenase for N6-(2-carboxyethyl)-NAD and poly(ethylene glycol)-bound NAD were 5.7 and 1.9, respectively, and that of Bacillus stearothermophilus glyceraldehyde-3-phosphate dehydrogenase for poly(ethylene glycol)-bound NAD was 1.9.  相似文献   

7.

Two independent experiments were performed to assess the role of thiourea (TU)-mediated nitric oxide (NO) in mitigating boron toxicity (BT) in bread wheat (Triticum aestivum L. cv. Pandas) and durum wheat (Triticum durum cv. Altıntoprak 98) plants. In the first experiment, plants of the two wheat species were grown under control (0.05 mM B) and BT (0.2 mM B) supplied to nutrient solution for 4 weeks after germination. These two treatments were also combined with TU spray at 200 or 400 mg L−1 once a week during the period of stress. Boron toxicity reduced dry weights of shoot and root, leaf total chlorophyll, efficiency of photosystem II (Fv/Fm) and leaf relative water content, whereas it increased endogenous nitric oxide (NO), nitric oxide synthase (NOS), electrolyte leakage (EL), hydrogen peroxide (H2O2), malondialdehyde (MDA) and leaf B content. Reductions in total dry matter were 33% and 61% of control in cvs. Pandas and Altintoprak, respectively. Exogenous application of TU improved the plant growth attributes and led to further increases in NO in the leaves. An additional experiment was set up to further understand whether or not TU mediated NO production played a significant role in mitigation of BT using 0.1 mM scavenger of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO) combined with the TU treatments by spraying once a week for 4 weeks. TU-induced BT tolerance was totally eliminated by cPTIO by reversing endogenous NO levels. BT enhanced the activities of superoxide dismutase (SOD; EC 1.15.1.1), catalase (CAT; EC. 1.11.1.6), peroxidase (POD; EC. 1.11.1.7) and lipoxygenase (LOX; EC. 1.12.11.12) as well as the contents of soluble sugars (SS), soluble proteins and phenols, but decreased NR. TU treatments enhanced enzyme activities, but reduced contents of soluble sugars (SS), soluble protein and phenols. The present results clearly indicate that TU mediated endogenous NO significantly improved BT tolerance of wheat plants. This evidence was also supported by the increase in hydrogen peroxide (H2O2) and malondialdehyde (MDA) as well as plant growth inhibition with the application of TU combined with cPTIO.

  相似文献   

8.
Extended producer responsibility (EPR) legislation, making producers responsible for financing and organizing take-back and recycling of waste batteries, packaging, end-of-life vehicles (ELVs), and waste electrical and electronic equipment (WEEE), has been or is currently in the process of being implemented in 29 different countries in Europe following introduction of European Union directives. This article reviews the potential impacts of EPR for waste batteries, packaging, and WEEE on producers distributing products in Europe through a case study of Sony Computer Entertainment Europe (SCEE)—responsible for marketing and distribution of PlayStation products.
There are presently more than 250 producer responsibility organizations (PROs) established to meet EPR obligations in Europe, which contrasts to the single national recycling schemes founded in the late 1990s. SCEE estimates it avoided anetcostof €408,000 in 2005 by introducing competitive review of PRO services (against a total net take-back cost of €401,000).To meet increasingly extensive compliance obligations, SCEE has initiated new activities, with considerable implications for the company's legal, sales data administration, procurement, accounting, and product and packaging approval practices.
Considering the ultimate aim of EPR to establish economic incentives for improved product design, several significant political and practical obstacles are described from SCEE's case and industry situation. Although the principle of EPR is indeed interesting, its practical application in Europe may require refinement. Producers, given adequate support by policy makers, still have opportunities to develop new processes under the WEEE Directive to facilitate design for the environment.  相似文献   

