首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thermal stability of the α‐helix conformation of melittin in pure ethanol and ethanol–water mixture solvents has been investigated by using NMR spectroscopy. With increase in water concentration of the mixture solvents (from 0 wt% to ~71.5 wt%) as well as temperature (from room temperature to 60 °C), the intramolecular hydrogen bonds formed in melittin are destabilized and the α‐helix is partially uncoiled. Further, the hydrogen bonds are found to be more thermally stable in pure ethanol than in pure methanol, suggesting that their stability is enhanced with increase in the size of the alkyl groups of alcohol molecules. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
Abstract

The molecular dynamics simulation has been performed to investigate the charge distribution, structural and dynamical properties of liquid ammonia at 273 K using a polarisable force field of the atom-bond electronegativity equalisation method (ABEEMσπ). One ammonia molecule in this model has eight charge sites, one N atomic site, three H atomic sites, three N–H bond sites and one lone-pair electron site. ABEEMσπ model can present the quantitative site charges of molecular ammonias in liquid and their changing in response to their surroundings. The radial distribution functions and dynamical properties are in fair agreement with the available experimental data. The first peak of gNN(r) appears at N–N distance of ~3.50 ± 0.05 Å where most hydrogen bonds are formed. The average coordination number of the first shell is 13.0 ± 0.1 among which a central ammonia molecule intimately connects 3 ~ 4 ammonia molecules by hydrogen bonds. The power spectrum shows the vibrations of hydrogen bonds. For a reference, a simple estimation of the average hydrogen bonding energy in liquid ammonia is 6.5 ± 0.1 kcal/mol larger than 3.8 ± 0.3 kcal/mol in dimer ammonia. Our simulation results provide more detailed information about liquid ammonia.  相似文献   

3.
Thermus thermophilius isopropylmalate dehydrogenase catalyzes oxidative decarboxylation and dehydrogenation of isopropylmalate. Substitution of leucine to alanine at position 172 enhances the thermal stability among the known point mutants. Exploring the dynamic properties of non-covalent interactions such as saltbridges, hydrogen bonds and hydrophobic interactions to explain thermal stability of a protein is interesting in its own right. In this study dynamic changes in the non-covalent interactions are studied to decipher the deterministic features of thermal stability of a protein considering a case study of a point mutant in Thermus thermophilus isopropylmalate dehydrogenase. A total of four molecular dynamic simulations of 0.2 μs were carried out on wild type and mutant’s functional dimers at 300 K and 337 K. Higher thermal stability of the mutant as compared to wild type is revealed by root mean square deviation, root mean square fluctuations and Cα-Cα distance with an increase in temperature from 300 K to 337 K. Most of the regions of wild type fluctuate higher than the corresponding regions of mutant with an increase in temperature. Cα-Cα distance analysis suggests that long distance networks are significantly affected in wild type as compared to the mutant. Short lived contacts are higher in wild type, while long lived contacts are lost at 337 K. The mutant forms less hydrogen bonds with water as compared to wild type at 337 K. In contrast to wild type, the mutant shows significant increase in unique saltbridges, hydrogen bonds and hydrophobic contacts at 337 K. The current study indicates that there is a strong inter-dependence of thermal stability on the way in which non-covalent interactions reorganize, and it is rewarding to explore this connection in single mutant studies.  相似文献   

4.
The gene encoding the novel enzyme N-acylamino acid racemase (AAR) was cloned in recombinant phage -4 from the DNA library of Amycolatopsis sp. TS-1-60, a rare actinomycete, using antiserum against the enzyme. The cloned gene was subcloned and transformed in Escherichia coli JM105 using pUC118 as a vector. The AAR gene consists of an open-reading frame of 1104 nucleotides, which specifies a 368-amino-acid protein with a molecular mass of 39411Da. The molecular mass deduced from the AAR gene is in good agreement with the subunit molecular mass (40kDa) of AAR from Amycolatopsis sp. TS-1-60. The guanosine plus cytosine content of the AAR gene was about 70%. Although the AAR gene uses the unusual initiation codon GTG, the gene was expressed in Escherichia coli using the lac promoter of pUC118. The amount of the enzyme produced by the transformant was 16 times that produced by Amycolatopsis sp. TS-1-60. When the unusual initiation codon GTG was changed to ATG, the enzyme productivity of the transformant increased to more than 37 times that of Amycolatopsis sp. TS-1-60. In the comparison of the DNA sequence and the deduced amino acid sequence of AAR with those of known racemases and epimerases in data bases, no significant sequence homology was found. However, AAR resembles mandelate racemase in that requires metal ions for enzyme activity. Comparison of the deduced amino acid sequences of mandelate racemase and AAR revealed amino acid sequences in AAR similar to those of both the catalytic and metal-ion-binding sites of mandelate racemase.  相似文献   

