首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Src homology 3 (SH3) domains are involved in the regulation of important cellular pathways, such as cell proliferation, migration and cytoskeletal modifications. Recognition of polyproline and a number of noncanonical sequences by SH3 domains has been extensively studied by crystallography, nuclear magnetic resonance and other methods. High-affinity peptides that bind SH3 domains are used in drug development as candidates for anticancer treatment. This review summarizes the latest achievements in deciphering structural determinants of SH3 function.  相似文献   

4.
Equilenin, a naturally fluorescent steroid, has high binding affinity for human sex steroid-binding protein (SBP). At 4°C the equilibrium association constant is ~6 × 107 M?1. The fluorescence excitation and emission spectra of the steroid—protein complex indicate that both hydrophobic interactions and hydrogen bonding of the 3'-hydroxyl group of the estrogen are important in its binding to the protein. Equilenin has a substantially different 3-dimensional spatial configuration compared with the normally bound androgens, and yet exhibits very tight binding to SBP. This suggests that SBP undergoes a conformational change to accomodate equilenin.  相似文献   

5.
Protein–protein interactions (PPI) are involved in all cellular processes and many represent attractive therapeutic targets. However, the frequently rather flat and large interaction areas render the identification of small molecular PPI inhibitors very challenging. As an alternative, peptide interaction motifs derived from a PPI interface can serve as starting points for the development of inhibitors. However, certain proteins remain challenging targets when applying inhibitors with a competitive mode of action. For that reason, peptide-based ligands with an irreversible binding mode have gained attention in recent years. This review summarizes examples of covalent inhibitors that employ peptidic binders and have been tested in a biological context.  相似文献   

6.
7.
  1. Download : Download high-res image (177KB)
  2. Download : Download full-size image
  相似文献   

8.
A high-throughput screen (HTS) of the MLPCN library using a homogenous fluorescence polarization assay identified a small molecule as a first-in-class direct inhibitor of Keap1–Nrf2 protein–protein interaction. The HTS hit has three chiral centers; a combination of flash and chiral chromatographic separation demonstrated that Keap1-binding activity resides predominantly in one stereoisomer (SRS)-5 designated as ML334 (LH601A), which is at least 100× more potent than the other stereoisomers. The stereochemistry of the four cis isomers was assigned using X-ray crystallography and confirmed using stereospecific synthesis. (SRS)-5 is functionally active in both an ARE gene reporter assay and an Nrf2 nuclear translocation assay. The stereospecific nature of binding between (SRS)-5 and Keap1 as well as the preliminary but tractable structure–activity relationships support its use as a lead for our ongoing optimization  相似文献   

9.
Cell Biology and Toxicology - Chronic inflammation (CI) is a primary contributing factor involved in multiple diseases like cancer, stroke, diabetes, Alzheimer’s disease, allergy, asthma,...  相似文献   

10.
11.
Small molecule metabolites play important roles in regulating protein functions, which are acted through either covalent non-enzymatic post-translational modifications or non-covalent binding interactions. Chemical proteomic strategies can help delineate global landscapes of cellular protein–metabolite interactions and provide molecular insights about their mechanisms of action. In this review, we summarized the recent progress in developments and applications of chemoproteomic strategies to profile protein–metabolite interactions.  相似文献   

12.
13.
We review the importance of helix motions for the function of several important categories of membrane proteins and for the properties of several model molecular systems. For voltage-gated potassium or sodium channels, sliding, tilting and/or rotational movements of the S4 helix accompanied by a swapping of cognate side-chain ion-pair interactions regulate the channel gating. In the seven-helix G protein-coupled receptors, exemplified by the rhodopsins, collective helix motions serve to activate the functional signaling. Peptides which initially associate with lipid-bilayer membrane surfaces may undergo dynamic transitions from surface-bound to tilted-transmembrane orientations, sometimes accompanied by changes in the molecularity, formation of a pore or, more generally, the activation of biological function. For single-span membrane proteins, such as the tyrosine kinases, an interplay between juxtamembrane and transmembrane domains is likely to be crucial for the regulation of dimer assembly that in turn is associated with the functional responses to external signals. Additionally, we note that experiments with designed single-span transmembrane helices offer fundamental insights into the molecular features that govern protein–lipid interactions.This article is part of a Special Issue entitled: Lipid–protein interactions.  相似文献   

14.
Electrochemistry of cytochrome c (cyt c) immobilized on a cardiolipin (CL)/phosphatidylcholine (PC) film supported on a glassy carbon electrode was investigated using variable-frequency AC voltammetry. At low ionic strength, we observed two redox-active subpopulations characterized by distinct values of potential (E1/2) and electron transfer rate constant (kET). At high ionic strength, only one subpopulation was detected, consistent with the existence of very stable cyt c–CL adducts, most probably formed by hydrophobic interactions between the protein and the fatty acid (FA) chains carried by CL. This subpopulation exhibits a comparatively high kET value (> 300 s− 1) apparently changing with the structure of the FA chains of CL, i.e. 18:2(n − 6) or 14:0. Our study suggests that electrochemistry can be a useful technique for probing protein–lipid interactions, and more particularly the role played by the specific structure of the FA chains of CL on cyt c binding.  相似文献   

15.
Many methods developed for estimating the reliability of protein–protein interactions are based on the topology of protein–protein interaction networks. This paper describes a new reliability measure for protein–protein interactions, which does not rely on the topology of protein interaction networks, but expresses biological information on functional roles, sub-cellular localisations and protein classes as a scoring schema. The new measure is useful for filtering many spurious interactions, as well as for estimating the reliability of protein interaction data. In particular, the reliability measure can be used to search protein–protein interactions with the desired reliability in databases. The reliability-based search engine is available at http://yeast.hpid.org. We believe this is the first search engine for interacting proteins, which is made available to public. The search engine and the reliability measure of protein interactions should provide useful information for determining proteins to focus on.  相似文献   

16.
17.
18.
19.
Early development of protein biotherapeutics using recombinant DNA technology involved progress in the areas of cloning, screening, expression and recovery/purification. As the biotechnology industry matured, resulting in marketed products, a greater emphasis was placed on development of formulations and delivery systems requiring a better understanding of the chemical and physical properties of newly developed protein drugs. Biophysical techniques such as analytical ultracentrifugation, dynamic and static light scattering, and circular dichroism were used to study protein–protein interactions during various stages of development of protein therapeutics. These studies included investigation of protein self-association in many of the early development projects including analysis of highly glycosylated proteins expressed in mammalian CHO cell cultures. Assessment of protein–protein interactions during development of an IgG1 monoclonal antibody that binds to IgE were important in understanding the pharmacokinetics and dosing for this important biotherapeutic used to treat severe allergic IgE-mediated asthma. These studies were extended to the investigation of monoclonal antibody–antigen interactions in human serum using the fluorescent detection system of the analytical ultracentrifuge. Analysis by sedimentation velocity analytical ultracentrifugation was also used to investigate competitive binding to monoclonal antibody targets. Recent development of high concentration protein formulations for subcutaneous administration of therapeutics posed challenges, which resulted in the use of dynamic and static light scattering, and preparative analytical ultracentrifugation to understand the self-association and rheological properties of concentrated monoclonal antibody solutions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号