9.
The developmental profile of the activities of some enzymes involved in malate metabolism, namely phosphoenolpyruvate carboxylase (PEPC; EC 4. 1. 1. 31), NAD+-linked (EC 1. 1. 1. 37) and NADP+-linked (EC 1. 1. 1. 82) malate dehydrosenase (MDH), NAD+linked (EC 1. 1. 1. 39) and NADP+-linked (EC 1. 1. 1. 40) malic enzyme (ME), has been determined in leaves of peach [ Prunus persica (L.) Batsch cv. Maycrest], a woody C3 species. In order to study the role of these enzymes, their activities were related to developmental changes of photosynthesis, respiration, and capacity for N assimilation. Activities of PEPC, NAD(P)+-MDH and NADP+-ME were high in young expanding leaves and decreased 2- to 3-fold in mature ones, suggesting that such enzymes play some role during the early stages of leaf expansion. In leaves of peach, such a role did not seem to be linked to C3 photosynthesis or nitrate assimilation, in that photosynthetic O2 evolution and activities of nitrate reductase (EC 1. 6. 6. 1) and glutamine synthetase (EC 6. 3. 1. 2) increased during leaf development. In contrast, leaf respiration strongly decreased with increasing leaf age. We suggest that in expanding leaves of this woody species the enzymes associated with malate metabolism have anaplerotic functions, and that PEPC may also contribute to the recapture of respiratory CO2.  相似文献   

10.
In order to study the location of enzymes of photorespiration in leaves of the C3–C4 intermediate species Moricandia arvensis (L.). DC, protoplast fractions enriched in mesophyll or bundlesheath cells have been prepared by a combination of mechanical and enzymic techniques. The activities of the mitochondrial enzymes fumarase (EC 4.2.1.2) and glycine decarboxylase (EC 2.1.2.10) were enriched by 3.0- and 7.5-fold, respectively, in the bundle-sheath relative to the mesophyll fraction. Enrichment of fumarase is consistent with the larger number of mitochondria in bundle-sheath cells relative to mesophyll cells. The greater enrichment of glycine decarboxylase indicates that the activity is considerably higher on a mitochondrial basis in bundle-sheath than in mesophyll cells. Serine hydroxymethyltransferase (EC 2.1.2.1) activity was enriched by 5.3-fold and glutamate-dependent glyoxylate-aminotransferase (EC 2.6.1.4) activity by 2.6-fold in the bundle-sheath relative to the mesophyll fraction. Activities of serine- and alanine-dependent glyoxylate aminotransferase (EC 2.6.1.45 and EC 2.6.1.4), glycollate oxidase (EC 1.1.3.1), hydroxypyruvate reductase (EC 1.1.1.81), glutamine synthetase (EC 6.3.1.2) and phosphoribulokinase (EC 2.7.1.19) were not significantly different in the two fractions. These data provide further independent evidence to complement earlier immunocytochemical studies of the distribution of photorespiratory enzymes in the leaves of this species, and indicate that while mesophyll cells of M. arvensis have the capacity to synthesize glycine during photorespiration, they have only a low capacity to metabolize it. We suggest that glycine produced by photorespiratory metabolism in the mesophyll is decarboxylated predominantly by the mitochondria in the bundle sheath.Abbreviation RuBP ribulose 1,5-bisphosphate  相似文献   

11.
Kay Denyer  Alison M. Smith 《Planta》1988,173(2):172-182
In order to determine whether the enzymes required to convert triose phosphate to acetyl CoA were present in pea (Pisum sativum L.) seed plastids, a rapid, mechanical technique was used to isolate plastids from developing cotyledons. The plastids were intact and the extraplastidial contamination was low. The following glycolytic enzymes, though predominantly cytosolic, were found to be present in plastids: glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12), phosphoglycerate kinase (EC 2.7.2.3), and pyruvate kinase(EC 2.7.1.40). Evidence is presented which indicates that plastids also contained low activities of enolase (EC 4.2.1.11) and phosphoglycerate mutase (EC 2.7.5.3). Pyruvate dehydrogenase, although predominantly mitochondrial, was also present in plastids. The plastidial activities of the above enzymes were high enough to account for the rate of lipid synthesis observed in vivo.Abbreviations FPLC fast protein liquid chromatography - PPi pyrophosphate  相似文献   