5.
HCl, HNO3 and H2SO4 are implicated in atmospheric processes in areas such as polar stratospheric clouds in the stratosphere. Ternary complexes of HCl, HNO3 and H2SO4 were investigated by ab initio calculations at B3LYP level of theory with aug-cc-pVTZ and aug-cc-pVQZ basis sets, taking into account basis set superposition error (BSSE). The results were assessed in terms of structures (five hexagonal cyclic structures and two quasi-pentagonal cyclic structures), inter-monomeric parameters (all ternary complexes built three hydrogen bonds), energetics (seven minima obtained), infrared harmonic vibrational frequencies (red shifting of complexes from monomers), and relative stability of complexes, which were favorable when the temperature decreases under stratospheric conditions, from 298 K to 188 K, and in concrete, at 210 K, 195 K and 188 K.  相似文献   

6.
C3 is a chimera from human β-defensins 2 and 3 and possesses higher antimicrobial activity compared with its parental molecules, so it is an attractive candidate for clinical application of antimicrobial peptides. In continuation with the previous studies, molecular dynamics (MD) simulations were carried out for further investigating the effect of ambient environments (temperature and bacterial membrane) on C3 dynamics. Our results reveal that C3 has higher flexibility, larger intensity of motion, and more relevant secondary structural changes at 363 K to adapt the high temperature and maintain its antimicrobial activity, comparison with it at 293 K; when C3 molecule associates with the bacterial membrane, it slightly fluctuates and undergoes local conformational changes; in summary, C3 molecule demonstrates stable conformations under these environments. Furthermore, MD results analysis show that the hydrophobic contacts, the hydrogen bonds, and disulfide bonds in the peptide are responsible for maintaining its stable conformation. In addition, our simulation shows that C3 peptides can make anionic lipids clustered in the bacterial membrane; it means that positive charges and pronounced regional cationic charge density of C3 are most key factors for its antimicrobial activity.  相似文献   

7.
Molecular dynamics (MD) simulations of a subtilisin-like serine protease VPR from the psychrophilic marine bacterium Vibrio sp. PA-44 and its mesophilic homologue, proteinase K (PRK), have been performed for 20 ns at four different temperatures (300, 373, 473, and 573 K). The comparative analyses of MD trajectories reveal that at almost all temperatures, VPR exhibits greater structural fluctuations/deviations, more unstable regular secondary structural elements, and higher global flexibility than PRK. Although these two proteases follow similar unfolding pathways at high temperatures, VPR initiates unfolding at a lower temperature and unfolds faster at the same high temperatures than PRK. These observations collectively indicate that VPR is less stable and more heat-labile than PRK. Analyses of the structural/geometrical properties reveal that, when compared to PRK, VPR has larger radius of gyration (Rg), less intramolecular contacts and hydrogen bonds (HBs), more protein-solvent HBs, and smaller burial of nonpolar area and larger exposure of polar area. These suggest that the increased flexibility of VPR would be most likely caused by its reduced intramolecular interactions and more favourable protein-solvent interactions arising from the larger exposure of the polar area, whereas the enhanced stability of PRK could be ascribed to its increased intramolecular interactions arising from the better optimized hydrophobicity. The factors responsible for the significant differences in local flexibility between these two proteases were also analyzed and ascertained. This study provides insights into molecular basis of thermostability of homologous serine proteases adapted to different temperatures.  相似文献   

8.
Mandelate racemase [EC 5.1.2.2] from Pseudomonas putida ATCC 12336 was efficiently immobilized through ionic binding onto DEAE- and TEAE 23-cellulose. The activity of the immobilized enzyme was significantly enhanced as compared to the native protein, i.e., 2.7- and 2.5-fold, respectively. DEAE-cellulose-immobilized mandelate racemase could be efficiently used in repeated batch reactions for the racemization of (R)-mandelic acid under mild conditions.  相似文献   