12.
The topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes within the transverse plane of rat liver microsomes was investigated using two impermeant inhibitors, mercury-dextran and dextran-maleimide. Between 70 and 98% of the activities of fatty acid : CoA ligase (EC 6.2.1.3), sn-glycerol-3-phosphate acyltransferase (EC 2.3.1.15), phosphatidic acid phosphatase (EC 3.1.3.4), diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2) and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) were inactivated by mercury-dextran. Dextran-maleimide caused 52% inactivation of the sn-glycerol-3-phosphate acyltransferase. Inactivation of each of these activities except fatty acid : CoA ligase occurred in microsomal vesicles which remained intact as evidenced by the maintenance of highly latent mannose-6-phosphatase activity (EC 3.1.3.9). These glycerolipid biosynthetic activities were not latent, indicating that substrates have free access to the active sites. Moreover, ATP, CDP-choline and CMP appeared unable to penetrate the microsome membrane. These data indicate that the active sites of these enzymes are located on the external surface of microsomal vesicles.It is concluded that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum.  相似文献   

13.
海洋和沿海生物多样性保护和可持续利用等问题是《生物多样性公约》谈判的重要领域。本文梳理了历次缔约方大会的谈判进程, 认为主要焦点议题包括: (1)应对人类活动和全球气候变化对海洋和沿海生物多样性的影响; (2)海洋和沿海生物多样性保护和可持续利用的工具; (3)海洋保护区及具有重要生态或生物学意义的海域。这些议题的讨论将影响包括全球海洋保护区建设在内的海洋生物多样性保护进程, 也将影响全球海洋生物多样性保护国际制度的建设, 以及沿海国家的社会经济。我国应加强履约谈判的技术支持, 加快涉海相关问题研究, 积极参与相关国际谈判, 并大力宣传我国经验。  相似文献   

14.
The task of modeling the distribution of a large number of tree species under future climate scenarios presents unique challenges. First, the model must be robust enough to handle climate data outside the current range without producing unacceptable instability in the output. In addition, the technique should have automatic search mechanisms built in to select the most appropriate values for input model parameters for each species so that minimal effort is required when these parameters are fine-tuned for individual tree species. We evaluated four statistical models—Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS)—for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model. To test, we applied these techniques to four tree species common in the eastern United States: loblolly pine (Pinus taeda), sugar maple (Acer saccharum), American beech (Fagus grandifolia), and white oak (Quercus alba). When the four techniques were assessed with Kappa and fuzzy Kappa statistics, RF and BT were superior in reproducing current importance value (a measure of basal area in addition to abundance) distributions for the four tree species, as derived from approximately 100,000 USDA Forest Service’s Forest Inventory and Analysis plots. Future estimates of suitable habitat after climate change were visually more reasonable with BT and RF, with slightly better performance by RF as assessed by Kappa statistics, correlation estimates, and spatial distribution of importance values. Although RTA did not perform as well as BT and RF, it provided interpretive models for species whose distributions were captured well by our current set of predictors. MARS was adequate for predicting current distributions but unacceptable for future climate. We consider RTA, BT, and RF modeling approaches, especially when used together to take advantage of their individual strengths, to be robust for predictive mapping and recommend their inclusion in the ecological toolbox.  相似文献   

15.
Endothelial cells (ECs) released microvesicles (EMVs) could modulate the functions of target cells by transferring their microRNAs (miRs). We have reported that miR-125a-5p protected EC function. In this study, we determined whether EMVs provided beneficial effects on ECs by transferring miR-125a-5p. Human brain microvessel ECs were transfected with miR-125a-5p mimic or miR-125a-5p short hairpin RNA to obtain miR-125a-5p overexpressing ECs and miR-125a-5p knockdown ECs, and their derived EMVs. For the functional study, ECs or hypoxia/reoxygenation injured ECs were coincubated with various EMVs. The survival and angiogenic function of ECs were measured. Western blot and quantitative real time polymerase chain reaction (qRT-PCR) were used for measuring the levels of phosphoinositide 3-kinase (PI3K), phosphorylation-Akt (p-Akt)/Akt, p-endothelial nitric oxide synthase (p-eNOS), cleaved caspase-3, and miR-125a-5p. PI3K inhibitor was used for pathway analysis. EMVs promoted the proliferation, migration, and tube formation ability of ECs, and alleviated the apoptotic rate of ECs. These effects were associated by an increase in p-Akt/Akt and p-eNOS, and a decrease in cleaved caspase-3 could be abolished by LY294002. Overexpression or downregulation of miR-125a-5p in EMVs promoted or inhibited those effects of EMVs. EMVs could enhance the survival and angiogenic function of ECs via delivering miR-125a-5p to modulate the expression of PI3K/Akt/eNOS pathway and caspase-3.  相似文献   

16.
高HCY培养内皮细胞表面形态的AFM观察   总被引:4,自引:0,他引:4  
目的:探讨一种新的损伤小、分辨率高的观察内皮细胞表面形态的方法。方法:取新生胎儿脐带静脉血管内皮细胞,培养24~48小时后,分为高HCY实验组和正常对照组,采用AFM对用戊二醛固定与未固定的内皮细胞进行观察,并与倒置显微镜、电子显微镜进行比较。结果:(1)固定后的内皮细胞AFM扫描图象见细胞表面颗粒界限分明,排列规则,平均尺度为300~400nm,平整度略好于培养条件下观察的内皮细胞图象;(2)固定的高HCY实验组内皮细胞的AFM扫描图象见细胞表面有非常多的突起,颗粒规则性排列的特征消失,颗粒间界限模糊,表面粗糙,呈虫蚀状变化。(3)倒置显微镜观察未见两组间差异,电子显微镜观察也无法分辨差异。结论:AFM是一种观察内皮细胞表面形态的较好方法,损伤小、分辨率高  相似文献   

17.
Many researchers have focused chitosan as a source of potential bioactive material during past few decades. However, chitosan has several drawbacks to be utilized in biological applications, including poor solubility under physiological conditions. Therefore, a new interest has recently been emerged on partially hydrolyzed chitosan, chitosan oligosaccharides (COS). During the resent past, several technological approaches have been taken to prepare COS and, enzymatic preparation methods captured a great interest due to safe and non-toxic concerns. With time, new improvements were introduced to enzymatic production and presently it has been developed to a continuous production process. Many of the biological activities reported for COS, such as antimicrobial, anticancer, antioxidant, and immunostimulant effects are depend on their physico-chemical properties. In this review, we have summarized different enzymatic preparation methods of COS and some of their reported biological activities.  相似文献   