9.
Nagar M  Narmandakh A  Khalak Y  Bearne SL 《Biochemistry》2011,50(41):8846-8852
Mandelate racemase (EC 5.1.2.2) from Pseudomonas putida catalyzes the interconversion of the enantiomers of mandelic acid and a variety of aryl- and heteroaryl-substituted mandelate derivatives, suggesting that β,γ-unsaturation is a requisite feature of substrates for the enzyme. We show that β,γ-unsaturation is not an absolute requirement for catalysis and that mandelate racemase can bind and catalyze the racemization of (S)-trifluorolactate (k(cat) = 2.5 ± 0.3 s(-1), K(m) = 1.74 ± 0.08 mM) and (R)-trifluorolactate (k(cat) = 2.0 ± 0.2 s(-1), K(m) = 1.2 ± 0.2 mM). The enzyme was shown to catalyze hydrogen-deuterium exchange at the α-postion of trifluorolactate using (1)H NMR spectrocsopy. β-Elimination of fluoride was not detected using (19)F NMR spectroscopy. Although mandelate racemase bound trifluorolactate with an affinity similar to that exhibited for mandelate, the turnover numbers (k(cat)) were markedly reduced by ~318-fold, resulting in catalytic efficiencies (k(cat)/K(m)) that were ~400-fold lower than those observed for mandelate. These observations suggested that chemical steps on the enzyme were likely rate-determining, which was confirmed by demonstrating that the rates of mandelate racemase-catalyzed racemization of (S)-trifluorolactate were not dependent upon the solvent microviscosity. Circular dichroism spectroscopy was used to measure the rates of nonenzymatic racemization of (S)-trifluorolactate at elevated temperatures. The values of ΔH(?) and ΔS(?) for the nonenzymatic racemization reaction were determined to be 28.0 (±0.7) kcal/mol and -15.7 (±1.7) cal K(-1) mol(-1), respectively, corresponding to a free energy of activation equal to 33 (±4) kcal/mol at 25 °C. Hence, mandelate racemase stabilizes the altered trifluorolactate in the transition state (ΔG(tx)) by at least 20 kcal/mol.  相似文献   

10.
Molecular dynamics (MD) computer simulations are utilized to better understand the dynamics of small (N = 5) endohedral Ne@C60 aggregates. Multiple runs at various temperatures are used to increase the reliability of our statistics. The aggregate holds together until somewhere between T = 1150 and 1200 K, where it dissociates, showing no intermediate sign of melting or fullerene disintegration. When the temperature is increased to around T = 4000 K, the encapsulated neon atoms begin to leave the aggregate, with the fullerene molecules still remaining intact. At temperatures near T = 4400 K, thermal disintegration of the fullerenes preempts the aggregate dissociation. Above this temperature neon atoms are more quickly released and the fullerenes form a larger connected structure, with bonding taking place in atom pairs from different original fullerene molecules. Escape constants and half lives are calculated for the temperature range 4000 K ≤ T ≤ 5000 K. The agreements and disagreements of results of this work with experiments suggest that classical MD simulations are useful in describing fullerene systems at low temperatures and near disintegration, but require development of new techniques before it is possible to accurately model windowing at temperatures below T = 3000 K.  相似文献   

11.
Molecular dynamics simulation was used to study the dynamic differences between native Aspergillus niger PhyA phytase and a mutant with 20 % greater thermostability. Atomic root mean square deviation, radius of gyration, and number of hydrogen bonds and salt bridges are examined to determine thermostability factors. The results suggest that, among secondary structure elements, loops have the most impact on the thermal stability of A. niger phytase. In addition, the location rather than the number of hydrogen bonds is found to have an important contribution to thermostability. The results also show that salt bridges may have stabilizing or destabilizing effect on the enzyme and influence its thermostability accordingly.  相似文献   

12.
Abstract

The fungal chitinase I obtained from Thermomyces lanuginosus SSBP, a thermophilic deuteromycete, has an optimum growth temperature and pH of 323.15 K and 6.5, respectively. This enzyme plays an important task in the defence mechanism of organisms against chitin-containing parasites by hydrolysing β-1, 4-linkages in chitin. It acts as both anti-fungal and biofouling agents, with some being thermostable and suitable for the industrial applications. Three-dimensional model of chitinase I enzyme was predicted and analysed using various bioinformatics tools. The structure of chitinase I exhibited a well-defined TIM barrel topology with an eight-stranded α/β domain. Structural analysis and folding studies at temperatures ranging from 300 to 375 K using 10 ns molecular dynamics simulations clearly showed the stability of the protein was evenly distributed even at higher temperatures, in accordance with the experimental results. We also carried out a number of 20 ns constant pH molecular dynamics simulations of chitinase I at a pH range 2–6 in a solvent. This work was aimed at establishing the optimum activity and stability profiles of chitinase I. We observed a strong conformational pH dependence of chitinase I and the enzyme retained their characteristic TIM barrel topology at low pH.  相似文献   

13.
We investigated vacancy-assisted self-diffusion in germanium by means of kinetic lattice Monte Carlo (KLMC) simulations below the melting temperature, for a vacancy concentration of 1 × 1018/cm3. At higher temperatures, fewer clusters formed, but there was less variation in the number of clusters than at lower temperatures as the time increased. Equilibrium diffusivities in the clustering region were 102 lower than those of free vacancies in the initial stage of KLMC simulations. They were expressed according to three temperature regimes: 6.5 × 10? 4 exp(–0.35/k B T) cm2/s at temperatures above 1100 K, 5.2 × 105 exp(–2.32/k B T) cm2/s at temperatures of 900–1100 K and 6.0 × 0–7 exp(–0.19/k B T) cm2/s at temperatures below 900 K. The effective mean migration energy, 1.1 eV, closely coincided with that of the 1.0–1.2 eV in experiments and was very different from the migration energy of the free vacancy.  相似文献   

14.
One of the reasons for the death of motor neurons of the brain and spinal cord in patients with amyotrophic lateral sclerosis is known to be formation of subcellular protein aggregates that are caused by mutations in the SOD1 gene. Patient survival time was earlier shown to have limiting correlation with thermostability change of SOD1 mutant forms of patients’ carriers. We hypothesized that aggregation of mutant SOD1 may occur not only due to the protein destabilization, but through formation of novel interatomic bonds which stabilize “pathogenic” conformations of the mutant as well. To estimate these effects in the present paper, we performed statistical analysis of occupancy of intramolecular hydrogen bonds, hydrogen bonds between the protein and water molecules, and water bridges with use of molecular dynamics simulation for 38 mutant SOD1 forms. Multiple regression model based on these kinds of bonds demonstrated correlation with patient survival time significantly better (R = .9, p-value < 10?11) than the thermostability of SOD1 mutants only. It was shown that the occupancy of intramolecular hydrogen bonds between amino acid residues is a key determinant (R = .89, p-value < 10?10) in predicting patients’ survival time.  相似文献   

15.
Correlations between amide proton temperature coefficients (HN/T) and hydrogen bonds were investigated for a data set of 793 amides derived from 14 proteins. For amide protons showing temperature gradients more positive than –4.6 ppb/K there is a hydrogen bond predictivity value exceeding 85%. It increases to over 93% for amides within the range between –4 and –1 ppb/K. Detailed analysis shows an inverse proportionality between amide proton temperature coefficients and hydrogen bond lengths. Furthermore, for hydrogen bonds of similar bond lengths, values of temperature gradients in -helices are on average 1 ppb/K more negative than in -sheets. In consequence, a number of amide protons in -helices involved in hydrogen bonds shorter than 2 Å show HN/T < –4.6 ppb/K. Due to longer hydrogen bonds, 90% of amides in 310 helices and 98% in -turns have temperature coefficients more positive than –4.6ppb/K. Ring current effect also significantly influences temperature coefficients of amide protons. In seven out of eight cases non-hydrogen bonded amides strongly deshielded by neighboring aromatic rings show temperature coefficients more positive than –2 ppb/K. In general, amide proton temperature gradients do not change with pH unless they correspond to conformational changes. Three examples of pH dependent equilibrium showing hydrogen bond formation at higher pH were found. In conclusion, amide proton temperature coefficients offer an attractive and simple way to confirm existence of hydrogen bonds in NMR determined structures.  相似文献   

16.
Terahertz absorption spectra of alanine polypeptides in water were simulated with classical molecular dynamics at 310 K. Vibrational modes and oscillator strengths were calculated based on a quasi-harmonic approximation. Absorption spectra of Alan (n = 5, 15, 30) with different chain lengths and Ala15 in coiled and helical conformations were studied in 10–40 cm? 1 bandwidth. Simulation results indicated both the chain length and the conformation have significant influences on THz spectra of alanine polypeptides. With the increase of chain length, the average THz absorption intensity increases. Compared with the helical Ala15 polypeptide, the THz spectra of coiled one shows stronger absorption peaks. These results were explained from different numbers of hydrogen bonds formed between polypeptides and the surrounding water molecules.  相似文献   