18.
Experiments were performed to localize the hepatic microsomal enzymes of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol biosynthesis to the cytoplasmic or lumenal surface of microsomal vesicles. Greater than 90 percent of the activities of fatty acid-CoA ligase (EC 6.2.1.3), sn-glycerol 3-phosphate acyltransferase (EC 2.3.1.15), lysophosphatidic acid acyltransferase, diacylglycerol acyltransferase (EC 2.3.1.20), diacylglycerol cholinephosphotransferase (EC 2.7.8.2), and diacylglycerol ethanolaminephosphotransferase (EC 2.7.8.1) was inactivated by proteolysis of intact microsomal vesicles. The phosphatidic acid phosphatase (EC 3.1.3.4) was not inactivated by any of the protease tested. Under conditions employed, <5 percent of the luminal mannose-6-phosphatase (EC 3.1.3.9) activity was lost. After microsomal integrity was disrupted with detergents, protease treatment resulted in a loss of >74 percent of the mannose-6-phosphatase activity. The latency of the mannose-6-phosphatase activity was not affected by protease treatment. Mannose-6-phosphatase latency was not decreased by the presence of the assay components of several of the lipid biosynthetic activities, indicating that those components did not disrupt the microsomal vesicles. None of the lipid biosynthetic activities appeared latent. The presence of a protease-sensitive component of these biosynthetic activities on the cytoplasmic surface of microsomal vesicles, and the absence of latency for any of these biosynthetic activities suggest that the biosynthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol occurs asymmetrically on the cytoplasmic surface of the endoplasmic reticulum. The location of biosynthetic activities within the transverse plane of the endoplasmic reticulum is of particular interest for enzymes whose products may be either secreted or retained within the cell. Phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol account for the vast majority of hepatic glycerolipid biosynthesis. The phospholipids are utilized for hepatic membrane biogenesis and for the formation of lipoproteins, and the triacylglycerols are incorporated into lipoproteins or accumulate within the hepatocyte in certain disease states (14). The enzymes responsible for the biosynthesis of these glycerolipids (Scheme I) from fatty acids and glycerol-3P have all been localized to the microsomal subcellular fraction (12, 16, 29, 30). Microsomes are derived from the endoplasmic reticulum and are sealed vesicles which maintain proper sidedness. (11, 22). The external surface of these vesicles corresponds to the cytoplasmic surface of the endoplasmic reticulum. Macromolecules destined for secretion must pass into the lumen of the endoplasmic reticulum (5, 23). Uncharged molecules of up to approximately 600 daltons are able to enter the lumen of rat liver microsomes, but macromolecules and charged molecules of low molecular weight do not cross the vesicle membrane (10, 11). Because proteases neither cross the microsomal membrane nor destroy the permeability barrier of the microsomal vesicles, only the enzymes and proteins located on the cytoplasmic surface of microsomal vesicles are susceptible to proteolysis unless membrane integrity is disrupted (10, 11). By use of this approach, several enzymes and proteins have been localized in the transverse plane of microsomal membranes (11). With the possible exception of cytochrome P 450, all of the enzymes and proteins investigated were localized asymmetrically by the proteolysis technique (11). By studies of this type, as well as by product localization, glucose-6-phosphate (EC 3.1.3.9) has been localized to the luminal surface of microsomal vesicles (11) and of the endoplasmic reticulum (18, 19). All microsomal vesicles contain glucose-6-phosphatase (18, 19) which can effectively utilize mannose-6-P as a substrate, provided the permeability barrier of the vesicles has been disrupted to allow the substrate access to the active site located on the lumenal surface (4). An exact correspondence between mannose- 6-phosphate activity and membrane permeability to EDTA has been established (4). The latency of mannose-6-phosphatase activity provides a quantitative index of microsomal integrity (4.) Few of the microsomal enzymes in the synthesis of phosphatidylcholine, phosphatidylethanolamine, and triacylglycerol have been solubilized and/or purified, and little is known about the topography of these enzymes in the transverse or lateral planes of the endoplasmic reticulum. An asymmetric location of these biosynthetic enzymes on the cytoplasmic or lumenal surface of microsomal vesicles may provide a mechanism for regulation of the glycerolipids to be retained or secreted by the cell, and for the biogenesis of asymmetric phospholipid bilayers. In this paper, we report investigations on the localization of all seven microsomal enzymes (Scheme I) in the biosynthesis of triacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, using the protease technique with mannose-6-phosphatase serving as luminal control activity. The latency of these lipid biosynthetic enzymes was also investigated, using the latency of mannose-6-phosphatase as an index of microsomal integrity.  相似文献   

19.

Background

Many international statements have urged researchers, policy-makers and health care providers to collaborate in efforts to bridge the gaps between research, policy and practice in low- and middle-income countries. We surveyed researchers in 10 countries about their involvement in such efforts.

Methods

We surveyed 308 researchers who conducted research on one of four clinical areas relevant to the Millennium Development Goals (prevention of malaria, care of women seeking contraception, care of children with diarrhea and care of patients with tuberculosis) in each of 10 low- and middle-income countries (China, Ghana, India, Iran, Kazakhstan, Laos, Mexico, Pakistan, Senegal and Tanzania). We focused on their engagement in three promising bridging activities and examined system-level, organizational and individual correlates of these activities.

Results

Less than half of the researchers surveyed reported that they engaged in one or more of the three promising bridging activities: 27% provided systematic reviews of the research literature to their target audiences, 40% provided access to a searchable database of research products on their topic, and 43% established or maintained long-term partnerships related to their topic with representatives of the target audience. Three factors emerged as statistically significant predictors of respondents’ engagement in these activities: the existence of structures and processes to link researchers and their target audiences predicted both the provision of access to a database (odds ratio [OR] 2.62, 95% CI 1.30–5.27) and the establishment or maintenance of partnerships (OR 2.65, 95% CI 1.25–5.64); stability in their contacts predicted the provision of systematic reviews (OR 2.88, 95% CI 1.35–6.13); and having managers and public (government) policy-makers among their target audiences predicted the provision of both systematic reviews (OR 4.57, 95% CI 1.78–11.72) and access to a database (OR 2.55, 95% CI 1.20–5.43).

Interpretation

Our findings suggest potential areas for improvement in light of the bridging strategies targeted at health care providers that have been found to be effective in some contexts and the factors that appear to increase the prospects for using research in policy-making.The need to bridge the gaps between research, policy and practice appears to be a global phenomenon. Three recent, highly visible resolutions — the Mexico Action Statement on Health Research in 2004 (58 countries),1 the related World Health Assembly resolution in 2005 (193 countries)2 and the Bamako Call to Action on Research for Health in 2008 (53 countries) 3 — urged researchers, policy-makers and health care providers to collaborate in efforts to bridge these gaps. These efforts can range from bringing research-based evidence to the attention of those who could use it, to making research-based evidence available so that it can be readily retrieved when needed.We are not aware of a survey having been conducted in a range of low- and middle-income countries about researchers’ bridging activities related to specific high-priority health topics. Researchers and research organizations have been surveyed about their bridging activities in single high-income countries such as Canada.46 Guideline-producing organizations and health technology assessment agencies have also been surveyed about their bridging activities;7 only in one case was the focus on bridging activities in low- and middle-income countries.8 Select research funding agencies have been studied in low- and middle-income countries.9 Yet the Millennium Development Goals and the goals of many countries call for topic-focused efforts to bridge the gaps between research, policy and practice.We studied efforts to bridge the gaps between research, policy and practice in 10 low- and middle-income countries (China, Ghana, India, Iran, Kazakhstan, Laos, Mexico, Pakistan, Senegal and Tanzania). In this article, we describe the findings from a survey of researchers in these countries who conducted research in one of four clinical areas relevant to the Millennium Development Goals: prevention of malaria (Ghana, Laos, Senegal and Tanzania), care of women seeking contraception (China, Kazakhstan, Laos and Mexico), care of children with diarrhea (Ghana, India, Pakistan and Senegal) and care of patients with tuberculosis (China, India, Iran and Mexico). In a related article, we describe the findings from a survey of health care providers in these countries who were practising in one of these clinical areas about their awareness of, access to and use of research-based evidence in these clinical areas and the influence of such evidence on their professional practice.10The challenges associated with documenting such efforts include cross-country differences in the capacity to conduct surveys of researchers; the visibility of researchers depending on their alignment with priorities of government, development agencies, research funding agencies and industry (and hence their likelihood of being identified to participate in these surveys); and researchers’ familiarity with and attitudes toward the bridging activities asked about in these surveys.  相似文献   

20.
Carboxypeptidase R (EC 3.4.17.20) (CPR) and carboxypeptidase N (EC 3.4.17.3) (CPN) cleave carboxy-terminal arginine or lysine residues from biologically active peptides such as kinins or anaphylatoxins in the circulation thereby regulating their activities. Although CPN is present in a stable active form in plasma, CPR is generated from proCPR, a plasma zymogen, by proteolytic enzymes such as thrombin, thrombin-thrombomodulin complex and plasmin. We have isolated rat proCPR and CPN cDNA clones which can induce enzymatic activities in culture supernatants of the transfected cells. mRNA of proCPR was detected only in rat liver by Northern hybridization and showed hepatocyte-specific expression. Expression of proCPR mRNA was enhanced following LPS injection, indicating that proCPR production is increased under inflammatory conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号