17.
The effects of morin and nordihydroguaiaretic acid (NDGA), two plant secondary metabolites, on porcine pancreatic phospholipase A2 (PLA2) were investigated by isothermal titration calorimetry (ITC) and in silico docking analyses. The binding energies obtained for NDGA and morin from the ITC studies are ? 6.36 and ? 5.91 kcal mol? 1, respectively. Similarly, the glide scores obtained for NDGA and morin towards PLA2 were ? 7.32 and ? 7.23 kcal mol? 1, respectively. Further the docked complexes were subjected to MD simulation in the presence of explicit water molecules to check the binding stability of the ligands in the active site of PLA2. The bound ligands make hydrogen bonds with the active site residues of the enzyme and coordinate bonds with catalytically important Ca2+ ion. The binding of ligands at the active site of PLA2 may also contribute to the reported anti-inflammatory properties of NDGA and morin.  相似文献   

18.
Fullerene-based bi-functional nanocomposite thin film (Ag nanoparticles embedded in fullerene C70 matrix) is synthesized by thermal co-deposition method. Thermal stability of Ag-C70 nanocomposite is investigated by annealing the nanocomposite thin film at different temperatures from 80 to 350 °C for 30 min. Optical and structural properties of nanocomposite thin film with respect to high temperature are studied by UV-visible spectroscopy and x-ray diffraction, respectively. Transmission electron microscopy is performed to observe the temperature-dependent size evolution of Ag nanoparticles in fullerene C70 matrix. A large growth of Ag nanoparticles is observed with temperature especially above 200 °C due to enhanced diffusion of Ag in fullerene C70 at higher temperature and Ostwald ripening. The properties of metal-fullerene nanocomposite is not significantly affected up to a temperature of 150 °C. With a further increase in temperature, a major blue shift of ~?33 nm in SPR wavelength is seen at a temperature of 300 °C due to the thermal induced structural transformation of fullerene C70 matrix into amorphous carbon. A very large-sized Ag nanoparticle with a wide size distribution varying from 27.8 ± 0.6 to 330.0 ± 4.5 nm is seen at 350 °C and due to which, a red shift of ~?16 nm is obtained at this temperature. This study throws light on the thermal stability of the devices based on metal-fullerene bi-functional nanocomposite.  相似文献   

19.
酶的热稳定性问题一直是蛋白质工程领域关注的重点。本研究通过枯草芽孢杆菌脂肪酶的不同模拟温度下的分子动力学模拟轨迹,分析野生型脂肪酶(WTL)及其突变体(6B)残基间相互作用对热稳定性的影响。首先确定残基间的空间关系,采用空间聚类和FP-growth算法,识别出保持协同运动的β3-β8以及C端部分区域,即确定刚性区;接着运用连续帧间差分法确定波动较大的柔性区,发现其主要位于转角处。以300 K常温状态下识别出的刚性区和柔性区为基础,考察刚性区和柔性区在不同温度下相互作用的动态变化规律,发现WTL和6B的刚性区内的相互作用几乎不随温度发生变化,在高温400 K时,WTL柔性区的稳定氢键数急剧减少为7,6B柔性区的稳定氢键数随温度变化较为稳定。另外,6B的柔性区较WTL少了310螺旋,这是由于突变后的Ser15与突变后的Ser17形成强大的氢键作用,A15S和F17S突变改善了脂肪酶结构的柔性使其热稳定性增强。  相似文献   

20.
Multiple spectroscopic techniques, such as fluorescence, absorption, and circular dichroism along with in silico studies were used to characterize the binding of a potent inhibitor molecule, CCG1423 to the major transport protein, human serum albumin (HSA). Fluorescence and absorption spectroscopic results confirmed CCG1423–HSA complex formation. A strong binding affinity stabilized the CCG1423–HSA complex, as evident from the values of the binding constant (Ka = 1.35 × 106–5.43 × 105 M?1). The KSV values for CCG1423–HSA system were inversely correlated with temperature, suggesting the involvement of static quenching mechanism. Thermodynamic data anticipated that CCG1423–HSA complexation was mainly driven by hydrophobic and van der Waals forces as well as hydrogen bonds. In silico analysis also supported these results. Three-dimensional fluorescence and circular dichroism spectral analysis suggested microenvironmental perturbations around protein fluorophores and structural (secondary and tertiary) changes in the protein upon CCG1423 binding. CCG1423 binding to HSA also showed some protection against thermal denaturation. Site-specific marker-induced displacement results revealed CCG1423 binding to Sudlow’s site I of HSA, which was also confirmed by the computational results. A few common ions were also found to interfere with the CCG1423–HSA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号